
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 597-614
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.4865
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Abstract

In this paper, we give sufficient conditions for the existence of solutions of a system of Volterra-type
integral inclusion equations using new sort of multi-valued contractions, named as generalized multi-
valued α∗-η∗-θ-contractions defined on α-complete b-metric spaces. We give its relevance to fixed
point results. We set up an example to elucidate our main results.

Keywords: fixed point, α-complete b-metric space, α -continuous multi-valued mappings,
triangular α-orbital admissible, generalized multi-valued α∗-η∗-θ-contractions.
2010 MSC: 47H10, 54H25.

1. Introduction and Preliminaries

In 1989, Bakhtin [26] investigated the concept of b-metric spaces. However, Czerwik [29, 30]
initiated study of fixed point of self-mappings in b-metric spaces and proved an analogue of Banach’s
fixed point theorem. Since then, numerous research articles have been published comprising fixed
point theorems for various classes of single-valued andmultivalued operatorsin b-metric spaces, (see
e.g., [1, 11, 12, 13, 14, 15, 19, 20, 21, 22, 25, 27, 37, 38]) and related references therein.
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Definition 1.1. [29] Let χ be a non-empty set and s ≥ 1 (s ∈ R). A function ďb : χ× χ → [0,∞)
is said to be a b-metric, if for all r, j, z ∈ χ,

(i) ďb(r, j) = 0 ⇔ r = j;
(ii) ďb(r, j) = ďb(j, r);
(ii) ďb(r, j) ≤ s

[
ďb(r, z) + ďb(z, j)

]
.

The pair (χ, ďb) is called a b-metric space (with constant s).

Example 1.2. [21] Let Hp = {f ∈ W (U) : ∥f∥Hp < ∞} , p ∈ (0, 1) be Hp space defined on the unit
disk U , where H(U) is the set of all holomorphic functions on U and

∥f∥Hp = sup
0<r<1

(
1

2π

π

−π

∣∣f (
reiθ

)∣∣p dθ) 1
p

.

Denote χ = Hp (U) . Define a mapping ďb : χ× χ → [0,∞) by

ďb(f, g) = sup
0<r<1

(
1

2π

π

−π

∣∣f (
reiθ

)
− g

(
reiθ

)∣∣p dθ) 1
p

,

for all f, g ∈ X. Then (χ,ďb) is a b-metric space with coefficient s = 2
1
p
−1.

Definition 1.3. [36] Let Ť : χ → χ be a self-map and α : χ× χ → [0,+∞). Then Ť is said to be
α-admissible, if α(r, j) ≥ 1 =⇒ α(Ť r, Ť j) ≥ 1.

Definition 1.4. [23] Let Ť : χ → χ be a self-map and α : χ× χ → [0,+∞). Then Ť is said to be
triangular α-admissible, if Ť satisfies:
(Ť1) α(r, j) ≥ 1 =⇒ α(Ť r, Ť j) ≥ 1;
(Ť2) α(r, u) ≥ 1 and α(u, j) ≥ 1 =⇒ α(r, j) ≥ 1.

Definition 1.5. [35] Let Ť : χ → χ be a self-map and α : χ× χ → [0,+∞). Then Ť is said to be
α-orbital admissible if
(Ť3) α(r, Ť r) ≥ 1 =⇒ α(Ť r, Ť 2r) ≥ 1.

Definition 1.6. [35] Let Ť : χ → χ be a map and α : χ × χ → [0,+∞). Then Ť is said to be
triangular α-orbital admissible if Ť satisfies (Ť3),
(Ť4) α(r, j) ≥ 1 and α(j, Ť j) ≥ 1 =⇒ α(r, Ť j) ≥ 1.

Definition 1.7. [6] Let Ť : χ → χ be a map and α, η : χ × χ → [0,+∞). Then Ť is said to be
α-orbital admissible with respect to η if,
(Ť5) r ∈ χ, α(r, Ť r) ≥ η(r, Ť r) =⇒ α(Ť r, Ť 2r) ≥ η(Ť r, Ť 2r).

Definition 1.8. [6] Let Ť : χ → χ be a map and α, η : χ × χ → [0,+∞). Then Ť is said to be
triangular α-orbital admissible with respect to η if T satisfies (Ť5),
(Ť6) r, j ∈ χ, α(r, j) ≥ η(r, j) and α(j, Ť j) ≥ η(j, Ť j) =⇒ α(r, Ť j) ≥ η(r, Ť j).

Definition 1.9. [24] Let (χ, ďb) be a b-metric space and α, η : χ × χ −→ [0,∞). Then χ is said
to be α-η-complete, if every Cauchy sequence {rn} in χ with α(rn, rn+1) ≥ η(rn, rn+1) for all n ∈ N
converges in χ.
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Recently, Jleli and Samet [8, 9] presented the notion of a θ-contraction.

Definition 1.10. Let
(
χ, ď

)
be a metric space. A map Ť : χ −→ χ is called θ-contraction, if there

exists a constant k ∈ (0, 1) and θ ∈ Θ such that,

r, j ∈ χ, ď
(
Ť r, Ť j

)
̸= 0 =⇒ θ

(
ď
(
Ť r, Ť j

))
≤

[
θ
(
ď (r, j)

)]k
,

Where Θ is the set of functions θ : (0,∞) −→ (1,∞) satisfying,
(Θ1) θ is non-decreasing;
(Θ2) for each sequence

{
ťn
}
⊂ (0,∞),

lim
n→∞

θ(ťn) = 1 if and only if lim
n→∞

ťn = 0+;

(Θ3) there exists q ∈ (0, 1) and ℓ ∈ (0,∞] such that lim
ť−→0+

θ(ť)−1

ťq
= ℓ.

Jleli and Samet [8] established the following fixed point theorem.

Theorem 1.11. [8] Let
(
χ, ď

)
be a complete metric space and Ť : χ −→ χ be θ-contraction. Then

Ť has a unique fixed point.

As in [10], we denote by µ the family of all functions θ : (0,∞) −→ (1,∞) satisfying the assertions
(Θ1), (Θ2) and (Θ′3), where
(Θ′3) means θ is continuous on (0,∞) .
Note that (Θ3) and (Θ′3) are independent of each other [10].

Example 1.12. [10] For all t ∈ (0,∞) , consider
ϕ1(t) = et, ϕ4(t) = cosh t;

ϕ2(t) = e
√
tet , ϕ5(t) = 1 + ln (t+ 1) ;

ϕ3(t) = e
√
t, ϕ6(t) = ete

t
.

Then ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 ∈ µ.
Very recently, Hussain et al. [5] defined a generalized (α, η)-Θ-contraction and extended the

results of Jleli and Samet [8].
Let (χ, ďb) be a b-metric space. Let CBb(χ) denote the set of all closed and bounded subsets of

χ. For r ∈ χ and A,B ∈ CBb(χ), define

Db(r, A) = inf
a∈A

ďb(r, a) and Db(A,B) = sup
a∈A

Db(a,B).

Define a mapping Hb : CBb(χ)× CBb(χ) −→ [0,∞) by

Hb(A,B) = max

{
sup
r∈A

Db(r, B), sup
j∈B

Db(j, A)

}
,

for each A,B ∈ CBb(χ). Hence the map Hb is called Hausdorff b-metric (induced by a b-metric space
(χ,ďb)).

Lemma 1.13. [29] Let (χ,ďb) be a b-metric space. For any A,B ∈ CBb(χ) and any r, j ∈ χ, we
have:
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(i) Db(r, B) ≤ ďb(r, b) for any b ∈ B;
(ii) Db(r, B) ≤ Hb(A,B);
(ii) Db(r, A) ≤ s

[
ďb(r, j) +Db(j, B)

]
.

Lemma 1.14. [29] Let (χ, ďb) be a b-metric space, A, B ∈ CBb(χ) and M > 1. Then for all a ∈ A,
there exists b ∈ B such that ďb (a, b) ≤ MHb(A,B).

Definition 1.15. [33] Let Ť : χ → CBb(χ) be a multi-valued mapping and α : χ× χ −→ [0,+∞).
Then Ť is said to be α∗-admissible if α(r, j) ≥ 1 =⇒ α∗(Ť r, Ť j) ≥ 1, where

α∗(A,B) = inf {α(r, j) : r ∈ A, j ∈ B} .

Now, we introduce the following definitions.

Definition 1.16. Let Ŝ, Ť : χ → CBb (χ) be two multi-valued maps and α, η : χ× χ → [0,+∞) be

two functions. We say that
(
Ŝ, Ť

)
is triangular α∗-η∗-admissible pair, if:

(i) α(r, j) ≥ η(r, j) =⇒ α∗(Ŝr, Ť j) ≥ η∗(Ŝr, Ť j) and α∗(Ť r, Ŝj) ≥ η∗(Ť r, Ŝj), where

α∗(A,B) = inf {α(r, j) : r ∈ A, j ∈ B} ,
η∗(A,B) = inf {η(r, j) : r ∈ A, j ∈ B} ;

(ii) α(r, u) ≥ η(r, u) and α(u, j) ≥ η(u, j) =⇒ α(r, j) ≥ η(r, j).

Definition 1.17. Let Ŝ, Ť : χ → CBb (χ) be two multi-valued maps and α, η : χ× χ → [0,+∞) be

functions. We asy that
(
Ŝ, Ť

)
is an α∗-η∗-orbital admissible pair, if,

(i) α∗(r, Ŝr) ≥ η∗(r, Ŝr) and α∗(r, Ť r) ≥ η∗(r, Ť r) =⇒ α∗(Ŝr, Ť
2r) ≥ η∗(Ŝr, Ť

2r) and α∗(Ť r, Ŝ
2r) ≥

η∗(Ť r, Ŝ
2r).

Definition 1.18. Let Ŝ, Ť : χ → CBb (χ) be two multi-valued maps and α, η : χ× χ → [0,+∞) be

functions. Then
(
Ŝ, Ť

)
is said to be triangular α∗-η∗-orbital admissible pair, if:

(i)
(
Ŝ, Ť

)
is α∗-η∗-orbital admissible pair;

(ii) α(r, j) ≥ η(r, j), α∗(j, Ŝj) ≥ η∗(j, Ŝj) and α∗(j, Ť j) ≥ η∗(j, Ť j) =⇒ α∗(r, Ŝj) ≥ η∗(r, Ŝj) and
α∗(r, Ť j) ≥ η∗(r, Ť j).

Lemma 1.19. Let Ŝ, Ť : χ → CBb (χ) such that (Ŝ, Ť ) is triangular α∗-η∗-orbital admissible pair.

Assume that, there exists r0 ∈ χ such that α∗(r0, Ŝr0) ≥ min
{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
. Define

the sequence {rň} in χ by r2i+1 ∈ Ŝr2i and r2i+2 ∈ Ť r2i+1, where i = 0, 1, 2, .... Then for ň,m ∈
N ∪ {0} with m > ň, we have α (rň, rm) ≥ η (rň, rm) .

Definition 1.20. Let (χ, ďb) be a b-metric space. Let Ŝ : χ → CBb(χ) and α, η : χ× χ → [0,+∞).
Then Ŝ is said to be a multivalued α-η-continuous on (CBb(χ), Hb) if whenever {rň} is a sequence
in χ with α(rň, rň+1) ≥ η(rň, rň+1) for all ň ∈ N and r ∈ χ such that lim

ň−→∞
ďb(rň, r) = 0, then

lim
ň−→∞

Hb(Ŝrň, Ŝr) = 0.
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2. Fixed point results

First, inspired by Jleli and Samet [8, 9], we give the following definition.

Definition 2.1. Let s ≥ 1. We denote by Θs the set of all functions θ : (0,∞) −→ (1,∞), with the
following properties:
(Θs1) θ is non-decreasing;
(Θs2) for each sequence

{
ťn
}
⊂ (0,∞),

lim
n→∞

θ(ťn) = 1⇔ lim
n→∞

ťn = 0+;

(Θs3) there exists q ∈ (0, 1) and ℓ ∈ (0,∞] such that lim
ť−→0+

θ(ť)−1

ťq
= ℓ.

(Θs4) for each sequence
{
ťn
}
⊂ (0,∞) such that θ

(
sťn

)
≤

[
θ
(
ťn−1

)]k
, for all ň ∈ N then θ

(
snťn

)
≤[

θ
(
sn−1ťn−1

)]k
, for some k ∈ (0, 1) and for all ň ∈ N.

Example 2.2. Let θ : (0,∞) −→ (1,∞) defined by θ (t) = e
√
ť. Then clearly, θ satisfies (Θs1)-

(Θs4). Now we show only, (Θs4). suppose that, for some k ∈ (0, 1) and for all n ∈ N, we e
√

sťn ≤[
θ
(
e
√

ťn−1

)]k
. Thus,

e
√

sn ťn = e
√

sn−1sťn =
[
e
√

sťn
]√sn−1

≤
[(

e
√

ťn−1

)k
]√sn−1

=
[
e
√

sn−1 ťn−1

]k
,

hence (Θs4) holds true. Note that also, θ (t) = eť ∈ Θs.

Now, we introduce the concept of generalized multi-valued α∗–η∗-θ-contractions as follows:

Definition 2.3. Let
(
χ, ďb

)
be a b-metric space, and α, η : χ × χ −→ [0,∞) be two functions. Let

Ŝ, Ť : χ −→ CBb (χ) be two multi-valued maps. Then
(
Ŝ, T

)
is called a generalized multi-valued

α∗-η∗-θ-contraction if for r, j ∈ χ, with α (r, j) ≥ min
{
η∗

(
r, Ŝr

)
, η∗

(
j, Ť j

)}
and Hb

(
Ŝr, Ť j

)
> 0,

we have
θ
(
sHb

(
Ŝr, Ť j

))
≤ [θ (Ms (r, j))]

k , (2.1)

where θ ∈ Θs, k ∈ (0, 1) and

Ms (r, j) = max

ďb (r, j) , Db

(
r, Ŝr

)
, Db

(
j, Ť j

)
,
Db

(
r, Ť j

)
+Db

(
j, Ŝr

)
2s

 . (2.2)

The following theorem is our main result.

Theorem 2.4. Let
(
χ, ďb

)
be a b-metric space and α, η : χ × χ −→ [0,∞) be two functions. Let

Ŝ, Ť : χ −→ CBb (χ) be such that
(
Ŝ, T

)
is a generalized multi-valued α∗-η∗-θ-contraction. Suppose

that,
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(i)
(
X, ďb

)
is an α-η-complete b-metric space;

(ii) (Ŝ, Ť ) is triangular α∗-η∗-orbital admissible pair;

(iii) there exists r0 ∈ χ such that α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
;

(iv) Ŝ and Ť are multi-valued α-η-continuous.
Then Ŝ and Ť have a common fixed point r∗ ∈ χ.

Proof . Let r0 ∈ χ be such that α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
. Choose

r1 ∈ Ŝr0 such that

α(r0, r1) ≥ min
{
η∗

(
r0, Ŝr0

)
, η∗

(
r1, Ť r1

)}
and r1 ̸= r0. By (2.1) and Lemma 1.12, we have

0 < θ
(
sDb

(
r1, Ť r1

))
≤ θ

(
sHb

(
Ŝr0, Ť r1

))
. (2.3)

There exists x2 ∈ Ť x1 such that

0 ≤ θ
(
sďb (r1, r2)

)
≤ θ

(
sHb

(
Ŝr0, Ť r1

))
≤ [θ (Ms (r0, r1))]

k ,

which implies that
0 < θ

(
sďb (r1, r2)

)
≤ [θ (Mb (r0, r1))]

k , (2.4)

where

Ms (r0, r1) = max

 ďb (r0, r1) , Db

(
r0, Ŝr0

)
, Db

(
r1, Ť r1

)
,

Db(r0,Ť r1)+Db(r1,Ŝr0)
2s


≤ max

{
ďb (r0, r1) , ďb (r0, r1) , ďb (r1, r2) ,

Db

(
r0, Ť r1

)
+ ďb (r1, r1)

2s

}

≤ max

{
ďb (r0, r1) , ďb (r1, r2) ,

Db

(
r0, Ť r1

)
2s

}
.

Since

Db

(
r0, Ť r1

)
2s

≤
s
[
ďb (r0, r1) +Db

(
r1, Ť r1

)]
2s

≤
[
ďb (r0, r1) +Db

(
r1, Ť r1

)]
2

≤ max
{
ďb (r0, r1) , Db

(
r1, Ť r1

)}
,

then we get
Ms (r0, r1) ≤ max

{
ďb (r0, r1) , Db

(
r1, Ť r1

)}
.

If max
{
ďb (r0, r1) , Db

(
r1, Ť r1

)}
= Db

(
r1, Ť r1

)
, then from (2.4), we have

θ
(
sDb

(
r1, Ť r1

))
≤

[
θ
(
Db

(
r1, Ť r1

))]k
< θ

(
Db

(
r1, Ť r1

))
,

which is a contradiction. Therefore,

max
{
ďb (r0, r1) , Db

(
r1, Ť r1

)}
= ďb (r0, r1) .
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By (2.4), we get that θ
(
sďb (r1, r2)

)
< θ

(
ďb (r0, r1)

)
. Similarly, for r2 ∈ Ť r1 and r3 ∈ Ŝr2,

θ
(
sďb (r2, r3)

)
≤ θ

(
sDb

(
r2, Ŝr2

))
≤ θ

(
sHb

(
Ť r1, Ŝr2

))
≤ θ

(
ďb (r1, r2)

)
,

which implies that
θ
(
sďb (r2, r3)

)
≤ θ

(
ďb (r1, r2)

)
. (2.5)

Continuing in this way, we define a sequence {rn} in χ such that r2i+1 ∈ Ŝr2i and r2i+2 ∈ Ť r2i+1,
i = 0, 1, 2, ....

Since α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
and (Ŝ, Ť ) is triangular α∗-η∗-orbital ad-

missible pair, so by using Lemma 1.19, we get

α (rn, rn+1) ≥ η (rn, rn+1) , for all n ∈ N.

Then
0 < θ

(
sďb (r2i+1, r2i+2)

)
≤ θ

(
sHb

(
Ŝr2i, Ť r2i+1

))
≤ [θ (Ms (r2i, r2i+1))]

k , (2.6)

for all i ∈ N, where

Ms (r2i, r2i+1) = max

 ďb (r2i, r2i+1) , Db

(
r2i, Ŝr2i

)
, Db

(
r2i+1, Ť r2i+1

)
,

Db(r2i,Ť r2i+1)+Db(r2i+1,Ŝr2i)
2s


≤ max

{
ďb (r2i, r2i+1) , ďb (r2i, r2i+1) , ďb (r2i+1, r2i+2) ,

Db(r2i,Ť r2i+1)
2s

}

≤ max

{
ďb (r2i, r2i+1) , ďb (r2i+1, r2i+2) ,

Db

(
r2i, Ť r2i+1

)
2s

}
.

Since

Db

(
r2i, Ť r2i+1

)
2s

≤
s
[
ďb (r2i, r2i+1) + ďb (r2i+1, r2i+2)

]
2s

≤
[
ďb (r2i, r2i+1) + ďb (r2i+1, r2i+2)

]
2

≤ max
{
ďb (r2i, r2i+1) , ďb (r2i+1, r2i+2)

}
,

then we get
Ms (r2i, r2i+1) ≤ max

{
ďb (r2i, r2i+1) , ďb (r2i+1, r2i+2)

}
, ∀ i ≥ 0.

If for some i, max
{
ďb (r2i, r2i+1) , ďb (r2i+1, r2i+2)

}
= ďb (r2i+1, r2i+2) , then by (2.6) we have

1 < θ
(
ďb (r2i+1, r2i+2)

)
≤

[
θ
(
ďb (r2i+1, r2i+2)

)]k
< θ

(
ďb (r2i+1, r2i+2)

)
,
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which is a contradiction. Thus

max
{
ďb (r2i, r2i+1) , ďb (r2i+1, r2i+2)

}
= ďb (r2i, xr2i+1) ∀ i ≥ 0.

By (2.6), we get that

1 < θ
(
sďb (r2i+1, r2i+2)

)
≤

[
θ
(
ďb (r2i, r2i+1)

)]k
< θ

(
ďb (r2i, r2i+1)

)
∀ i ≥ 0.

This implies that

1 < θ
(
sďb (rn+1, rn+2)

)
≤

[
θ
(
ďb (rn, rn+1)

)]k
< θ

(
ďb (rn, rn+1)

)
∀ n ≥ 0. (2.7)

From (2.7) and axiom (Θs4), we have

1 < θ
(
snďb (rn+1, rn+2)

)
≤

[
θ
(
sn−1ďb (rn−1, rn)

)]k
< θ

(
sn−1ďb (rn−1, rn)

)
∀ n ≥ 0. (2.8)

Further,

1 < θ
(
snďb (rn+1, rn+2)

)
= θ

(
snďb

(
Ŝrn, Ť rn+1

))
≤

[
θ
(
sn−1ďb (rn−1, rn)

)]k
=

[
θ
(
sn−1ďb

(
Ŝrn−2, Ť rn−1

))]k
≤

[
θ
(
sn−2ďb (rn−1, rn−2)

)]k2
≤ ... ≤

[
θ
(
ďb (r0, r1)

)]kn
,

Which implies,

1 < θ
(
snďb (rn+1, rn+2)

)
≤

[
θ
(
ďb (r0, r1)

)]kn
, (2.9)

for all n ∈ N. Taking the limit as n −→ ∞ in (2.9), since θ ∈ Θs, we have

lim
n−→∞

θ
(
snďb (rn+1, rn+2)

)
= 1,

By (Θs2), we get
lim

n−→∞
snďb (rn+1, rn+2) = 0. (2.10)

From condition (Θs3), there exist q ∈ (0, 1) and ℓ ∈ (0,∞] such that

lim
n−→∞

θ
(
snďb (rn+1, rn+2)

)
− 1[

snďb (rn+1, rn+2)
]q = ℓ.

Suppose that ℓ < ∞. Let W = ℓ
2
> 0. From the definition of the limit, there exists n0 ≥ 1 such that∣∣∣∣∣θ

(
snďb (rn+1, rn+2)

)
− 1[

snďb (rn+1, rn+2)
]q − ℓ

∣∣∣∣∣ ≤ W for all n ≥ n0.

This implies
θ
(
snďb (rn+1, rn+2)

)
− 1[

snďb (rn+1, rn+2)
]q ≥ ℓ−W = W for all n ≥ n0.

Then
n
[
snďb (rn+1, rn+2)

]q ≤ An
[
θ
(
snďb (rn+1, rn+2)

)
− 1

]
for all n ≥ n0,
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where P = 1
W
. Suppose now that ℓ = ∞. Let W > 0 be an arbitrary positive number. From the

definition of the limit, there exists n0 ≥ 1 such that

θ
(
snďb (rn+1, rn+2)

)
− 1[

snďb (rn+1, rn+2)
]q ≥ W for all n ≥ n0.

Which implies

n
[
snďb (rn+1, rn+2)

]q ≤ Pn
[
θ
(
snďb (rn+1, rn+2)

)
− 1

]
for all n ≥ n0,

where P = 1
W
. Thus, in all cases, there exist P > 0 and n0 ≥ 1 such that

n
[
snďb (rn+1, rn+2)

]q ≤ Pn
[
θ
(
snďb (rn+1, rn+2)

)
− 1

]
for all n ≥ n0.

By using (2.9), we get

n
[
snďb (rn+1, rn+2)

]q ≤ Pn
(
[θ (d(r0, r1))]

kn − 1
)

for all n ≥ n0. (2.11)

Setting n −→ ∞ in the inequality (2.11), we get

lim
n−→∞

n
[
snďb (rn+1, rn+2)

]q
= 0.

Thus, there exists n1 ∈ N such that

snďb (rn+1, rn+2) ≤
1

n
1
q

for all n ≥ n1. (2.12)

To prove {rn} is a Cauchy sequence, we use (2.12) and for m > n ≥ n1,

ďb (rn, rm) ≤ m−1
i=n siďb (ri, ri+1) ≤∞

i=n siďb (ri, ri+1)

≤ ∞
i=n

1

i
1
q

.

The convergence of the series ∞
i=n

1

i
1
q
entails lim

n−→∞
ďb (rn, rm) = 0. Thus {rn} is a Cauchy sequence.

Since χ is an α-η-complete b-metric space and α (rn, rn+1) ≥ η (rn, rn+1) , for all n ∈ N, there exists
r∗ ∈ χ such that lim

n−→∞
d (rn, r

∗) = 0. This implies that lim
i−→∞

ďb (r2i+1, r
∗) = 0 and lim

i−→∞
ďb (r2i+2, r

∗) =

0. As Ť is an α-η-continuous multivalued mapping, so lim
i−→∞

Hb (r2i+1, r
∗) = 0. Thus

Db

(
r∗, Ť r∗

)
= lim

i−→∞
Db

(
r2i+2, Ť r

∗) ≤ lim
i−→∞

Hb

(
Ť r2i+1, Ť r

∗) = 0.

Consequently, r∗ ∈ Ť r∗. Similarly, r∗ ∈ Ŝr∗. Therefore, r∗ ∈ χ is a common fixed point of Ŝ and Ť .
□

Theorem 2.5. Let
(
χ, ďb

)
be a b-metric space, and α, η : χ×χ −→ [0,∞) . Let Ŝ, Ť : χ −→ CBb (χ)

be such that (Ŝ, Ť ) is a generalized multi-valued α∗-η∗-θ-contraction. Suppose that,
(i)

(
χ, ďb

)
is an α-η-complete b-metric space;

(ii) (Ŝ, Ť ) is triangular α∗-η∗-orbital admissible pair;

(iii) there exists r0 ∈ χ such that α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
;

(iv) if {rn} is a sequence in χ such that α (rn, rn+1) ≥ η (rn, rn+1) for all n ∈ N and rn −→ r∗ ∈ χ

as n −→ ∞, then either α∗

(
Ŝrn, r

∗
)
≥ η∗

(
Ŝrn, r

∗
)
or α∗

(
Ť rn+1, r

∗) ≥ η∗
(
Ť rn+1, r

∗) holds for all

n ∈ N.
Then Ŝ and Ť have a common fixed point r∗ ∈ χ.
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Proof . Let r0 ∈ χ be such that α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
. As in proof of

Theorem 2.4, we construct a sequence {rn} in χ defined by r2i+1 ∈ Ŝr2i and r2i+2 ∈ Ť r2i+1, where
i ≥ 0, α (rn, rn+1) ≥ η (rn, rn+1) , for all n ∈ N and {rn} converges to r∗ ∈ χ. Since α (rn, xrn+1) ≥
η (rn, rn+1) for all n ∈ N and rn −→ r∗ ∈ χ as n −→ ∞, by condition (iv), either α∗

(
Ŝrn, r

∗
)
≥

η∗

(
Ŝrn, r

∗
)
or α∗

(
Ť rn+1, r

∗) ≥ η∗
(
Ť rn+1, r

∗) holds all n ∈ N. Thus,

α (rn+1, r
∗) ≥ η (rn+1, r

∗) or α (rn+2, r
∗) ≥ η (rn+2, r

∗) , holds for all n ∈ N.

Equivalently, there exists a subsequence
{
rn(k)

}
of {rn} such that

α
(
rn(k), r

∗) ≥ η
(
rn(k), r

∗) for all k ∈ N (2.13)

From (2.13), we deduce that

θ
(
Db

(
r2n(k)+1, Ť r

∗)) ≤ θ
(
Db

(
Ŝr2n(k), Ť r

∗
))

≤ θ
(
sHb

(
Ŝr2n(k), Ť r

∗
))

≤
[
θ
(
Ms

(
r2n(k), r

∗))]k .
This implies that

θ
(
Db

(
r2n(k)+1, Ť r

∗)) ≤ [
θ
(
Ms

(
r2n(k), r

∗))]k < θ
(
Ms

(
r2n(k), r

∗)) , (2.14)

where

Ms

(
r2n(k), r

∗) = max

 ďb
(
r2n(k), r

∗) , Db

(
r2n(k), Ŝr2n(k)

)
, Db

(
r∗, Ť r∗

)
,

Db(r2n(k),Ŝr
∗)+Db(r∗,Ť r2n(k))

2s


≤ max

{
ďb

(
r2n(k), r

∗) , ďb (r2n(k), r2n(k)+1

)
, Db

(
r∗, Ť r∗

)
,

Db(r2n(k),Ť r∗)+Db(r∗,Ŝr2n(k))
2s

}
.

Suppose that r∗ /∈ Ť r∗, then Db

(
r∗, Ť r∗

)
> 0. Taking the limit as k −→ ∞ in (2.14) and using the

condition (Θ′3), we have
θ
(
Db

(
r∗, Ť r∗

))
< θ

(
Db

(
r∗, Ť r∗

))
.

It is a contradiction. Hence Db

(
r∗, Ť r∗

)
= 0, and so r∗ ∈ Ť r∗. Similarly, we can show that r∗ ∈ Ŝr∗.

Thus r∗ ∈ χ is a common fixed point of Ŝ and Ť . □

Example 2.6. Let χ = [−1, 1] and define the function ďb : χ × χ → [0,+∞) by ďb(r, j) = |r − j|2.
Clearly, (χ, ďb) is a complete b-metric space with s = 2. Let θ (t) = et, t > 0, then θ ∈ Θs. Define the
mappings Ŝ, Ť : χ −→ CBb(χ) by

Ť r =

{ [
0, 2r

245

]
, if r ∈ [−1, 0]

{1} , if r ∈ (0, 1]
,

and

Ŝr =

{ [
0, r

300

]
, if r ∈ [−1, 0]

{1} , if r ∈ (0, 1]
.
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Moreover, define the functions α, η : χ× χ −→ [0,∞) by

α (r, j) =

{
1, if r, j ∈ [−1, 0]
0, otherwise.

and

η (r, j) =

{
1
5
, if r, j ∈ [−1, 0]

3, otherwise.

If {rn} is a Cauchy sequence such that α (rn, rn+1) ≥ η (rn, rn+1) for all n ∈ N, then {rn} ⊆ [−1, 0] .
Since

(
[−1, 0] , ďb

)
is a complete b-metric space, then the sequence {rn} converges in [−1, 0] ⊆ χ.

Thus
(
χ, ďb

)
is an α-η-complete b-metric space. Let α∗

(
r, Ŝr

)
≥ η∗

(
r, Ŝr

)
and α∗

(
r, Ť r

)
≥

η∗
(
r, Ť r

)
. So, r ∈ [−1, 0] and Ŝr, Ť r ∈ [−1, 0]. Hence Ŝ2r = Ŝ

(
Ŝr

)
, Ť 2r = Ť

(
Ť r

)
∈ [−1, 0].

Then α∗

(
Ŝr, Ť 2r

)
≥ η∗

(
Ŝr, Ť 2r

)
and α∗

(
Ť r, Ŝ2r

)
≥ η∗

(
Ť r, Ŝ2r

)
. Thus,

(
Ŝ, Ť

)
is α∗-η∗-orbital

admissible. Let r, j ∈ χ be such that α (r, j) ≥ η (r, j), α∗

(
j, Ŝj

)
≥ η∗

(
j, Ŝj

)
and α∗

(
j, Ť j

)
≥

η∗
(
j, Ť j

)
. Then we have r, j, Ŝj, Ť j ∈ [−1, 0] , which implies that α∗

(
r, Ŝj

)
≥ η∗

(
r, Ŝj

)
and

α∗
(
r, Ť j

)
≥ η∗

(
r, Ť j

)
. Hence,

(
Ŝ, Ť

)
is triangular α∗-η∗-orbital admissible pair. Let {rn} be a

sequence such that rn −→ r as n −→ ∞ and α (rn, rn+1) ≥ η (rn, rn+1) for all n ∈ N. Then
{rn} ⊆ [−1, 0] for all n ∈ N. So lim

n−→∞
Ť rn = lim

n−→∞

[
0, 2

245
rn
]
=

[
0, 2

245
r
]
= Ť r. Hence Ť is a

multi-vlued α-η-continuous. Similarly, we can check that S is a multi-vlued α-η-continuous. Let
r0 = −1

2
. Then

α∗

(
−1

2
, Ŝ

(
−1

2

))
= α∗

(
−1

2
, 0

)
= 1

≥ min

 η∗

(
−1

2
, Ŝ

(
−1

2

))
,

η∗

(
Ŝ
(
−1

2

)
, Ť

(
Ŝ
(
−1

2

)))
 =

1

5
.

Let r, j ∈ χ be such that α (r, j) ≥ min
{
η∗

(
r, Ŝr

)
, η∗

(
j, Ť j

)}
. Then r, j ∈ [−1, 0] and Hb

(
Ŝr, Ť j

)
>

0. So
θ
(
sHb

(
Ŝr, Ť j

))
≤ [θ (Ms (r, j))]

k ,

where k ∈
(
4
5
, 1
)
. Hence all hypothese of Theorem 2.4 are satisfied. Thus, Ŝ and Ť have a common

fixed point.

Corollary 2.7. Let
(
χ, ďb

)
be a complete b-metric space, and α, η : χ× χ −→ [0,∞) . Let Ŝ : χ −→

CBb (χ) be such that Ŝ is a generalized multi-valued α∗-η∗-θ-contraction. Suppose that
(i)

(
χ, ďb

)
is an α-η-complete b-metric space;

(ii) Ŝ is triangular α∗-η∗-orbital admissible;

(iii) there exists r0 ∈ χ such that α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
;

(iv) either Ŝ is a multi-valued α-η-continuous or if {rn} is a sequence in χ such that α (rn, rn+1) ≥
η (rn, rn+1) for all n ∈ N and rn −→ r∗ ∈ χ as n −→ ∞, then either α∗

(
Ŝrn, r

∗
)
≥ η∗

(
Ŝrn, r

∗
)
or

α∗

(
Ŝrn+1, r

∗
)
≥ η∗

(
Ŝrn+1, r

∗
)
holds for all n ∈ N.

Then Ŝ has a fixed point r∗ ∈ χ.
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Definition 2.8. Let
(
χ, ďb

)
be a b-metric space. Let α, η : χ × χ −→ [0,∞) and Ŝ, Ť : χ −→

CBb (χ) be two multi-valued mappings. Then (Ŝ, Ť ) is said to be a multi-valued α∗η∗-θ-contraction

mapping, if there exists θ ∈ Θs such that for all r, j ∈ χ with α (r, j) ≥ min
{
η∗

(
r, Ŝr

)
, η∗

(
j, Ť j

)}
,

(Ŝ, Ť ) satisfies:

θ
(
sHb

(
Ŝr, Ť j

))
≤

[
θ
(
ďb (r, j)

)]k
, k ∈ (0, 1) .

Theorem 2.9. Let
(
χ, ďb

)
be a b-metric space, and α, η : χ×χ −→ [0,∞) . Let Ŝ, Ť : χ −→ CBb (χ)

be such that (Ŝ, Ť ) is a multi-valued α∗-η∗-θ-contraction. Suppose that,
(i)

(
χ, ďb

)
is an α-η-complete b-metric space;

(ii) (Ŝ, Ť ) is triangular α∗-η∗-orbital admissible pair;

(iii) there exists r0 ∈ χ such that α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
;

(iv) either Ŝ and Ť are multi-valued α-η-continuous or if {rn} is a sequence in χ such that α (rn, rn+1) ≥
η (rn, rn+1) for all n ∈ N and rn −→ r∗ ∈ χ as n −→ ∞, then either α∗

(
Ŝrn, r

∗
)
≥ η∗

(
Ŝrn, r

∗
)
or

α∗
(
Ť rn+1, r

∗) ≥ η∗
(
Ť rn+1, r

∗) holds for all n ∈ N.
Then Ŝ and Ť have a common fixed point r∗ ∈ χ.

Corollary 2.10. Let (χ,⪯) be a partially ordered set and Ŝ, Ť : χ −→ χ. Suppose that there exists
a b-metric ďb on χ such that

(
χ, ďb

)
is a complete b-metric space. Assume that,

(i) there exists θ ∈ Θs such that

θ
(
sd

(
Ŝr, Ť j

))
≤ [θ (Ms (r, j))]

k ,

where k ∈ (0, 1) and

Ms (r, j) = max

ďb (r, j) , ďb

(
r, Ŝr

)
, ďb (j, Sj) ,

ďb
(
r, Ť j

)
+ ďb

(
j, Ŝr

)
2s


for all r, j ∈ χ with r ⪯ j and ďb

(
Ŝr, Ť j

)
> 0;

(ii) Ŝ and Ť are nondecreasing (that is, if for all r, j ∈ χ, r ⪯ j implies Ŝr ⪯ Ŝj);
(iii) there exists r0 ∈ χ such that r0 ⪯ Ŝr0;
(iv) either Ŝ and Ť are continuous or if {rn} is a sequence in χ such that rn ⪯ rn+1 for all n ∈ N
and rn −→ r∗ ∈ χ as n −→ ∞, then either Ŝrn ⪯ r∗ or Ť rn+1 ⪯ r∗ holds for all n ∈ N.
Then Ŝ and Ť have a common fixed point r∗ ∈ χ.

Now, we deduce certain Suzuki-Samet type fixed point results.

Theorem 2.11. Let
(
χ, ďb

)
be a complete b-metric space. Let Ŝ, Ť : χ −→ CBb (χ) be two contin-

uous multi-valued mappings. If for all r, j ∈ χ with

1

2
min

{
Db

(
r, Ŝr

)
, Db

(
j, Ť j

)}
≤ ďb (r, j) ,

and Hb

(
Ŝr, Ť j

)
> 0, we have

θ
(
sHb

(
Ŝr, Ť j

))
≤ [θ (Ms (r, j))]

k ,

where θ ∈ Θs. Then Ŝ and Ť have a common fixed point.
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Proof . Define α, η : χ× χ −→ [0,∞) by

α (r, j) = ďb (r, j) and η (r, j) =
1

2
ďb (r, j) ,

for all r, j ∈ χ. Since 1
2
ďb (r, j) ≤ ďb (r, j) for all r, j ∈ χ, so η (r, j) ≤ α (r, j) for all r, j ∈ χ. Hence

the conditions (i), (iii) and (iv) of Theorem 2.2 hold. Since Ŝ and Ť are continuous, Ŝ and Ť are α-η-

continuous multi-vlued mappings. Let min
{
η∗

(
r, Ŝr

)
, η∗

(
r, Ť r

)}
≤ α (r, j) with Hb

(
Ŝr, Ť j

)
> 0.

Equivalently, if 1
2
min

{
Db

(
r, Ŝr

)
, Db

(
j, Ť y

)}
≤ ďb (r, j) with Hb

(
Ŝr, Ť j

)
> 0, then we have

θ
(
sHb

(
Ŝr, Ť j

))
≤ [θ (Ms (r, j))]

k .

That is, (Ŝ, Ť ) is a generalized multi-valued α∗-η∗-θ-contraction. Hence, all conditions of Theorem
2.2 hold. Thus Ŝ and Ť have a common fixed point. □

Theorem 2.12. Let
(
χ, ďb

)
be a complete b-metric space. Let Ŝ, Ť : χ −→ CBb (χ). If for all

r, j ∈ χ with
1

2 (1 + π)
min

{
Db

(
r, Ŝr

)
, Db

(
j, Ť j

)}
≤ ďb (r, j) ,

π > 0 and Hb

(
Ŝr, Ť j

)
> 0, we have

θ
(
sHb

(
Ŝr, Ť j

))
≤ [θ (Ms (r, j))]

k ,

where θ ∈ Θs. Then Ŝ and Ť have a common fixed point.

Proof . The result follows from Theorem 2.3 by taking α, η : χ× χ −→ [0,∞) as

α (r, j) = ďb (r, j) and η (r, j) =
1

2 (1 + π)
ďb (r, j) .

□

3. Application

we apply the result given by Theorem 2.4 to study the existence of a solution for a system of
Volterra-type integral inclusions. For instance,

Consider the following system of Volterra-type integral inclusions:

r (t) ∈
∫ t

a

Γ(t, s, r(s))ds+ f(t) and j (t) ∈
∫ t

a

Ξ(t, s, j(s))ds+ g(t) (3.1)

where Γ,Ξ : [a, b] × [a, b] × R −→ CV B(R), and CV B(R) denotes the family of nonempty closed,
convex and bounded subsets of R( set of all real numbers). let χ = C ([a, b] ,R) be the space of all
continuous real valued functions on [a, b]. Note that χ is a complete b-metric space by considering
ďb(r, j) = supt∈[a,b] |r(t)− j(t)|2 with s = 2. For each r, j ∈ C ([a, b] ,R), the operators Γ(., ., x) and
Ξ(., ., y) are lower semi-continuous. Further, the functions f ,g : [a, b] −→ R are continuous.
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For the system of integrals inclusion given above, we can define multivalued operators Ŝ, Ť :
C ([a, b] ,R) −→ CB(C ([a, b] ,R)) as follows:

Ŝr (t) =

{
u ∈ C ([a, b] ,R) : u ∈

∫ t

a

Γ(t, s, r(s))ds+ f(t), t ∈ [a, b]

}
,

and

Ť j (t) =

{
v ∈ C ([a, b] ,R) : v ∈

∫ t

a

Ξ(t, s, j(s))ds+ g(t), t ∈ [a, b]

}
.

Let r, j ∈ C ([a, b] ,R) and denote Γr := Γ(t, s, r(s)) and Ξj := Ξ(t, s, j(s)), t, s ∈ [a, b] . Now for
Γr,Ξj : [a, b] × [a, b] −→ CV B(R), by Michael’s selection theorem, there exist continuous operators
Υr,Πj : [a, b] × [a, b] −→ R with Υr(t, s) ∈ Γr(t, s) and Πj(t, s) ∈ Ξj(t, s) for all t, s ∈ [a, b] . This

shows that
∫ t

a
Υr(t, s)ds+ f(t) ∈ Ŝr(t) and

∫ t

a
Πj(t, s)ds+ g(t) ∈ Ť j(t). Thus, the operators Ŝr and

Ť j are nonempty. Since g, Υr and Πj are continuous on [a, b] (resp. [a, b] × [a, b]), their ranges are

bounded and hence Ŝr and Ť j are bounded (i.e., Ŝ, Ť : χ −→ CBb (χ)).

Theorem 3.1. Take χ = C ([a, b] ,R). Consider the multivalued operators Ŝ, Ť : χ −→ CBb(χ),

Ŝr (t) =

{
u ∈ C ([a, b] ,R) : u ∈

∫ t

a

Γ(t, s, r(s))ds+ f(t), t ∈ [a, b]

}
,

and

Ť j (t) =

{
v ∈ C ([a, b] ,R) : v ∈

∫ t

a

Ξ(t, s, j(s))ds+ g(t), t ∈ [a, b]

}
,

where f, g : [a, b] −→ R are continuous and Γ,Ξ : [a, b]× [a, b]×R −→ CV B(R) is such that for each
r ∈ C ([a, b] ,R) , the operators Γ(., ., r) and Ξ(., ., j) are lower semi-continuous.

Assume that the following conditions hold:
(i) there exist a function ξ : R2 −→ R and a continuous mapping λ : χ −→ [0,∞) such that for all
r, j ∈ χ, we have

Hb (Γ(t, s, r(s)),Ξ(t, s, j(s))) ≤ λ (s)Ms(r, j) for all t ∈ [a, b] ,

where

Ms(r, j) = max

{
ďb (r(s), j(s)) , Db (r(s),Γ(t, s, r(s))) ,

Db (j(s),Ξ(t, s, j(s))) ,
Db(r(s),Ξ(t,s,j(s)))+Db(j(s),Γ(t,s,r(s)))

2s

}
;

(ii) there exists r0 ∈ C ([a, b] ,R) such that for all t ∈ [a, b],

ξ

(
r0 (t) ,

∫ t

a

Γ(t, s, r0(s))ds+ f(t)

)
≥ 0;

(iii) for all t ∈ [a, b] and for all r, j, z ∈ C ([a, b] ,R),

ξ (r (t) , j(t)) ≥ 0 and ξ (j (t) , z(t)) ≥ 0 =⇒ ξ (r (t) , z(t)) ≥ 0;

(iv) for all t ∈ [a, b] and for all r, j ∈ C ([a, b] ,R),

ξ (r (t) , j(t)) ≥ 0 implies ξ

(∫ t

a

Γ(t, s, r(s))ds+ f(t),

∫ t

a

Ξ(t, s, j(s))ds+ g(t)

)
≥ 0;
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(v) if a sequence {rn} in C ([a, b] ,R) with ξ (rn (t) , rn+1(t)) ≥ 0 for all n ∈ N and for all t ∈ [a, b]
such that rn −→ r ∈ C ([a, b]) as n −→ ∞, then there exists a subsequence

{
rn(k)

}
of {rn} such that

ξ
(
rn(k) (t) , r (t)

)
≥ 0 for all k ∈ N and for all t ∈ [a, b];

(vi) there exist τ > 0 and s ≥ 1 such that for t ∈ [a, b] , we have∫ t

a

√
λ (s)ds ≤

√
e−τ

s
.

Then the system of integral inclusions (3.1) has a solution.
Proof . Let r ∈ χ be such that u ∈ Ŝr and ξ (r (t) , j(t)) ≥ 0 for all t ∈ [a, b] . Then Υr(t, s) ∈ Γr(t, s)
for all t, s ∈ [a, b] such that u (t) =

∫ t

a
Υr(t, s)ds+ g(t) ∈ u (t) =

∫ t

a
Γr(t, s)ds+ g(t), t ∈ [a, b] . But

Hb (Γ(t, s, r(s)),Ξ(t, s, j(s))) ≤ Z (s)max


ďb (r(s), j(s)) , Db (r(s),Γ(t, s, r(s))) ,

Db (j(s),Ξ(t, s, j(s))) ,
Db(r(s),Ξ(t,s,j(s)))+Db(j(s),Γ(t,s,r(s)))

2s


for all t ∈ [a, b] , so there exists j ∈ χ, z(t, s) ∈ Ξj(t, s) for all t, s ∈ [a, b] such that

|Υr(t, s)− z(t, s)|2 ≤ λ (s)max


ďb (r(s), j(s)) , Db (r(s),Γr(t, s)) ,

ďb (j(s), z(t, s)) ,
ďb(r(s),z(t,s))+Db(j(s),Γr(t,s))

2s

 ,

for all t ∈ [a, b] . Now, we can consider the multivalued operator E : [a, b]× [a, b] −→ CB(R) defined
by

E(t, s) = Ξj(t, s) ∩ {L ∈ R ||Υr(t, s)− L| ≤ λ (s)Ms(r, j)} ,
for all t, s ∈ [a, b] . Taking into account the fact that the multivalued operator E is lower semi-
continuous, it follows that there exists a continuous operator Πy : [a, b] × [a, b] −→ R such that
Πj(t, s) ∈ E(t, s) for all t, s ∈ [a, b]. We have for v ∈ Ť j,

v (t) =

∫ t

a

Πj(t, s)ds+ g(t) ∈
∫ t

a

Ξj(t, s)ds+ g(t), t ∈ [a, b] ,

and

|u (t)− v (t)|2 ≤
(∫ t

a

|Υr(t, s)− Πj(t, s)| ds
)2

≤

∫ t

a

√√√√√λ (s)max


ďb (r(s), j(s)) , ďb (r(s),Υr(t, s)) ,

ďb (j(s),Πj(t, s)) ,
ďb(r(s),Πj(t,s))+ďb(j(s),Υr(t,s))

2s

ds


2

≤
(∫ t

a

√
λ (s)ds

)2

max

 ďb (r, j) , Db

(
r, Ŝr

)
, Db

(
j, Ť j

)
,
Db(r,Ť j)+Db(j,Ŝr)

2s

 .

Consequently, we have

d (u, v) ≤ e−τ

s
max

 ďb (r, j) , Db

(
r, Ŝr

)
, Db

(
j, Ť j

)
,

Db(r,Ť j)+Db(j,Ŝr)
2s

 .
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Now, by interchanging the role of r and j, we reach to

sHb

(
Ŝr, Ť j

)
≤ e−τMs(r, j), r, j ∈ χ,

where

Ms(r, j) = max

ďb (r, j) , Db

(
r, Ŝr

)
, Db

(
j, Ť j

)
,
Db

(
r, Ť j

)
+Db

(
j, Ŝr

)
2s

 .

As θ (t) = et ∈ Θs, applying it on above inequality and after some simplifications, we get

e(sHb(Ŝr,Ť j)) ≤
[
e(Ms(r,j))

]e−τ

, r, j ∈ χ.

Define α, η : χ× χ −→ [0,∞) as

α (r, j) =

{
1, if ξ (r (t) , j(t)) ≥ 0, t ∈ [a, b]
0, otherwise

and

η (r, j) =

{
1
3
, if ξ (r (t) , j(t)) ≥ 0, t ∈ [a, b]

1, otherwise.

Let r, j ∈ χ be such that α (r, j) ≥ min
{
η∗

(
r, Ŝr

)
, η∗

(
j, Ť j

)}
. Then ξ (r (t) , j(t)) ≥ 0 for all

t ∈ [a, b] . Thus

e(sHb(Ŝr,Ť j)) ≤
[
e(Ms(r,j))

]e−τ

.

This implies that

θ
(
sHb

(
Ŝr, Ť j

))
≤ [θ (Ms(r, j))]

k , where k = e−τ .

Hence,
(
Ŝ, Ť

)
is a generalized multi-valued α∗-η∗-θ-contraction. By using (iv), for every r ∈ χ with

α∗

(
r, Ŝr

)
≥ η∗

(
r, Ŝr

)
and α∗

(
r, Ť r

)
≥ η∗

(
r, Ť r

)
, we get

ξ
(
Ŝr (t) , Ť 2r(t)

)
≥ 0

and
ξ
(
Ť r (t) , Ŝ2r(t)

)
≥ 0.

Therefore, α∗

(
Ŝr, Ť 2r

)
≥ η∗

(
Ŝr, Ť 2r

)
and α∗

(
Ť r, Ŝ2r

)
≥ η∗

(
Ť r, Ŝ2r

)
. Let r, j ∈ χ be such that

α (r, j) ≥ η (r, j), α∗

(
j, Ŝj

)
≥ η∗

(
j, Ŝj

)
and α∗

(
j, Ť j

)
≥ η∗

(
j, Ť j

)
. Then

ξ (r (t) , j(t)) ≥ 0, ξ
(
j (t) , Ŝj(t)

)
≥ 0 and ξ

(
j(t), Ť j (t)

)
≥ 0 for all t ∈ [a, b] .

By using (iii), we get that ξ
(
r (t) , Ŝj(t)

)
≥ 0, ξ

(
r (t) , Ť j(t)

)
≥ 0. So α∗

(
r, Ŝj

)
≥ η∗

(
r, Ŝj

)
and

α∗ (r, T j) ≥ η∗
(
r, Ť j

)
. Then

(
Ŝ, Ť

)
is triangular α∗-η∗-orbital admissible pair. By, (ii), there exists

r0 ∈ χ such that

α∗

(
r0, Ŝr0

)
≥ min

{
η∗

(
r0, Ŝr0

)
, η∗

(
Ŝr0, Ť Ŝr0

)}
.

Let {rn} be a sequence in χ such that rn −→ r ∈ χ as n −→ ∞. Then from (v), there exists a sub-
sequence

{
rn(k)

}
of {rn} such that ξ

(
rn(k) (t) , r (t)

)
≥ 0, this implies that α

(
rn(k), r

)
≥ η

(
rn(k), r

)
.

Therefore, all hypothese of Theorem 2.4 are satisfied. Hence Ŝ and Ť have a common fixed point,
that is, the system of Volterra-type integral inclusions (3.1) has a solution. □
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[20] M. Jovanović, Z. Kadelburg, S. Radenović, Common xed point results in metric-type spaces, Fixed Point Theory

Appl. Volume 2010, Article ID 978121, 15 pages.
[21] H. Huang, S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed

Point Theory Appl. (2013), 2013:112.
[22] N. Hussian, M. H. Shah, KKM mappings in cone b -metric spaces, Comput. Math. Appl. 62 (2011), 1677-168.
[23] E. Karapınar, P. Kumam, P. Salimi, On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013,

2013:94.
[24] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α-complete metric space with applications, Abstr.

Appl. Anal. 2014 (2014), 11 pages.
[25] J.R. Roshan, V. Parvaneh, Sh. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized

(ψ − φ)s-contraction mappings in ordered b-metric spaces, Fixed Point Theory Appl. (2013), 2013:159.
[26] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis, vol. 30, pp. 26–37,

1989.
[27] L. Shi, S. Xu, Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces,

Fixed Point Theory Appl. (2013), 2013:120.
[28] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math.

3 (1922), 133–181.
[29] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena.

46 (2) (1998), 263-276.
[30] S. Czerwik, Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.



614 Ameer, et al.

[31] P. Salimi, A. Latif, N. Hussain, Modified α−ψ−contractive mappings with applications Fixed Point Theory and
Appl. (2013), 2013:151.

[32] M. Berzig, E. Karapınar, On modified α-ψ-contractive mappings with application, Thai Journal of Mathematics.
Vol 13, No 1 (2015), 147-152.

[33] B. Mohammadi, Sh. Rezapour, N.Shahzad, Some results of fixed point of α-ψ-quasi-contractive multifunctions,
Fixed Point Theory Appl. (2013), 2013:112.

[34] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math. 30 (1969), 475-488.
[35] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point

Theory Appl. 2014, 2014:90.
[36] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α − ψ-contractive type mappings, Nonlinear Anal. 75

(2012), 2154–2165.
[37] W. Shatanawi, Fixed and common fixed point for mappings satisfying nonlinear contractive in b-metric spaces, J.

Math. Anal. 7(4) (2016) 1–12.
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