Ćirić Type multi-valued $\alpha_{*}-\eta_{*}-\theta$-Contractions on b-meric spaces with Applications

Eskandar Ameer ${ }^{\text {a,b }}$, Hassen Aydic ${ }^{\text {c }}$, Muhammad Arshad ${ }^{\text {d }}$, Aftab Hussain ${ }^{\mathrm{e}, *}$, Abdul Rahim Khan ${ }^{\mathrm{f}}$
${ }^{\text {a }}$ Department of Mathematics, Taiz University, Taiz
${ }^{b}$ Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan
${ }^{c}$ Department of Mathematics, College of Education of Jubail, Imam Abdulrahman Bin Faisal University, P. O: 12020, Industrial Jubail 31961, Saudi Arabia
${ }^{d}$ Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan
${ }^{e}$ Department of Mathematics, Faculty of Natural Sciences, Centre for Mathematical Research, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Pakistan
${ }^{f}$ Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we give sufficient conditions for the existence of solutions of a system of Volterra-type integral inclusion equations using new sort of multi-valued contractions, named as generalized multivalued $\alpha_{*}-\eta_{*}-\theta$-contractions defined on α-complete b-metric spaces. We give its relevance to fixed point results. We set up an example to elucidate our main results.

Keywords: fixed point, α-complete b-metric space, α-continuous multi-valued mappings, triangular α-orbital admissible, generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contractions. 2010 MSC: 47H10, 54H25.

1. Introduction and Preliminaries

In 1989, Bakhtin [26] investigated the concept of b-metric spaces. However, Czerwik [29, 30] initiated study of fixed point of self-mappings in b-metric spaces and proved an analogue of Banach's fixed point theorem. Since then, numerous research articles have been published comprising fixed point theorems for various classes of single-valued andmultivalued operatorsin b-metric spaces, (see e.g., [1, 11, 12, 13, 14, 15, 19, 20, 21, 22, 25, 27, 37, 38]) and related references therein.

[^0]Definition 1.1. [29] Let χ be a non-empty set and $s \geq 1(s \in \mathbb{R})$. A function $\check{d}_{b}: \chi \times \chi \rightarrow[0, \infty)$ is said to be a b-metric, if for all $r, j, z \in \chi$,
(i) $\check{d}_{b}(r, j)=0 \Leftrightarrow r=j$;
(ii) $\check{d}_{b}(r, j)=\check{d}_{b}(j, r)$;
(ii) $\check{d}_{b}(r, j) \leq s\left[\check{d}_{b}(r, z)+\check{d}_{b}(z, j)\right]$.

The pair (χ, \check{d}_{b}) is called a b-metric space (with constant s).
Example 1.2. [21] Let $H^{p}=\left\{f \in W(U):\|f\|_{H^{p}}<\infty\right\}, p \in(0,1)$ be H^{p} space defined on the unit disk U, where $H(U)$ is the set of all holomorphic functions on U and

$$
\|f\|_{H^{p}}=\sup _{0<r<1}\left(\frac{1}{2 \pi}_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}}
$$

Denote $\chi=H^{p}(U)$. Define a mapping $\check{d}_{b}: \chi \times \chi \rightarrow[0, \infty)$ by

$$
\check{d}_{b}(f, g)=\sup _{0<r<1}\left(\frac{1}{2 \pi}_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)-g\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}}
$$

for all $f, g \in X$. Then $\left(\chi, \check{d}_{b}\right)$ is a b-metric space with coefficient $s=2^{\frac{1}{p}-1}$.
Definition 1.3. [36] Let $\check{T}: \chi \rightarrow \chi$ be a self-map and $\alpha: \chi \times \chi \rightarrow[0,+\infty)$. Then \check{T} is said to be α-admissible, if $\alpha(r, j) \geq 1 \Longrightarrow \alpha(\check{T} r, \check{T} j) \geq 1$.

Definition 1.4. [23] Let $\check{T}: \chi \rightarrow \chi$ be a self-map and $\alpha: \chi \times \chi \rightarrow[0,+\infty)$. Then \check{T} is said to be triangular α-admissible, if \check{T} satisfies:
$(\check{T} 1) \alpha(r, j) \geq 1 \Longrightarrow \alpha(\check{T} r, \check{T} j) \geq 1$;
(Ť2) $\alpha(r, u) \geq 1$ and $\alpha(u, j) \geq 1 \Longrightarrow \alpha(r, j) \geq 1$.
Definition 1.5. [35] Let $\check{T}: \chi \rightarrow \chi$ be a self-map and $\alpha: \chi \times \chi \rightarrow[0,+\infty)$. Then \check{T} is said to be α-orbital admissible if
$(\check{T} 3) ~ \alpha(r, \check{T} r) \geq 1 \Longrightarrow \alpha\left(\check{T} r, \check{T}^{2} r\right) \geq 1$.
Definition 1.6. [35] Let $\check{T}: \chi \rightarrow \chi$ be a map and $\alpha: \chi \times \chi \rightarrow[0,+\infty)$. Then \check{T} is said to be triangular α-orbital admissible if \check{T} satisfies ($\check{T} 3$),
$(\check{T} 4) \alpha(r, j) \geq 1$ and $\alpha(j, \check{T} j) \geq 1 \Longrightarrow \alpha(r, \check{T} j) \geq 1$.
Definition 1.7. [6] Let $\check{T}: \chi \rightarrow \chi$ be a map and $\alpha, \eta: \chi \times \chi \rightarrow[0,+\infty)$. Then \check{T} is said to be α-orbital admissible with respect to η if,
$(\check{T} 5) r \in \chi, \alpha(r, \check{T} r) \geq \eta(r, \check{T} r) \Longrightarrow \alpha\left(\check{T} r, \check{T}^{2} r\right) \geq \eta\left(\check{T} r, \check{T}^{2} r\right)$.
Definition 1.8. [6] Let $\check{T}: \chi \rightarrow \chi$ be a map and $\alpha, \eta: \chi \times \chi \rightarrow[0,+\infty)$. Then \check{T} is said to be triangular α-orbital admissible with respect to η if T satisfies ($\tilde{T} 5$),
$(\check{T} 6) r, j \in \chi, \alpha(r, j) \geq \eta(r, j)$ and $\alpha(j, \check{T} j) \geq \eta(j, \check{T} j) \Longrightarrow \alpha(r, \check{T} j) \geq \eta(r, \check{T} j)$.
Definition 1.9. 24] Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space and $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$. Then χ is said to be $\alpha-\eta$-complete, if every Cauchy sequence $\left\{r_{n}\right\}$ in χ with $\alpha\left(r_{n}, r_{n+1}\right) \geq \eta\left(r_{n}, r_{n+1}\right)$ for all $n \in \mathbb{N}$ converges in χ.

Recently, Jleli and Samet [8, 9] presented the notion of a θ-contraction.
Definition 1.10. Let (χ, \check{d}) be a metric space. A map $\check{T}: \chi \longrightarrow \chi$ is called θ-contraction, if there exists a constant $k \in(0,1)$ and $\theta \in \Theta$ such that,

$$
r, j \in \chi, \check{d}(\check{T} r, \check{T} j) \neq 0 \Longrightarrow \theta(\check{d}(\check{T} r, \check{T} j)) \leq[\theta(\check{d}(r, j))]^{k},
$$

Where Θ is the set of functions $\theta:(0, \infty) \longrightarrow(1, \infty)$ satisfying,
$(\Theta 1) \theta$ is non-decreasing;
$(\Theta 2)$ for each sequence $\left\{\check{t}_{n}\right\} \subset(0, \infty)$,

$$
\lim _{n \rightarrow \infty} \theta\left(\check{t}_{n}\right)=1 \text { if and only if } \lim _{n \rightarrow \infty} \check{t}_{n}=0^{+} ;
$$

$(\Theta 3)$ there exists $q \in(0,1)$ and $\ell \in(0, \infty]$ such that $\lim _{\tilde{t} \rightarrow 0^{+}} \frac{\theta(\check{t})-1}{t^{q}}=\ell$.
Jleli and Samet [8] established the following fixed point theorem.
Theorem 1.11. [8] Let (χ, \check{d}) be a complete metric space and $\check{T}: \chi \longrightarrow \chi$ be θ-contraction. Then \check{T} has a unique fixed point.

As in [10, we denote by μ the family of all functions $\theta:(0, \infty) \longrightarrow(1, \infty)$ satisfying the assertions $(\Theta 1),(\Theta 2)$ and $\left(\Theta^{\prime} 3\right)$, where
$\left(\Theta^{\prime} 3\right)$ means θ is continuous on $(0, \infty)$.
Note that $(\Theta 3)$ and $\left(\Theta^{\prime} 3\right)$ are independent of each other [10].
Example 1.12. [10] For all $t \in(0, \infty)$, consider

$$
\begin{aligned}
\phi_{1}(t)=e^{t}, & \phi_{4}(t)=\cosh t \\
\phi_{2}(t)=e^{\sqrt{t e^{t}}}, & \phi_{5}(t)=1+\ln (t+1) ; \\
\phi_{3}(t)=e^{\sqrt{t} t}, & \phi_{6}(t)=e^{t e^{t}}
\end{aligned}
$$

Then $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}, \phi_{6} \in \mu$.
Very recently, Hussain et al. [5] defined a generalized (α, η) - Θ-contraction and extended the results of Jleli and Samet [8].

Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space. Let $C B_{b}(\chi)$ denote the set of all closed and bounded subsets of χ. For $r \in \chi$ and $A, B \in C B_{b}(\chi)$, define

$$
D_{b}(r, A)=\inf _{a \in A} \check{d}_{b}(r, a) \text { and } D_{b}(A, B)=\sup _{a \in A} D_{b}(a, B) .
$$

Define a mapping $H_{b}: C B_{b}(\chi) \times C B_{b}(\chi) \longrightarrow[0, \infty)$ by

$$
H_{b}(A, B)=\max \left\{\sup _{r \in A} D_{b}(r, B), \sup _{j \in B} D_{b}(j, A)\right\}
$$

for each $A, B \in C B_{b}(\chi)$. Hence the map H_{b} is called Hausdorff b-metric (induced by a b-metric space $\left.\left(\chi, \breve{d}_{b}\right)\right)$.

Lemma 1.13. [29] Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space. For any $A, B \in C B_{b}(\chi)$ and any $r, j \in \chi$, we have:
(i) $D_{b}(r, B) \leq \check{d}_{b}(r, b)$ for any $b \in B$;
(ii) $D_{b}(r, B) \leq H_{b}(A, B)$;
(ii) $D_{b}(r, A) \leq s\left[\check{d}_{b}(r, j)+D_{b}(j, B)\right]$.

Lemma 1.14. [29] Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space, $A, B \in C B_{b}(\chi)$ and $M>1$. Then for all $a \in A$, there exists $b \in B$ such that $\breve{d}_{b}(a, b) \leq M H_{b}(A, B)$.

Definition 1.15. [33] Let $\check{T}: \chi \rightarrow C B_{b}(\chi)$ be a multi-valued mapping and $\alpha: \chi \times \chi \longrightarrow[0,+\infty)$. Then \check{T} is said to be α_{*}-admissible if $\alpha(r, j) \geq 1 \Longrightarrow \alpha_{*}(\check{T} r, \check{T} j) \geq 1$, where

$$
\alpha_{*}(A, B)=\inf \{\alpha(r, j): r \in A, j \in B\} .
$$

Now, we introduce the following definitions.
Definition 1.16. Let $\hat{S}, \check{T}: \chi \rightarrow C B_{b}(\chi)$ be two multi-valued maps and $\alpha, \eta: \chi \times \chi \rightarrow[0,+\infty)$ be two functions. We say that (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-admissible pair, if:
(i) $\alpha(r, j) \geq \eta(r, j) \Longrightarrow \alpha_{*}(\hat{S} r, \check{T} j) \geq \eta_{*}(\hat{S} r, \check{T} j)$ and $\alpha_{*}(\check{T} r, \hat{S} j) \geq \eta_{*}(\check{T} r, \hat{S} j)$, where

$$
\begin{aligned}
\alpha_{*}(A, B) & =\inf \{\alpha(r, j): r \in A, j \in B\} \\
\eta_{*}(A, B) & =\inf \{\eta(r, j): r \in A, j \in B\}
\end{aligned}
$$

(ii) $\alpha(r, u) \geq \eta(r, u)$ and $\alpha(u, j) \geq \eta(u, j) \Longrightarrow \alpha(r, j) \geq \eta(r, j)$.

Definition 1.17. Let $\hat{S}, \check{T}: \chi \rightarrow C B_{b}(\chi)$ be two multi-valued maps and $\alpha, \eta: \chi \times \chi \rightarrow[0,+\infty)$ be functions. We asy that (\hat{S}, \check{T}) is an $\alpha_{*}-\eta_{*}$-orbital admissible pair, if,
(i) $\alpha_{*}(r, \hat{S} r) \geq \eta_{*}(r, \hat{S} r)$ and $\alpha_{*}(r, \check{T} r) \geq \eta_{*}(r, \check{T} r) \Longrightarrow \alpha_{*}\left(\hat{S} r, \check{T}^{2} r\right) \geq \eta_{*}\left(\hat{S} r, \check{T}^{2} r\right)$ and $\alpha_{*}\left(\check{T} r, \hat{S}^{2} r\right) \geq$ $\eta_{*}\left(\check{T} r, \hat{S}^{2} r\right)$.

Definition 1.18. Let $\hat{S}, \check{T}: \chi \rightarrow C B_{b}(\chi)$ be two multi-valued maps and $\alpha, \eta: \chi \times \chi \rightarrow[0,+\infty)$ be functions. Then (\hat{S}, \check{T}) is said to be triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair, if:
(i) (\hat{S}, \check{T}) is $\alpha_{*}-\eta_{*}$-orbital admissible pair;
(ii) $\alpha(r, j) \geq \eta(r, j), \alpha_{*}(j, \hat{S} j) \geq \eta_{*}(j, \hat{S} j)$ and $\alpha_{*}(j, \check{T} j) \geq \eta_{*}(j, \check{T} j) \Longrightarrow \alpha_{*}(r, \hat{S} j) \geq \eta_{*}(r, \hat{S} j)$ and $\alpha_{*}(r, \overleftarrow{T} j) \geq \eta_{*}(r, \breve{T} j)$.

Lemma 1.19. Let $\hat{S}, \check{T}: \chi \rightarrow C B_{b}(\chi)$ such that (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair. Assume that, there exists $r_{0} \in \chi$ such that $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$. Define the sequence $\left\{r_{\check{n}}\right\}$ in χ by $r_{2 i+1} \in \hat{S} r_{2 i}$ and $r_{2 i+2} \in \check{T} r_{2 i+1}$, where $i=0,1,2, \ldots$. Then for $\check{n}, m \in$ $\mathbb{N} \cup\{0\}$ with $m>\check{n}$, we have $\alpha\left(r_{\check{n}}, r_{m}\right) \geq \eta\left(r_{\check{n}}, r_{m}\right)$.

Definition 1.20. Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space. Let $\hat{S}: \chi \rightarrow C B_{b}(\chi)$ and $\alpha, \eta: \chi \times \chi \rightarrow[0,+\infty)$. Then \hat{S} is said to be a multivalued $\alpha-\eta$-continuous on $\left(C B_{b}(\chi), H_{b}\right)$ if whenever $\left\{r_{\tilde{n}}\right\}$ is a sequence in χ with $\alpha\left(r_{\check{n}}, r_{\check{n}+1}\right) \geq \eta\left(r_{\check{n}}, r_{\check{n}+1}\right)$ for all $\check{n} \in \mathbb{N}$ and $r \in \chi$ such that $\lim _{\check{n} \longrightarrow \infty} \check{d}_{b}\left(r_{\check{n}}, r\right)=0$, then $\lim _{\check{n} \longrightarrow \infty} H_{b}\left(\hat{S} r_{\check{n}}, \hat{S} r\right)=0$.

2. Fixed point results

First, inspired by Jleli and Samet [8, 9], we give the following definition.
Definition 2.1. Let $s \geq 1$. We denote by Θ_{s} the set of all functions $\theta:(0, \infty) \longrightarrow(1, \infty)$, with the following properties:
$\left(\Theta_{s} 1\right) \theta$ is non-decreasing;
$\left(\Theta_{s} 2\right)$ for each sequence $\left\{\check{t}_{n}\right\} \subset(0, \infty)$,

$$
\lim _{n \rightarrow \infty} \theta\left(\check{t}_{n}\right)=1 \Leftrightarrow \lim _{n \rightarrow \infty} \check{t}_{n}=0^{+}
$$

$\left(\Theta_{s} 3\right)$ there exists $q \in(0,1)$ and $\ell \in(0, \infty]$ such that $\lim _{\tilde{t} \longrightarrow 0^{+}} \frac{\theta(\tilde{t})-1}{t^{q}}=\ell$.
$\left(\Theta_{s} 4\right)$ for each sequence $\left\{\check{t}_{n}\right\} \subset(0, \infty)$ such that $\theta\left(s \check{t}_{n}\right) \leq\left[\theta\left(\check{t}_{n-1}\right)\right]^{k}$, for all $\check{n} \in \mathbb{N}$ then $\theta\left(s^{n} \check{t}_{n}\right) \leq$ $\left[\theta\left(s^{n-1} \check{t}_{n-1}\right)\right]^{k}$, for some $k \in(0,1)$ and for all $\check{n} \in \mathbb{N}$.

Example 2.2. Let $\theta:(0, \infty) \longrightarrow(1, \infty)$ defined by $\theta(t)=e^{\sqrt{t}}$. Then clearly, θ satisfies $\left(\Theta_{s} 1\right)$ $\left(\Theta_{s} 4\right)$. Now we show only, $\left(\Theta_{s} 4\right)$. suppose that, for some $k \in(0,1)$ and for all $n \in \mathbb{N}$, we $e^{\sqrt{s \breve{t}_{n}}} \leq$ $\left[\theta\left(e^{\sqrt{t_{t_{n-1}}}}\right)\right]^{k}$. Thus,

$$
\begin{aligned}
e^{\sqrt{s^{n} \tilde{t}_{n}}} & =e^{\sqrt{s^{n-1} s \tilde{t}_{n}}}=\left[e^{\sqrt{s \tilde{t}_{n}}}\right]^{\sqrt{s^{n-1}}} \\
& \leq\left[\left(e^{\sqrt{t_{n-1}}}\right)^{k}\right]^{\sqrt{s^{n-1}}}=\left[e^{\sqrt{s^{n-1} \tilde{t}_{n-1}}}\right]^{k}
\end{aligned}
$$

hence $\left(\Theta_{s} 4\right)$ holds true. Note that also, $\theta(t)=e^{\check{t}} \in \Theta_{s}$.
Now, we introduce the concept of generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contractions as follows:
Definition 2.3. Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space, and $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$ be two functions. Let $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$ be two multi-valued maps. Then (\hat{S}, T) is called a generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contraction if for $r, j \in \chi$, with $\alpha(r, j) \geq \min \left\{\eta_{*}(r, \hat{S} r), \eta_{*}(j, \check{T} j)\right\}$ and $H_{b}(\hat{S} r, \check{T} j)>0$, we have

$$
\begin{equation*}
\theta\left(s H_{b}(\hat{S} r, \check{T} j)\right) \leq\left[\theta\left(M_{s}(r, j)\right)\right]^{k} \tag{2.1}
\end{equation*}
$$

where $\theta \in \Theta_{s}, k \in(0,1)$ and

$$
\begin{equation*}
M_{s}(r, j)=\max \left\{\check{d}_{b}(r, j), D_{b}(r, \hat{S} r), D_{b}(j, \check{T} j), \frac{D_{b}(r, \check{T} j)+D_{b}\left(j, \hat{S}^{r}\right)}{2 s}\right\} \tag{2.2}
\end{equation*}
$$

The following theorem is our main result.
Theorem 2.4. Let $\left(\chi, \breve{d}_{b}\right)$ be a b-metric space and $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$ be two functions. Let $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$ be such that (\hat{S}, T) is a generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contraction. Suppose that,
(i) $\left(X, \breve{d}_{b}\right)$ is an α - η-complete b-metric space;
(ii) (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair;
(iii) there exists $r_{0} \in \chi$ such that $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$;
(iv) \hat{S} and \check{T} are multi-valued $\alpha-\eta$-continuous.

Then \hat{S} and \check{T} have a common fixed point $r^{*} \in \chi$.
Proof . Let $r_{0} \in \chi$ be such that $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$. Choose $r_{1} \in \hat{S} r_{0}$ such that

$$
\alpha\left(r_{0}, r_{1}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(r_{1}, \check{T} r_{1}\right)\right\}
$$

and $r_{1} \neq r_{0}$. By (2.1) and Lemma 1.12, we have

$$
\begin{equation*}
0<\theta\left(s D_{b}\left(r_{1}, \check{T} r_{1}\right)\right) \leq \theta\left(s H_{b}\left(\hat{S} r_{0}, \check{T} r_{1}\right)\right) \tag{2.3}
\end{equation*}
$$

There exists $x_{2} \in \check{T} x_{1}$ such that

$$
\begin{aligned}
0 & \leq \theta\left(s \check{d}_{b}\left(r_{1}, r_{2}\right)\right) \leq \theta\left(s H_{b}\left(\hat{S} r_{0}, \check{T} r_{1}\right)\right) \\
& \leq\left[\theta\left(M_{s}\left(r_{0}, r_{1}\right)\right)\right]^{k}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
0<\theta\left(s \check{d}_{b}\left(r_{1}, r_{2}\right)\right) \leq\left[\theta\left(M_{b}\left(r_{0}, r_{1}\right)\right)\right]^{k} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}\left(r_{0}, r_{1}\right) & =\max \left\{\begin{array}{c}
\check{d}_{b}\left(r_{0}, r_{1}\right), D_{b}\left(r_{0}, \hat{S} r_{0}\right), D_{b}\left(r_{1}, \check{T} r_{1}\right), \\
\frac{D_{b}\left(r_{0}, \check{T} r_{1}\right)+D_{b}\left(r_{1}, \hat{S} r_{0}\right)}{2 s}
\end{array}\right\} \\
& \leq \max \left\{\check{d}_{b}\left(r_{0}, r_{1}\right), \check{d}_{b}\left(r_{0}, r_{1}\right), \check{d}_{b}\left(r_{1}, r_{2}\right), \frac{D_{b}\left(r_{0}, \check{T} r_{1}\right)+\check{d}_{b}\left(r_{1}, r_{1}\right)}{2 s}\right\} \\
& \leq \max \left\{\check{d}_{b}\left(r_{0}, r_{1}\right), \check{d}_{b}\left(r_{1}, r_{2}\right), \frac{D_{b}\left(r_{0}, \check{T} r_{1}\right)}{2 s}\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{D_{b}\left(r_{0}, \check{T} r_{1}\right)}{2 s} & \leq \frac{s\left[\check{d}_{b}\left(r_{0}, r_{1}\right)+D_{b}\left(r_{1}, \check{T} r_{1}\right)\right]}{2 s} \\
& \leq \frac{\left[\check{d}_{b}\left(r_{0}, r_{1}\right)+D_{b}\left(r_{1}, \check{T} r_{1}\right)\right]}{2} \leq \max \left\{\check{d}_{b}\left(r_{0}, r_{1}\right), D_{b}\left(r_{1}, \check{T} r_{1}\right)\right\}
\end{aligned}
$$

then we get

$$
M_{s}\left(r_{0}, r_{1}\right) \leq \max \left\{\check{d}_{b}\left(r_{0}, r_{1}\right), D_{b}\left(r_{1}, \check{T} r_{1}\right)\right\}
$$

If $\max \left\{\check{d}_{b}\left(r_{0}, r_{1}\right), D_{b}\left(r_{1}, \check{T} r_{1}\right)\right\}=D_{b}\left(r_{1}, \check{T} r_{1}\right)$, then from (2.4), we have

$$
\theta\left(s D_{b}\left(r_{1}, \check{T} r_{1}\right)\right) \leq\left[\theta\left(D_{b}\left(r_{1}, \check{T} r_{1}\right)\right)\right]^{k}<\theta\left(D_{b}\left(r_{1}, \check{T} r_{1}\right)\right)
$$

which is a contradiction. Therefore,

$$
\max \left\{\check{d}_{b}\left(r_{0}, r_{1}\right), D_{b}\left(r_{1}, \check{T} r_{1}\right)\right\}=\check{d}_{b}\left(r_{0}, r_{1}\right)
$$

By (2.4), we get that $\theta\left(s \check{d}_{b}\left(r_{1}, r_{2}\right)\right)<\theta\left(\check{d}_{b}\left(r_{0}, r_{1}\right)\right)$. Similarly, for $r_{2} \in \check{T} r_{1}$ and $r_{3} \in \hat{S} r_{2}$,

$$
\begin{aligned}
\theta\left(s \check{d}_{b}\left(r_{2}, r_{3}\right)\right) & \leq \theta\left(s D_{b}\left(r_{2}, \hat{S} r_{2}\right)\right) \\
& \leq \theta\left(s H_{b}\left(\check{T} r_{1}, \hat{S} r_{2}\right)\right) \\
& \leq \theta\left(\check{d}_{b}\left(r_{1}, r_{2}\right)\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\theta\left(s \check{d}_{b}\left(r_{2}, r_{3}\right)\right) \leq \theta\left(\check{d}_{b}\left(r_{1}, r_{2}\right)\right) . \tag{2.5}
\end{equation*}
$$

Continuing in this way, we define a sequence $\left\{r_{n}\right\}$ in χ such that $r_{2 i+1} \in \hat{S} r_{2 i}$ and $r_{2 i+2} \in \check{T} r_{2 i+1}$, $i=0,1,2, \ldots$.
Since $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$ and (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair, so by using Lemma 1.19, we get

$$
\alpha\left(r_{n}, r_{n+1}\right) \geq \eta\left(r_{n}, r_{n+1}\right), \text { for all } n \in \mathbb{N} .
$$

Then

$$
\begin{gather*}
0<\theta\left(s \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right) \leq \theta\left(s H_{b}\left(\hat{S} r_{2 i}, \check{T} r_{2 i+1}\right)\right) \\
\leq\left[\theta\left(M_{s}\left(r_{2 i}, r_{2 i+1}\right)\right)\right]^{k} \tag{2.6}
\end{gather*}
$$

for all $i \in \mathbb{N}$, where

$$
\begin{aligned}
M_{s}\left(r_{2 i}, r_{2 i+1}\right) & =\max \left\{\begin{array}{c}
\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), D_{b}\left(r_{2 i}, \hat{S} r_{2 i}\right), D_{b}\left(r_{2 i+1}, \check{T} r_{2 i+1}\right), \\
\frac{D_{b}\left(r_{2 i}, \check{T} r_{2 i+1}\right)+D_{b}\left(r_{2 i+1}, \hat{S} r_{2 i}\right)}{2 s}
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), \check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right) \\
\frac{D_{b}\left(r_{2 i}, \check{T} r_{2 i+1}\right)}{2 s}
\end{array}\right\} \\
& \leq \max \left\{\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right), \frac{D_{b}\left(r_{2 i}, \check{T} r_{2 i+1}\right)}{2 s}\right\} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{D_{b}\left(r_{2 i}, \check{T} r_{2 i+1}\right)}{2 s} & \leq \frac{s\left[\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right)+\check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right]}{2 s} \\
& \leq \frac{\left[\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right)+\check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right]}{2} \\
& \leq \max \left\{\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right\}
\end{aligned}
$$

then we get

$$
M_{s}\left(r_{2 i}, r_{2 i+1}\right) \leq \max \left\{\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right\}, \quad \forall i \geq 0 .
$$

If for some $i, \max \left\{\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right\}=\check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)$, then by (2.6) we have

$$
\begin{aligned}
1 & <\theta\left(\check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right) \leq\left[\theta\left(\check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right)\right]^{k} \\
& <\theta\left(\check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right),
\end{aligned}
$$

which is a contradiction. Thus

$$
\max \left\{\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right), \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right\}=\check{d}_{b}\left(r_{2 i}, x_{r 2 i+1}\right) \quad \forall i \geq 0
$$

By (2.6), we get that

$$
1<\theta\left(s \check{d}_{b}\left(r_{2 i+1}, r_{2 i+2}\right)\right) \leq\left[\theta\left(\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right)\right)\right]^{k}<\theta\left(\check{d}_{b}\left(r_{2 i}, r_{2 i+1}\right)\right) \quad \forall i \geq 0 .
$$

This implies that

$$
\begin{equation*}
1<\theta\left(s \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right) \leq\left[\theta\left(\check{d}_{b}\left(r_{n}, r_{n+1}\right)\right)\right]^{k}<\theta\left(\check{d}_{b}\left(r_{n}, r_{n+1}\right)\right) \quad \forall n \geq 0 . \tag{2.7}
\end{equation*}
$$

From (2.7) and axiom $\left(\Theta_{s} 4\right)$, we have

$$
\begin{equation*}
1<\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right) \leq\left[\theta\left(s^{n-1} \check{d}_{b}\left(r_{n-1}, r_{n}\right)\right)\right]^{k}<\theta\left(s^{n-1} \check{d}_{b}\left(r_{n-1}, r_{n}\right)\right) \quad \forall n \geq 0 . \tag{2.8}
\end{equation*}
$$

Further,

$$
\begin{aligned}
1 & <\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)=\theta\left(s^{n} \check{d}_{b}\left(\hat{S} r_{n}, \check{T} r_{n+1}\right)\right) \leq\left[\theta\left(s^{n-1} \check{d}_{b}\left(r_{n-1}, r_{n}\right)\right)\right]^{k} \\
& =\left[\theta\left(s^{n-1} \check{d}_{b}\left(\hat{S} r_{n-2}, \check{T} r_{n-1}\right)\right)\right]^{k} \leq\left[\theta\left(s^{n-2} \check{d}_{b}\left(r_{n-1}, r_{n-2}\right)\right)\right]^{k^{2}} \\
& \leq \ldots \leq\left[\theta\left(\check{d}_{b}\left(r_{0}, r_{1}\right)\right)\right]^{k^{n}}
\end{aligned}
$$

Which implies,

$$
\begin{equation*}
1<\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right) \leq\left[\theta\left(\check{d}_{b}\left(r_{0}, r_{1}\right)\right)\right]^{k^{n}}, \tag{2.9}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Taking the limit as $n \longrightarrow \infty$ in (2.9), since $\theta \in \Theta_{s}$, we have

$$
\lim _{n \rightarrow \infty} \theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)=1,
$$

By $\left(\Theta_{s} 2\right)$, we get

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)=0 . \tag{2.10}
\end{equation*}
$$

From condition $\left(\Theta_{s} 3\right)$, there exist $q \in(0,1)$ and $\ell \in(0, \infty]$ such that

$$
\lim _{n \longrightarrow \infty} \frac{\theta\left(s^{n} \breve{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)-1}{\left[s^{n} \breve{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q}}=\ell .
$$

Suppose that $\ell<\infty$. Let $W=\frac{\ell}{2}>0$. From the definition of the limit, there exists $n_{0} \geq 1$ such that

$$
\left|\frac{\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)-1}{\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q}}-\ell\right| \leq W \text { for all } n \geq n_{0} .
$$

This implies

$$
\frac{\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)-1}{\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q}} \geq \ell-W=W \text { for all } n \geq n_{0}
$$

Then

$$
n\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q} \leq A n\left[\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)-1\right] \text { for all } n \geq n_{0}
$$

where $P=\frac{1}{W}$. Suppose now that $\ell=\infty$. Let $W>0$ be an arbitrary positive number. From the definition of the limit, there exists $n_{0} \geq 1$ such that

$$
\frac{\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)-1}{\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q}} \geq W \text { for all } n \geq n_{0}
$$

Which implies

$$
n\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q} \leq \operatorname{Pn}\left[\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)-1\right] \text { for all } n \geq n_{0}
$$

where $P=\frac{1}{W}$. Thus, in all cases, there exist $P>0$ and $n_{0} \geq 1$ such that

$$
n\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q} \leq \operatorname{Pn}\left[\theta\left(s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right)-1\right] \text { for all } n \geq n_{0}
$$

By using (2.9), we get

$$
\begin{equation*}
n\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q} \leq \operatorname{Pn}\left(\left[\theta\left(d\left(r_{0}, r_{1}\right)\right)\right]^{k^{n}}-1\right) \quad \text { for all } n \geq n_{0} \tag{2.11}
\end{equation*}
$$

Setting $n \longrightarrow \infty$ in the inequality (2.11), we get

$$
\lim _{n \longrightarrow \infty} n\left[s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right)\right]^{q}=0 .
$$

Thus, there exists $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
s^{n} \check{d}_{b}\left(r_{n+1}, r_{n+2}\right) \leq \frac{1}{n^{\frac{1}{q}}} \text { for all } n \geq n_{1} . \tag{2.12}
\end{equation*}
$$

To prove $\left\{r_{n}\right\}$ is a Cauchy sequence, we use (2.12) and for $m>n \geq n_{1}$,

$$
\begin{aligned}
\check{d}_{b}\left(r_{n}, r_{m}\right) & \leq{ }_{i=n}^{m-1} s^{i} \check{d}_{b}\left(r_{i}, r_{i+1}\right) \leq_{i=n}^{\infty} s^{i} \check{d}_{b}\left(r_{i}, r_{i+1}\right) \\
& \leq{ }_{i=n}^{\infty} \frac{1}{i^{\frac{1}{q}}}
\end{aligned}
$$

The convergence of the series ${ }_{i=n}^{\infty} \frac{1}{i^{\frac{1}{q}}}$ entails $\lim _{n \rightarrow \infty} \check{d}_{b}\left(r_{n}, r_{m}\right)=0$. Thus $\left\{r_{n}\right\}$ is a Cauchy sequence. Since χ is an $\alpha-\eta$-complete b-metric space and $\alpha\left(r_{n}, r_{n+1}\right) \geq \eta\left(r_{n}, r_{n+1}\right)$, for all $n \in \mathbb{N}$, there exists $r^{*} \in \chi$ such that $\lim _{n \longrightarrow \infty} d\left(r_{n}, r^{*}\right)=0$. This implies that $\lim _{i \rightarrow \infty} \check{d}_{b}\left(r_{2 i+1}, r^{*}\right)=0$ and $\lim _{i \rightarrow \infty} \check{d}_{b}\left(r_{2 i+2}, r^{*}\right)=$ 0 . As \check{T} is an $\alpha-\eta$-continuous multivalued mapping, so $\lim _{i \longrightarrow \infty} H_{b}\left(r_{2 i+1}, r^{*}\right)=0$. Thus

$$
D_{b}\left(r^{*}, \check{T} r^{*}\right)=\lim _{i \longrightarrow \infty} D_{b}\left(r_{2 i+2}, \check{T} r^{*}\right) \leq \lim _{i \longrightarrow \infty} H_{b}\left(\check{T} r_{2 i+1}, \check{T} r^{*}\right)=0
$$

Consequently, $r^{*} \in \check{T} r^{*}$. Similarly, $r^{*} \in \hat{S} r^{*}$. Therefore, $r^{*} \in \chi$ is a common fixed point of \hat{S} and \check{T}.

Theorem 2.5. Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space, and $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$. Let $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$ be such that (\hat{S}, \check{T}) is a generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contraction. Suppose that,
(i) $\left(\chi, \check{d}_{b}\right)$ is an α - η-complete b-metric space;
(ii) (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair;
(iii) there exists $r_{0} \in \chi$ such that $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$;
(iv) if $\left\{r_{n}\right\}$ is a sequence in χ such that $\alpha\left(r_{n}, r_{n+1}\right) \geq \eta\left(r_{n}, r_{n+1}\right)$ for all $n \in \mathbb{N}$ and $r_{n} \longrightarrow r^{*} \in \chi$ as $n \longrightarrow \infty$, then either $\alpha_{*}\left(\hat{S} r_{n}, r^{*}\right) \geq \eta_{*}\left(\hat{S} r_{n}, r^{*}\right)$ or $\alpha_{*}\left(\check{T} r_{n+1}, r^{*}\right) \geq \eta_{*}\left(\check{T} r_{n+1}, r^{*}\right)$ holds for all $n \in \mathbb{N}$.
Then \hat{S} and \check{T} have a common fixed point $r^{*} \in \chi$.

Proof. Let $r_{0} \in \chi$ be such that $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$. As in proof of Theorem 2.4, we construct a sequence $\left\{r_{n}\right\}$ in χ defined by $r_{2 i+1} \in \hat{S} r_{2 i}$ and $r_{2 i+2} \in \check{T} r_{2 i+1}$, where $i \geq 0, \alpha\left(r_{n}, r_{n+1}\right) \geq \eta\left(r_{n}, r_{n+1}\right)$, for all $n \in \mathbb{N}$ and $\left\{r_{n}\right\}$ converges to $r^{*} \in \chi$. Since $\alpha\left(r_{n}, x_{r n+1}\right) \geq$ $\eta\left(r_{n}, r_{n+1}\right)$ for all $n \in \mathbb{N}$ and $r_{n} \longrightarrow r^{*} \in \chi$ as $n \longrightarrow \infty$, by condition (iv), either $\alpha_{*}\left(\hat{S} r_{n}, r^{*}\right) \geq$ $\eta_{*}\left(\hat{S} r_{n}, r^{*}\right)$ or $\alpha_{*}\left(\check{T} r_{n+1}, r^{*}\right) \geq \eta_{*}\left(\check{T} r_{n+1}, r^{*}\right)$ holds all $n \in \mathbb{N}$. Thus,

$$
\alpha\left(r_{n+1}, r^{*}\right) \geq \eta\left(r_{n+1}, r^{*}\right) \text { or } \alpha\left(r_{n+2}, r^{*}\right) \geq \eta\left(r_{n+2}, r^{*}\right), \text { holds for all } n \in \mathbb{N} .
$$

Equivalently, there exists a subsequence $\left\{r_{n(k)}\right\}$ of $\left\{r_{n}\right\}$ such that

$$
\begin{equation*}
\alpha\left(r_{n(k)}, r^{*}\right) \geq \eta\left(r_{n(k)}, r^{*}\right) \text { for all } k \in \mathbb{N} \tag{2.13}
\end{equation*}
$$

From (2.13), we deduce that

$$
\begin{aligned}
\theta\left(D_{b}\left(r_{2 n(k)+1}, \check{T} r^{*}\right)\right) & \leq \theta\left(D_{b}\left(\hat{S} r_{2 n(k)}, \check{T} r^{*}\right)\right) \leq \theta\left(s H_{b}\left(\hat{S} r_{2 n(k)}, \check{T} r^{*}\right)\right) \\
& \leq\left[\theta\left(M_{s}\left(r_{2 n(k)}, r^{*}\right)\right)\right]^{k}
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\theta\left(D_{b}\left(r_{2 n(k)+1}, \check{T} r^{*}\right)\right) \leq\left[\theta\left(M_{s}\left(r_{2 n(k)}, r^{*}\right)\right)\right]^{k}<\theta\left(M_{s}\left(r_{2 n(k)}, r^{*}\right)\right) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}\left(r_{2 n(k)}, r^{*}\right) & =\max \left\{\begin{array}{c}
\check{d}_{b}\left(r_{2 n(k)}, r^{*}\right), D_{b}\left(r_{2 n(k)}, \hat{S} r_{2 n(k)}\right), D_{b}\left(r^{*}, \check{T} r^{*}\right), \\
\frac{D_{b}\left(r_{2 n(k)}, \hat{S} r^{*}\right)+D_{b}\left(r^{*}, \check{T} r_{2 n(k)}\right)}{2 s}
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
\check{d}_{b}\left(r_{2 n(k)}, r^{*}\right), \check{d}_{b}\left(r_{2 n(k)}, r_{2 n(k)+1}\right), D_{b}\left(r^{*}, \check{T} r^{*}\right), \\
\frac{D_{b}\left(r_{2 n(k)}, \check{T} r^{*}\right)+D_{b}\left(r^{*}, \hat{S} r_{2 n(k)}\right)}{2 s}
\end{array}\right\}
\end{aligned}
$$

Suppose that $r^{*} \notin \check{T} r^{*}$, then $D_{b}\left(r^{*}, \check{T} r^{*}\right)>0$. Taking the limit as $k \longrightarrow \infty$ in (2.14) and using the condition ($\Theta^{\prime} 3$), we have

$$
\theta\left(D_{b}\left(r^{*}, \check{T} r^{*}\right)\right)<\theta\left(D_{b}\left(r^{*}, \check{T} r^{*}\right)\right)
$$

It is a contradiction. Hence $D_{b}\left(r^{*}, \check{T} r^{*}\right)=0$, and so $r^{*} \in \check{T} r^{*}$. Similarly, we can show that $r^{*} \in \hat{S} r^{*}$. Thus $r^{*} \in \chi$ is a common fixed point of \hat{S} and \check{T}.

Example 2.6. Let $\chi=[-1,1]$ and define the function $\check{d}_{b}: \chi \times \chi \rightarrow[0,+\infty)$ by $\check{d}_{b}(r, j)=|r-j|^{2}$. Clearly, $\left(\chi, \breve{d}_{b}\right)$ is a complete b-metric space with $s=2$. Let $\theta(t)=e^{t}, t>0$, then $\theta \in \Theta_{s}$. Define the mappings $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$ by

$$
\check{\operatorname{T}} r=\left\{\begin{array}{cc}
{\left[0, \frac{2 r}{245}\right],} & \text { if } r \in[-1,0] \\
\{1\}, & \text { if } r \in(0,1]
\end{array}\right.
$$

and

$$
\hat{S} r=\left\{\begin{array}{cc}
{\left[0, \frac{r}{300}\right],} & \text { if } r \in[-1,0] \\
\{1\}, & \text { if } r \in(0,1]
\end{array} .\right.
$$

Moreover, define the functions $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$ by

$$
\alpha(r, j)=\left\{\begin{array}{lc}
1, & \text { if } r, j \in[-1,0] \\
0, & \text { otherwise } .
\end{array}\right.
$$

and

$$
\eta(r, j)=\left\{\begin{array}{cc}
\frac{1}{5}, & \text { if } r, j \in[-1,0] \\
3, & \text { otherwise }
\end{array}\right.
$$

If $\left\{r_{n}\right\}$ is a Cauchy sequence such that $\alpha\left(r_{n}, r_{n+1}\right) \geq \eta\left(r_{n}, r_{n+1}\right)$ for all $n \in \mathbb{N}$, then $\left\{r_{n}\right\} \subseteq[-1,0]$. Since $\left([-1,0], \breve{d}_{b}\right)$ is a complete b-metric space, then the sequence $\left\{r_{n}\right\}$ converges in $[-1,0] \subseteq \chi$. Thus $\left(\chi, \check{d}_{b}\right)$ is an α - η-complete b-metric space. Let $\alpha_{*}(r, \hat{S} r) \geq \eta_{*}(r, \hat{S} r)$ and $\alpha_{*}(r, \check{T} r) \geq$ $\eta_{*}(r, \check{T} r)$. So, $r \in[-1,0]$ and $\hat{S} r$, $\check{T} r \in[-1,0]$. Hence $\hat{S}^{2} r=\hat{S}(\hat{S} r), \check{T}^{2} r=\check{T}(\check{T} r) \in[-1,0]$. Then $\alpha_{*}\left(\hat{S} r, \check{T}^{2} r\right) \geq \eta_{*}\left(\hat{S} r, \check{T}^{2} r\right)$ and $\alpha_{*}\left(\check{T} r, \hat{S}^{2} r\right) \geq \eta_{*}\left(\check{T} r, \hat{S}^{2} r\right)$. Thus, (\hat{S}, \check{T}) is $\alpha_{*}-\eta_{*}$-orbital admissible. Let $r, j \in \chi$ be such that $\alpha(r, j) \geq \eta(r, j), \alpha_{*}(j, \hat{S} j) \geq \eta_{*}(j, \hat{S} j)$ and $\alpha_{*}(j, \check{T} j) \geq$ $\eta_{*}(j, \check{T} j)$. Then we have $r, j, \hat{S} j, \check{T} j \in[-1,0]$, which implies that $\alpha_{*}(r, \hat{S} j) \geq \eta_{*}(r, \hat{S} j)$ and $\alpha_{*}(r, \check{T} j) \geq \eta_{*}(r, \check{T} j)$. Hence, (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair. Let $\left\{r_{n}\right\}$ be a sequence such that $r_{n} \longrightarrow r$ as $n \longrightarrow \infty$ and $\alpha\left(r_{n}, r_{n+1}\right) \geq \eta\left(r_{n}, r_{n+1}\right)$ for all $n \in \mathbb{N}$. Then $\left\{r_{n}\right\} \subseteq[-1,0]$ for all $n \in \mathbb{N}$. So $\lim _{n \longrightarrow \infty} \check{T} r_{n}=\lim _{n \longrightarrow \infty}\left[0, \frac{2}{245} r_{n}\right]=\left[0, \frac{2}{245} r\right]=\check{T} r$. Hence \check{T} is a multi-vlued $\alpha-\eta$-continuous. Similarly, we can check that S is a multi-vlued $\alpha-\eta$-continuous. Let $r_{0}=-\frac{1}{2}$. Then

$$
\begin{aligned}
\alpha_{*}\left(-\frac{1}{2}, \hat{S}\left(-\frac{1}{2}\right)\right) & =\alpha_{*}\left(-\frac{1}{2}, 0\right)=1 \\
& \geq \min \left\{\begin{array}{c}
\eta_{*}\left(-\frac{1}{2}, \hat{S}\left(-\frac{1}{2}\right)\right), \\
\eta_{*}\left(\hat{S}\left(-\frac{1}{2}\right), \check{T}\left(\hat{S}\left(-\frac{1}{2}\right)\right)\right)
\end{array}\right\}=\frac{1}{5} .
\end{aligned}
$$

Let $r, j \in \chi$ be such that $\alpha(r, j) \geq \min \left\{\eta_{*}(r, \hat{S} r), \eta_{*}(j, \check{T} j)\right\}$. Then $r, j \in[-1,0]$ and $H_{b}(\hat{S} r, \check{T} j)>$ 0. So

$$
\theta\left(s H_{b}(\hat{S} r, \check{T} j)\right) \leq\left[\theta\left(M_{s}(r, j)\right)\right]^{k}
$$

where $k \in\left(\frac{4}{5}, 1\right)$. Hence all hypothese of Theorem 2.4 are satisfied. Thus, \hat{S} and \check{T} have a common fixed point.
Corollary 2.7. Let $\left(\chi, \check{d}_{b}\right)$ be a complete b-metric space, and $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$. Let $\hat{S}: \chi \longrightarrow$ $C B_{b}(\chi)$ be such that \hat{S} is a generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contraction. Suppose that
(i) $\left(\chi, \check{d}_{b}\right)$ is an $\alpha-\eta$-complete b-metric space;
(ii) \hat{S} is triangular $\alpha_{*}-\eta_{*}$-orbital admissible;
(iii) there exists $r_{0} \in \chi$ such that $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$;
(iv) either \hat{S} is a multi-valued $\alpha-\eta$-continuous or if $\left\{r_{n}\right\}$ is a sequence in χ such that $\alpha\left(r_{n}, r_{n+1}\right) \geq$ $\eta\left(r_{n}, r_{n+1}\right)$ for all $n \in \mathbb{N}$ and $r_{n} \longrightarrow r^{*} \in \chi$ as $n \longrightarrow \infty$, then either $\alpha_{*}\left(\hat{S} r_{n}, r^{*}\right) \geq \eta_{*}\left(\hat{S} r_{n}, r^{*}\right)$ or $\alpha_{*}\left(\hat{S} r_{n+1}, r^{*}\right) \geq \eta_{*}\left(\hat{S} r_{n+1}, r^{*}\right)$ holds for all $n \in \mathbb{N}$.
Then \hat{S} has a fixed point $r^{*} \in \chi$.

Definition 2.8. Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space. Let $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$ and $\hat{S}, \check{T}: \chi \longrightarrow$ $C B_{b}(\chi)$ be two multi-valued mappings. Then (\hat{S}, \check{T}) is said to be a multi-valued $\alpha_{*} \eta_{*}-\theta$-contraction mapping, if there exists $\theta \in \Theta_{s}$ such that for all $r, j \in \chi$ with $\alpha(r, j) \geq \min \left\{\eta_{*}(r, \hat{S} r), \eta_{*}(j, \check{T} j)\right\}$, ($\hat{S}, \check{T})$ satisfies:

$$
\theta\left(s H_{b}(\hat{S} r, \check{T} j)\right) \leq\left[\theta\left(\check{d}_{b}(r, j)\right)\right]^{k}, k \in(0,1) .
$$

Theorem 2.9. Let $\left(\chi, \check{d}_{b}\right)$ be a b-metric space, and $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$. Let $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$ be such that (\hat{S}, \check{T}) is a multi-valued $\alpha_{*}-\eta_{*}-\theta$-contraction. Suppose that,
(i) $\left(\chi, \check{d}_{b}\right)$ is an α - η-complete b-metric space;
(ii) (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair;
(iii) there exists $r_{0} \in \chi$ such that $\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\}$;
(iv) either \hat{S} and \check{T} are multi-valued $\alpha-\eta$-continuous or if $\left\{r_{n}\right\}$ is a sequence in χ such that $\alpha\left(r_{n}, r_{n+1}\right) \geq$ $\eta\left(r_{n}, r_{n+1}\right)$ for all $n \in \mathbb{N}$ and $r_{n} \longrightarrow r^{*} \in \chi$ as $n \longrightarrow \infty$, then either $\alpha_{*}\left(\hat{S} r_{n}, r^{*}\right) \geq \eta_{*}\left(\hat{S} r_{n}, r^{*}\right)$ or $\alpha_{*}\left(\check{T} r_{n+1}, r^{*}\right) \geq \eta_{*}\left(\check{T} r_{n+1}, r^{*}\right)$ holds for all $n \in \mathbb{N}$.
Then \hat{S} and \check{T} have a common fixed point $r^{*} \in \chi$.
Corollary 2.10. Let (χ, \preceq) be a partially ordered set and $\hat{S}, \check{T}: \chi \longrightarrow \chi$. Suppose that there exists a b-metric \check{d}_{b} on χ such that $\left(\chi, \check{d}_{b}\right)$ is a complete b-metric space. Assume that,
(i) there exists $\theta \in \Theta_{s}$ such that

$$
\theta(s d(\hat{S} r, \check{T} j)) \leq\left[\theta\left(M_{s}(r, j)\right)\right]^{k}
$$

where $k \in(0,1)$ and

$$
M_{s}(r, j)=\max \left\{\check{d}_{b}(r, j), \check{d}_{b}(r, \hat{S} r), \check{d}_{b}(j, S j), \frac{\check{d}_{b}(r, \check{T} j)+\check{d}_{b}(j, \hat{S} r)}{2 s}\right\}
$$

for all $r, j \in \chi$ with $r \preceq j$ and $\check{d}_{b}(\hat{S} r, \check{T} j)>0$;
(ii) \hat{S} and \check{T} are nondecreasing (that is, if for all $r, j \in \chi, r \preceq j$ implies $\hat{S} r \preceq \hat{S} j$);
(iii) there exists $r_{0} \in \chi$ such that $r_{0} \preceq \widehat{S} r_{0}$;
(iv) either \hat{S} and \check{T} are continuous or if $\left\{r_{n}\right\}$ is a sequence in χ such that $r_{n} \preceq r_{n+1}$ for all $n \in \mathbb{N}$ and $r_{n} \longrightarrow r^{*} \in \chi$ as $n \longrightarrow \infty$, then either $\hat{S} r_{n} \preceq r^{*}$ or $\check{T} r_{n+1} \preceq r^{*}$ holds for all $n \in \mathbb{N}$.
Then \hat{S} and \check{T} have a common fixed point $r^{*} \in \chi$.
Now, we deduce certain Suzuki-Samet type fixed point results.
Theorem 2.11. Let $\left(\chi, \check{d}_{b}\right)$ be a complete b-metric space. Let $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$ be two continuous multi-valued mappings. If for all $r, j \in \chi$ with

$$
\frac{1}{2} \min \left\{D_{b}\left(r, \hat{S}^{2} r\right), D_{b}(j, \check{T} j)\right\} \leq \check{d}_{b}(r, j)
$$

and $H_{b}(\hat{S} r, \check{T} j)>0$, we have

$$
\theta\left(s H_{b}(\hat{S} r, \check{T} j)\right) \leq\left[\theta\left(M_{s}(r, j)\right)\right]^{k}
$$

where $\theta \in \Theta_{s}$. Then \hat{S} and \check{T} have a common fixed point.

Proof. Define $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$ by

$$
\alpha(r, j)=\check{d}_{b}(r, j) \text { and } \eta(r, j)=\frac{1}{2} \check{d}_{b}(r, j),
$$

for all $r, j \in \chi$. Since $\frac{1}{2} \check{d}_{b}(r, j) \leq \check{d}_{b}(r, j)$ for all $r, j \in \chi$, so $\eta(r, j) \leq \alpha(r, j)$ for all $r, j \in \chi$. Hence the conditions (i), (iii) and (iv) of Theorem 2.2 hold. Since \hat{S} and \check{T} are continuous, \hat{S} and \check{T} are $\alpha-\eta$ continuous multi-vlued mappings. Let $\min \left\{\eta_{*}(r, \hat{S} r), \eta_{*}(r, \check{T} r)\right\} \leq \alpha(r, j)$ with $H_{b}(\hat{S} r, \check{T} j)>0$. Equivalently, if $\frac{1}{2} \min \left\{D_{b}(r, \hat{S} r), D_{b}(j, \check{T} y)\right\} \leq \check{d}_{b}(r, j)$ with $H_{b}(\hat{S} r, \check{T} j)>0$, then we have

$$
\theta\left(s H_{b}(\hat{S} r, \check{T} j)\right) \leq\left[\theta\left(M_{s}(r, j)\right)\right]^{k}
$$

That is, (\hat{S}, \check{T}) is a generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contraction. Hence, all conditions of Theorem 2.2 hold. Thus \hat{S} and \check{T} have a common fixed point.

Theorem 2.12. Let $\left(\chi, \check{d}_{b}\right)$ be a complete b-metric space. Let $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$. If for all $r, j \in \chi$ with

$$
\frac{1}{2(1+\pi)} \min \left\{D_{b}\left(r, \hat{S}_{r}\right), D_{b}(j, \check{T} j)\right\} \leq \check{d}_{b}(r, j)
$$

$\pi>0$ and $H_{b}(\hat{S} r, \check{T} j)>0$, we have

$$
\theta\left(s H_{b}(\hat{S} r, \check{T} j)\right) \leq\left[\theta\left(M_{s}(r, j)\right)\right]^{k}
$$

where $\theta \in \Theta_{s}$. Then \hat{S} and \check{T} have a common fixed point.
Proof. The result follows from Theorem 2.3 by taking $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$ as

$$
\alpha(r, j)=\check{d}_{b}(r, j) \text { and } \eta(r, j)=\frac{1}{2(1+\pi)} \check{d}_{b}(r, j) .
$$

3. Application

we apply the result given by Theorem 2.4 to study the existence of a solution for a system of Volterra-type integral inclusions. For instance,

Consider the following system of Volterra-type integral inclusions:

$$
\begin{equation*}
r(t) \in \int_{a}^{t} \Gamma(t, s, r(s)) d s+f(t) \text { and } j(t) \in \int_{a}^{t} \Xi(t, s, j(s)) d s+g(t) \tag{3.1}
\end{equation*}
$$

where $\Gamma, \Xi:[a, b] \times[a, b] \times \mathbb{R} \longrightarrow C V B(\mathbb{R})$, and $C V B(\mathbb{R})$ denotes the family of nonempty closed, convex and bounded subsets of \mathbb{R} (set of all real numbers). let $\chi=C([a, b], \mathbb{R})$ be the space of all continuous real valued functions on $[a, b]$. Note that χ is a complete b-metric space by considering $\check{d}_{b}(r, j)=\sup _{t \in[a, b]}|r(t)-j(t)|^{2}$ with $s=2$. For each $r, j \in C([a, b], \mathbb{R})$, the operators $\Gamma(., ., x)$ and $\Xi(., ., y)$ are lower semi-continuous. Further, the functions $f, g:[a, b] \longrightarrow \mathbb{R}$ are continuous.

For the system of integrals inclusion given above, we can define multivalued operators \hat{S}, \check{T} : $C([a, b], \mathbb{R}) \longrightarrow C B(C([a, b], \mathbb{R}))$ as follows:

$$
\hat{S} r(t)=\left\{u \in C([a, b], \mathbb{R}): u \in \int_{a}^{t} \Gamma(t, s, r(s)) d s+f(t), t \in[a, b]\right\}
$$

and

$$
\check{T} j(t)=\left\{v \in C([a, b], \mathbb{R}): v \in \int_{a}^{t} \Xi(t, s, j(s)) d s+g(t), t \in[a, b]\right\} .
$$

Let $r, j \in C([a, b], \mathbb{R})$ and denote $\Gamma_{r}:=\Gamma(t, s, r(s))$ and $\Xi_{j}:=\Xi(t, s, j(s)), t, s \in[a, b]$. Now for $\Gamma_{r}, \Xi_{j}:[a, b] \times[a, b] \longrightarrow C V B(\mathbb{R})$, by Michael's selection theorem, there exist continuous operators $\Upsilon_{r}, \Pi_{j}:[a, b] \times[a, b] \longrightarrow \mathbb{R}$ with $\Upsilon_{r}(t, s) \in \Gamma_{r}(t, s)$ and $\Pi_{j}(t, s) \in \Xi_{j}(t, s)$ for all $t, s \in[a, b]$. This shows that $\int_{a}^{t} \Upsilon_{r}(t, s) d s+f(t) \in \hat{S} r(t)$ and $\int_{a}^{t} \Pi_{j}(t, s) d s+g(t) \in \check{T} j(t)$. Thus, the operators $\hat{S} r$ and $\check{T} j$ are nonempty. Since g, Υ_{r} and Π_{j} are continuous on $[a, b]$ (resp. $[a, b] \times[a, b]$), their ranges are bounded and hence $\widehat{S} r$ and $\check{T} j$ are bounded (i.e., $\left.\widehat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)\right)$.

Theorem 3.1. Take $\chi=C([a, b], \mathbb{R})$. Consider the multivalued operators $\hat{S}, \check{T}: \chi \longrightarrow C B_{b}(\chi)$,

$$
\hat{S} r(t)=\left\{u \in C([a, b], \mathbb{R}): u \in \int_{a}^{t} \Gamma(t, s, r(s)) d s+f(t), t \in[a, b]\right\}
$$

and

$$
\check{T} j(t)=\left\{v \in C([a, b], \mathbb{R}): v \in \int_{a}^{t} \Xi(t, s, j(s)) d s+g(t), t \in[a, b]\right\}
$$

where $f, g:[a, b] \longrightarrow \mathbb{R}$ are continuous and $\Gamma, \Xi:[a, b] \times[a, b] \times \mathbb{R} \longrightarrow C V B(\mathbb{R})$ is such that for each $r \in C([a, b], \mathbb{R})$, the operators $\Gamma(., ., r)$ and $\Xi(., ., j)$ are lower semi-continuous.

Assume that the following conditions hold:
(i) there exist a function $\xi: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ and a continuous mapping $\lambda: \chi \longrightarrow[0, \infty)$ such that for all $r, j \in \chi$, we have

$$
H_{b}(\Gamma(t, s, r(s)), \Xi(t, s, j(s))) \leq \lambda(s) M_{s}(r, j) \text { for all } t \in[a, b],
$$

where

$$
M_{s}(r, j)=\max \left\{\begin{array}{c}
\check{d}_{b}(r(s), j(s)), D_{b}(r(s), \Gamma(t, s, r(s))), \\
D_{b}(j(s), \Xi(t, s, j(s))), \frac{D_{b}(r(s), \Xi(t, s, j(s)))+D_{b}(j(s), \Gamma(t, s, r(s)))}{2 s}
\end{array}\right\} ;
$$

(ii) there exists $r_{0} \in C([a, b], \mathbb{R})$ such that for all $t \in[a, b]$,

$$
\xi\left(r_{0}(t), \int_{a}^{t} \Gamma\left(t, s, r_{0}(s)\right) d s+f(t)\right) \geq 0
$$

(iii) for all $t \in[a, b]$ and for all $r, j, z \in C([a, b], \mathbb{R})$,

$$
\xi(r(t), j(t)) \geq 0 \text { and } \xi(j(t), z(t)) \geq 0 \Longrightarrow \xi(r(t), z(t)) \geq 0
$$

(iv) for all $t \in[a, b]$ and for all $r, j \in C([a, b], \mathbb{R})$,

$$
\xi(r(t), j(t)) \geq 0 \text { implies } \xi\left(\int_{a}^{t} \Gamma(t, s, r(s)) d s+f(t), \int_{a}^{t} \Xi(t, s, j(s)) d s+g(t)\right) \geq 0
$$

(v) if a sequence $\left\{r_{n}\right\}$ in $C([a, b], \mathbb{R})$ with $\xi\left(r_{n}(t), r_{n+1}(t)\right) \geq 0$ for all $n \in \mathbb{N}$ and for all $t \in[a, b]$ such that $r_{n} \longrightarrow r \in C([a, b])$ as $n \longrightarrow \infty$, then there exists a subsequence $\left\{r_{n(k)}\right\}$ of $\left\{r_{n}\right\}$ such that $\xi\left(r_{n(k)}(t), r(t)\right) \geq 0$ for all $k \in \mathbb{N}$ and for all $t \in[a, b]$;
(vi) there exist $\tau>0$ and $s \geq 1$ such that for $t \in[a, b]$, we have

$$
\int_{a}^{t} \sqrt{\lambda(s)} d s \leq \sqrt{\frac{e^{-\tau}}{s}}
$$

Then the system of integral inclusions (3.1) has a solution.
Proof. Let $r \in \chi$ be such that $u \in \hat{S} r$ and $\xi(r(t), j(t)) \geq 0$ for all $t \in[a, b]$. Then $\Upsilon_{r}(t, s) \in \Gamma_{r}(t, s)$ for all $t, s \in[a, b]$ such that $u(t)=\int_{a}^{t} \Upsilon_{r}(t, s) d s+g(t) \in u(t)=\int_{a}^{t} \Gamma_{r}(t, s) d s+g(t), t \in[a, b]$. But

$$
H_{b}(\Gamma(t, s, r(s)), \Xi(t, s, j(s))) \leq Z(s) \max \left\{\begin{array}{c}
\check{d}_{b}(r(s), j(s)), D_{b}(r(s), \Gamma(t, s, r(s))) \\
D_{b}(j(s), \Xi(t, s, j(s))), \\
\frac{D_{b}(r(s), \Xi(t, s, j(s)))+D_{b}(j(s), \Gamma(t, s, r(s)))}{2 s}
\end{array}\right\}
$$

for all $t \in[a, b]$, so there exists $j \in \chi, z(t, s) \in \Xi_{j}(t, s)$ for all $t, s \in[a, b]$ such that

$$
\left|\Upsilon_{r}(t, s)-z(t, s)\right|^{2} \leq \lambda(s) \max \left\{\begin{array}{c}
\check{d}_{b}(r(s), j(s)), D_{b}\left(r(s), \Gamma_{r}(t, s)\right) \\
\check{d}_{b}(j(s), z(t, s)), \\
\frac{\check{d}_{b}(r(s), z(t, s))+D_{b}\left(j(s), \Gamma_{r}(t, s)\right)}{2 s}
\end{array}\right\}
$$

for all $t \in[a, b]$. Now, we can consider the multivalued operator $E:[a, b] \times[a, b] \longrightarrow C B(\mathbb{R})$ defined by

$$
E(t, s)=\Xi_{j}(t, s) \cap\left\{L \in \mathbb{R} \| \Upsilon_{r}(t, s)-L \mid \leq \lambda(s) M_{s}(r, j)\right\}
$$

for all $t, s \in[a, b]$. Taking into account the fact that the multivalued operator E is lower semicontinuous, it follows that there exists a continuous operator $\Pi_{y}:[a, b] \times[a, b] \longrightarrow \mathbb{R}$ such that $\Pi_{j}(t, s) \in E(t, s)$ for all $t, s \in[a, b]$. We have for $v \in \check{T} j$,

$$
v(t)=\int_{a}^{t} \Pi_{j}(t, s) d s+g(t) \in \int_{a}^{t} \Xi_{j}(t, s) d s+g(t), t \in[a, b]
$$

and

$$
\begin{aligned}
|u(t)-v(t)|^{2} & \leq\left(\int_{a}^{t}\left|\Upsilon_{r}(t, s)-\Pi_{j}(t, s)\right| d s\right)^{2} \\
& \left.\leq\left(\int_{a}^{t} \sqrt{\lambda(s) \max \left\{\begin{array}{c}
\check{d}_{b}(r(s), j(s)), \check{d}_{b}\left(r(s), \Upsilon_{r}(t, s)\right), \\
\check{d}_{b}\left(j(s), \Pi_{j}(t, s)\right), \\
\left.\check{d}_{b}\left(r(s), \Pi_{j}(t, s)\right)\right) \dot{d}_{b}\left(j(s), \Upsilon_{r}(t, s)\right) \\
2 s
\end{array}\right.}\right\} d s\right)^{2} \\
& \leq\left(\int_{a}^{t} \sqrt{\lambda(s)} d s\right)^{2} \max \left\{\begin{array}{c}
\check{d}_{b}(r, j), D_{b}\left(r, \hat{S}^{\prime} r\right), D_{b}(j, \check{T} j) \\
, \frac{D_{b}(r, \check{T} j)+D_{b}(j, \hat{S} r)}{2 s}
\end{array}\right\}
\end{aligned}
$$

Consequently, we have

$$
d(u, v) \leq \frac{e^{-\tau}}{s} \max \left\{\begin{array}{c}
\check{d}_{b}(r, j), D_{b}(r, \hat{S} r), D_{b}(j, \check{T} j) \\
\frac{D_{b}(r, \check{T} j)+D_{b}(j, \hat{S} r)}{2 s}
\end{array}\right\}
$$

Now, by interchanging the role of r and j, we reach to

$$
s H_{b}(\hat{S} r, \check{T} j) \leq e^{-\tau} M_{s}(r, j), r, j \in \chi,
$$

where

$$
M_{s}(r, j)=\max \left\{\check{d}_{b}(r, j), D_{b}(r, \hat{S} r), D_{b}(j, \check{T} j), \frac{D_{b}(r, \check{T} j)+D_{b}\left(j, \hat{S}^{r}\right)}{2 s}\right\}
$$

As $\theta(t)=e^{t} \in \Theta_{s}$, applying it on above inequality and after some simplifications, we get

$$
e^{\left(s H_{b}(\hat{S} r, \check{T} j)\right)} \leq\left[e^{\left(M_{s}(r, j)\right)}\right]^{-\tau}, r, j \in \chi .
$$

Define $\alpha, \eta: \chi \times \chi \longrightarrow[0, \infty)$ as

$$
\alpha(r, j)=\left\{\begin{array}{lc}
1, & \text { if } \xi(r(t), j(t)) \geq 0, t \in[a, b] \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
\eta(r, j)=\left\{\begin{array}{cc}
\frac{1}{3}, & \text { if } \xi(r(t), j(t)) \geq 0, t \in[a, b] \\
1, & \text { otherwise }
\end{array}\right.
$$

Let $r, j \in \chi$ be such that $\alpha(r, j) \geq \min \left\{\eta_{*}(r, \hat{S} r), \eta_{*}(j, \check{T} j)\right\}$. Then $\xi(r(t), j(t)) \geq 0$ for all $t \in[a, b]$. Thus

$$
e^{\left(s H_{b}(\hat{S} r, \check{T} j)\right)} \leq\left[e^{\left(M_{s}(r, j)\right)}\right]^{e^{-\tau}} .
$$

This implies that

$$
\theta\left(s H_{b}(\hat{S} r, \check{T} j)\right) \leq\left[\theta\left(M_{s}(r, j)\right)\right]^{k}, \text { where } k=e^{-\tau}
$$

Hence, (\hat{S}, \check{T}) is a generalized multi-valued $\alpha_{*}-\eta_{*}-\theta$-contraction. By using (iv), for every $r \in \chi$ with $\alpha_{*}(r, \hat{S} r) \geq \eta_{*}(r, \hat{S} r)$ and $\alpha_{*}(r, \check{T} r) \geq \eta_{*}(r, \check{T} r)$, we get

$$
\xi\left(\hat{S} r(t), \check{T}^{2} r(t)\right) \geq 0
$$

and

$$
\xi\left(\check{\operatorname{Tr}}(t), \hat{S}^{2} r(t)\right) \geq 0
$$

Therefore, $\alpha_{*}\left(\hat{S} r, \check{T}^{2} r\right) \geq \eta_{*}\left(\hat{S} r, \check{T}^{2} r\right)$ and $\alpha_{*}\left(\check{T} r, \hat{S}^{2} r\right) \geq \eta_{*}\left(\check{T} r, \hat{S}^{2} r\right)$. Let $r, j \in \chi$ be such that $\alpha(r, j) \geq \eta(r, j), \alpha_{*}(j, \hat{S} j) \geq \eta_{*}(j, \hat{S} j)$ and $\alpha_{*}(j, \check{T} j) \geq \eta_{*}(j, \check{T} j)$. Then

$$
\xi(r(t), j(t)) \geq 0, \quad \xi(j(t), \hat{S} j(t)) \geq 0 \text { and } \xi(j(t), \check{T} j(t)) \geq 0 \text { for all } t \in[a, b] .
$$

By using (iii), we get that $\xi(r(t), \hat{S} j(t)) \geq 0, \xi(r(t), \check{T} j(t)) \geq 0$. So $\alpha_{*}(r, \hat{S} j) \geq \eta_{*}(r, \hat{S} j)$ and $\alpha_{*}(r, T j) \geq \eta_{*}(r, \check{T} j)$. Then (\hat{S}, \check{T}) is triangular $\alpha_{*}-\eta_{*}$-orbital admissible pair. By, (ii), there exists $r_{0} \in \chi$ such that

$$
\alpha_{*}\left(r_{0}, \hat{S} r_{0}\right) \geq \min \left\{\eta_{*}\left(r_{0}, \hat{S} r_{0}\right), \eta_{*}\left(\hat{S} r_{0}, \check{T} \hat{S} r_{0}\right)\right\} .
$$

Let $\left\{r_{n}\right\}$ be a sequence in χ such that $r_{n} \longrightarrow r \in \chi$ as $n \longrightarrow \infty$. Then from (v), there exists a subsequence $\left\{r_{n(k)}\right\}$ of $\left\{r_{n}\right\}$ such that $\xi\left(r_{n(k)}(t), r(t)\right) \geq 0$, this implies that $\alpha\left(r_{n(k)}, r\right) \geq \eta\left(r_{n(k)}, r\right)$. Therefore, all hypothese of Theorem 2.4 are satisfied. Hence \hat{S} and \check{T} have a common fixed point, that is, the system of Volterra-type integral inclusions (3.1) has a solution.

References

[1] A. Felhi, S. Sahmim, H. Aydi, Ulam-Hyers stability and well-posedness of fixed point problems for $\alpha-\lambda$-contractions on quasi b-metric spaces, Fixed Point Theory Appl. 2016 (2016).
[2] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971) 121-124.
[3] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. 5 (1972) 26-42.
[4] S. H. Cho, J.S. Bae and E. Karapinar, Fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2013 (2013) 11 pages.
[5] N. Hussain, A. E. Al-Mazrooei, J. Ahmad, Fixed point results for generalized (α, η)- Θ-contractions with applications, Journal of Nonlinear Sciences and Applications, 10 (2017) 4197-4208.
[6] P. Chuadchawna, A. Kaewcharoen, S. Plubtieng, Fixed point theorems for generalized $\alpha-\eta-\psi$-Geraghty contraction type mappings in $\alpha-\eta$-complete metric spaces, J. Nonlinear Sci. App., 9 (2016) 471-485.
[7] E. Karapinar, $\alpha-\psi$-Geraghty contraction type mappings and some related fixed point results, Filomat 28 (2014) 37-48.
[8] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014).
[9] M. Jleli, E. Karapinar, B. Samet, Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014, 2014:439.
[10] J. Ahmed, A. E. Al-Mazrooei, Y. J. Cho, Y. -O. Yang, Fixed point results for generalized Θ-contractions, Journal of Nonlinear Sciences and Applications, 10 (2017), 2350-2358.
[11] H. Aydi, α-implicit contractive pair of mappings on quasi b-metric spaces and an application to integral equations, Journal of Nonlinear and Convex Analysis, 17 (12) (2016), 2417-2433.
[12] H. Aydi, E. Karapinar, M.F. Bota, S. Mitrovi c, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012:88.
[13] H. Aydi, M.F. Bota, E. Karapinar, S.. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory, 13 (2) (2012), 337-346.
[14] H. Aydi, A. Felhi, S. Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, J. Nonlinear Sci. Appl. 10 (4) (2017), 1524-1537.
[15] A.H. Ansari, M.A. Barakat, H. Aydi, New approach for common fixed point theorems via C-class functions in G_{p}-metric spaces, Journal of Functions Spaces, vol. 2017, Article ID 2624569, 9 pages, 2017.
[16] M. Arshad, E. Ameer, E. Karapinar, Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces, Journal of Inequalities and Applications 2016, 2016:63.
[17] E. Ameer, M. Arshad, W. Shatanawi, Common fixed point results for generalized $\alpha_{*}-\psi$-contraction multivalued mappings in b-metric spaces, J. Fixed Point Theory Appl. (2017), DOI 10.1007/s11784-017-0477-2.
[18] A. Sîntămărian, Integral inclusions of Fredholm type relative to multivalued φ-contraction, Semin. Fixed Point Theory Cluj-Napoca, 3 (2002), 361-368.
[19] M. Jleli, B. Samet, C. Vetro, F. Vetro, Fixed points for multivalued mappings in b-metric spaces, Abstract and Applied Analysis, Volume 2015, Article ID 718074, 7 pages.
[20] M. Jovanović, Z. Kadelburg, S. Radenović, Common xed point results in metric-type spaces, Fixed Point Theory Appl. Volume 2010, Article ID 978121, 15 pages.
[21] H. Huang, S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl. (2013), 2013:112.
[22] N. Hussian, M. H. Shah, KKM mappings in cone b -metric spaces, Comput. Math. Appl. 62 (2011), 1677-168.
[23] E. Karapınar, P. Kumam, P. Salimi, On $\alpha-\psi$-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013:94.
[24] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α-complete metric space with applications, Abstr. Appl. Anal. 2014 (2014), 11 pages.
[25] J.R. Roshan, V. Parvaneh, Sh. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\psi-\varphi)_{s}$-contraction mappings in ordered b-metric spaces, Fixed Point Theory Appl. (2013), 2013:159.
[26] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis, vol. 30, pp. 26-37, 1989.
[27] L. Shi, S. Xu, Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces, Fixed Point Theory Appl. (2013), 2013:120.
[28] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math. 3 (1922), 133-181.
[29] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (2) (1998), 263-276.
[30] S. Czerwik, Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.
[31] P. Salimi, A. Latif, N. Hussain, Modified $\alpha-\psi-$ contractive mappings with applications Fixed Point Theory and Appl. (2013), 2013:151.
[32] M. Berzig, E. Karapınar, On modified $\alpha-\psi$-contractive mappings with application, Thai Journal of Mathematics. Vol 13, No 1 (2015), 147-152.
[33] B. Mohammadi, Sh. Rezapour, N.Shahzad, Some results of fixed point of $\alpha-\psi$-quasi-contractive multifunctions, Fixed Point Theory Appl. (2013), 2013:112.
[34] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math. 30 (1969), 475-488.
[35] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2014, 2014:90.
[36] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
[37] W. Shatanawi, Fixed and common fixed point for mappings satisfying nonlinear contractive in b-metric spaces, J. Math. Anal. 7(4) (2016) 1-12.
[38] H. Huang, G. Deng, S. Radenović, Fixed point theorems in b-metric spaces with applications to differential equations, J. Fixed Point Theory Appl. (2018) 20:52, doi.org/10.1007/s11784-018-0491-z.

[^0]: *Corresponding author
 Email addresses: eskandarameer@yahoo.com (Eskandar Ameer), hmaydi@uod.edu.sa (Hassen Aydi), marshad_zia@yahoo.com, (Muhammad Arshad), aftabshh@gmail.com (Aftab Hussain), arahim@kfupm.edu.sa (Abdul Rahim Khan)

