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Abstract

In this paper, we consider the class of generalized Φ-strongly monotone mappings and the methods
of approximating a solution of equations of Hammerstein type. Auxiliary mapping is defined for
nonlinear integral equations of Hammerstein type. The auxiliary mapping is the composition of
bounded generalized Φ-strongly monotone mappings which satisfy the range condition. Suitable
conditions are imposed to obtain the boundedness and to show that the auxiliary mapping is a
generalized Φ-strongly which satisfies the range condition. A sequence is constructed and it is shown
that it converges strongly to a solution of equations of Hammerstein type. The results in this paper
improve and extend some recent corresponding results on the approximation of a solution of equations
of Hammerstein type.
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1. Introduction

Let E be a real normed linear space and E∗ denotes its corresponding dual space. We denote the
value of the functional x∗ ∈ E∗ at x ∈ E by ⟨x∗, x⟩ , domain of A by D(A), range of A by R(A)
and N(A) denotes the set of zeros of A (i.e., N(A) = {x ∈ D(A) : 0 ∈ Ax} = A−10) . A multivalued
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mapping A : E → 2E
∗
from E into 2E

∗
is said to be monotone if for each x, y ∈ E, the following

inequality holds:
⟨µ− ν, x− y⟩ ≥ 0 ∀ µ ∈ Ax, ν ∈ Ay.

A single-valued mapping A : D(A) ⊂ E → E∗ is monotone if ⟨Ax− Ay, x− y⟩ ≥ 0, ∀ x, y ∈ D(A).
For a linear mapping A, the above definition reduces to ⟨Au, u⟩ ≥ 0 ∀ u ∈ D(A). Multivalued
mapping A is said to be generalized Φ-strongly monotone if there exists a strictly increasing function
Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for each x, y ∈ D(A),

⟨µ− ν, x− y⟩ ≥ Φ(∥x− y∥) ∀ µ ∈ Ax, ν ∈ Ay.

Given that H is a real Hilbert space, a mapping A : H → 2H is said to be monotone if for each
x, y ∈ H,

⟨µ− ν, x− y⟩ ≥ 0 ∀ µ ∈ Ax, ν ∈ Ay.

Let A be a monotone mapping defined on H. It is well known (see e.g., Zeidler [32]) that many
physically significant problems can be modelled by initial-value problems of the form

u′(t) + Au(t) = 0, u(0) = u0. (1.1)

Heat, wave and Schrödinger equations are typical examples where such evolution equations occur.
At an equilibrium state (that is, if u(t) is independent of t), then (1.1) reduces to

Au = 0. (1.2)

Therefore, considerable research efforts have been devoted, especially within the past 40 years or so,
to methods of finding approximate solutions (when they exist) of (1.2). One important generalization
of (1.2) is the so-called equation of Hammerstein type (see, e.g., Hammerstein [18]), where a nonlinear
integral equation of Hammerstein type is one of the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = h(x), (1.3)

where dy stands for a σ-finite measure on the measure space Ω, the kernel k is defined on Ω × Ω,
f is a real-valued function defined on Ω× R and is in general nonlinear, h is a given function on Ω
and u is the unknown function defined on Ω. Let g be a function from Ω×Rn into R. We denote by
F(X, Y ), the set of all maps from X to Y . The Nemystkii operator associated to g is the operator
Ng : F(Ω,Rn) → F(Ω,R) defined by

u 7→ Ng(u)

where (Ngu)(x) = g (x, u(x)) ∀ u ∈ F (Ω, Rn) , ∀ x ∈ Ω. For simplicity, we shall write Ngu(x)
instead of (Ngu)(x).

Example 1.1. Given a map g : R× R → R defined by

g(x, s) = |s| ∀ (x, s) ∈ R× R,

the Nemystkii operator associated to g is the expression Ngu(x) = |u(x)| for any map u : R → R and
for any x ∈ R.
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Example 1.2. Given a map g : R× R → R defined by

g(x, s) = xes ∀ (x, s) ∈ R× R,

the Nemystkii operator associated to g is the expression Ngu(x) = xeu(x) for any map u : R → R and
for any x ∈ R.

Observe that by the continuity of g, Ng maps the set of real-valued continuous function on Ω;
C(Ω) into itself. Moreover, it maps the set of real-valued measurable function into itself. Define the
operator K : F(Ω,R) → F(Ω,R) by

Kv(x) =

∫
Ω

k(x, y)v(y)dy for almost all x ∈ Ω,

and the Nemystkii operator F : F(Ω,R) → F(Ω,R) associated with f by

Fu(x) = f(x, u(x)) for almost all x ∈ Ω,

then the integral (1.3) can be put in functional equation form as follows:

u+KFu = 0, (1.4)

where without loss of generality, we have taken h ≡ 0. Also, Hammerstein equations play crucial
roles in solving several problems that arise in differential equations (see, e.g., Pascali and Sburlan
[24], Chapter IV, p. 164) and applicable in theory of optimal control systems and in automation
and network theory (see, e.g., Dolezale [17]). Several authors have proved existence and uniqueness
theorems for equations of the Hammerstein type (see, e.g., Brézis and F. E. Browder ([6, 7, 8]);
Browder and Gupta [9]; Chepanovich [10]; De Figueiredo and Gupta [15]).

Let C be a nonempty closed convex subset of a real Banach space E. A self-mapping T : C → C
is said to be nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ ∀ x, y ∈ C. If E is smooth, T : C → E is said
to be firmly nonexpansive type (see e.g., [22]), if

⟨Tx− Ty, JTx− JTy⟩ ≤ ⟨Tx− Ty, Jx− Jy⟩ for all x, y ∈ C,

where J : E → 2E
∗
is the normalized duality mapping defined in Section 2.

For the iterative approximation of solutions of (1.2), the monotonicity of A is crucial. A mapping
A : E → 2E

∗
is said to be maximal monotone if it is monotone and R(J + tA) is all of E∗ for some

t > 0. Given that A is monotone and R(J+ tA) = E∗ for all t > 0, then A is said to satisfy the range
condition. Let E be a uniformly smooth and uniformly convex Banach space and A, a maximal
monotone or (a monotone mapping which satisfies the range condition). Then, one can define for all
t > 0, the resolvent Jt : C → D(A) by

Jtx = {z ∈ E : Jx ∈ Jz + tAz}

for all x ∈ C, where C is a closed convex subset of E. The fact that F (Jt) = A−10 is well known
where F (Jt) is the set of fixed points of Jt (see e.g., [23, 25, 26]). There exists some interesting
reports on the class of monotone mappings (See e.g, [1, 3, 13, 16, 30]).

In this present work, it is shown that if A is a multivalued generalized Φ-strongly monotone
mapping and such that R(Jp+ t0A) = E∗ for some t0 > 0, then R(Jp+ tA) = E∗ for all t > 0, where
Jp, p > 1 is the generalized duality mapping. That is, a maximal monotone mapping satisfies the
range condition. Also, a strong convergence theorem for approximating a solution of equations of
Hammerstein type is established. We consider the generalized Φ-strongly monotone mapping which
is the largest such that if a solution of the equation 0 ∈ Ax exists, it is necessarily unique. Our
results generalize and improve some important and recent results of Chidume and Idu [12].
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2. Preliminaries

Let S := {x ∈ E : ∥x∥ = 1} denotes a unit sphere of a Banach space E with dimension greater
than or equal to two. The space E is said to be Gâteaux differentiable (or is smooth) if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ S. If E is smooth and the limit is attained uniformly for each x, y ∈ S, then it
is said to be uniformly smooth. A Banach space E is said to be strictly convex if

∥x∥ = ∥y∥ = 1, x ̸= y ⇒ ∥x+ y∥
2

< 1.

The space E is said to be uniformly convex if, for each ϵ ∈ (0, 2], there exists a δ := δ(ϵ) > 0 such

that for each x, y ∈ S, ∥x−y∥ ≥ δ implies that ∥x−y∥
2

≤ 1− δ. E is reflexive if and only if the natural
embedding of E into E∗∗ is onto. It is known that a uniformly convex Banach space is reflexive
and strictly convex. Also, if E is a reflexive Banach space, then, it is strictly convex (respectively
smooth) if and only if E∗ is smooth (respectively strictly convex).

Let φ : [0,∞) → [0,∞) be a strictly increasing continuous function such that φ(0) = 0 and
φ(t) → ∞ as t → ∞, φ is called a gauge function. We associate to φ, the duality mapping
Jφ : E → 2E

∗
which is defined as

Jφ(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥∥f∥, ∥f∥ = φ(∥x∥)} ,

where E∗ denotes the dual space of E and ⟨., .⟩ denotes the generalized duality pairing. If φ(t) =
tp−1, p > 1, the duality mapping Jφ = Jp is called generalized duality mapping. The duality mapping
with guage φ(t) = t (i.e. p = 2) is denoted by J and is referred to as the normalized duality mapping.

It follows from the definition that Jφ(x) =
φ(∥x∥)
∥x∥ J(x) for each x ̸= 0 and Jp(x) = ∥x∥p−2J(x), p > 1.

Jφ is single-valued if E is smooth and if E is a reflexive strictly convex Banach space with strictly
convex dual space E∗, Jp : E → E∗ and Jq : E∗ → E being the duality mappings with gauge
functions φ(t) = tp−1 and φ(s) = sq−1, 1

p
+ 1

q
= 1, respectively, then J−1

p = Jq. For a Banach space
E and E∗ as its dual space, the following properties of the generalized duality mapping have also
been established (see e.g., Alber and Ryazantseva [5], Cioranescu [14], p. 25-77, Xu and Roach [29],
Zǎlinescu [31]):

(i) If E is smooth, then Jp is single-valued and norm-to-weak∗ continuous;

(ii) If E is strictly convex, then Jp is strictly monotone (injective, in particular, i.e, if x ̸= y, then
Jpx ∩ Jpy = ∅);

(iii) If E is reflexive, then Jp is onto;

(iv) The expression ⟨Jpx, x⟩ is naturally regarded as having power p as ⟨Jpx, x⟩ = ∥x∥p;

(v) If E is uniformly smooth, then Jq : E∗ → E is a generalized duality mapping on E∗, J−1
p =

Jq, JpJq = IE∗ and JqJp = IE, where IE and IE∗ are the identity mappings on E and E∗

respectively.

Definition 2.1. Let E be a smooth real Banach space with dual space E∗, the followings were
introduced by Aibinu and Mewomo [2].
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(i) The function ϕp : E × E → R is defined by

ϕp(x, y) =
p

q
∥x∥q − p ⟨x, Jpy⟩+ ∥y∥p, for all x, y ∈ E,

where Jp is the generalized duality map from E to E∗, p and q are real numbers such that
q ≥ p > 1 and 1

p
+ 1

q
= 1. Notice that taking p = 2 in (2.1), it reduces to

ϕ(x, y) = ∥x∥2 − 2 ⟨x, Jy⟩+ ∥y∥2, for all x, y ∈ E,

which was introduced by Alber [4].

(ii) The mapping Vp : E × E∗ → R is defined by

Vp(x, x
∗) =

p

q
∥x∥q − p ⟨x, x∗⟩+ ∥x∗∥p ∀ x ∈ E, x∗ ∈ E∗ such that q ≥ p > 1,

1

p
+

1

q
= 1.

Remark 2.2. These remarks follow from Definition 2.1:

(i) It is obvious from the definition of the function ϕp that

(∥x∥ − ∥y∥)p ≤ ϕp(x, y) ≤ (∥x∥+ ∥y∥)p for all x, y ∈ E. (2.1)

(ii) Clearly, we also have that

Vp(x, x
∗) = ϕp(x, J

−1x∗) ∀ x ∈ E, x∗ ∈ E∗. (2.2)

In the sequel, we shall need the following lemmas.

Lemma 2.3. Aibinu and Mewomo [2]. Let E be a smooth uniformly convex real Banach space with
E∗ as its dual. Then

Vp(x, x
∗) + p

〈
J−1x∗ − x, y∗

〉
≤ Vp(x, x

∗ + y∗) (2.3)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.4. Aibinu and Mewomo [2]. Let E be a smooth uniformly convex real Banach space. For
d > 0, let Bd(0) := {x ∈ E : ∥x∥ ≤ d}. Then for arbitrary x, y ∈ Bd(0),

∥x− y∥p ≥ ϕp(x, y)−
p

q
∥x∥q, q ≥ p > 1,

1

p
+

1

q
= 1.

Lemma 2.5. Aibinu and Mewomo [2]. Let E be a reflexive strictly convex and smooth real Banach
space with the dual E∗. Then

ϕp(y, x)− ϕp(y, z) ≥ p ⟨z − y, Jx− Jz⟩ for all x, y, z ∈ E. (2.4)

Lemma 2.6. Xu [28]. Let {an} be a sequence of nonnegative real numbers satisfying the following
relations:

an+1 ≤ (1− αn)an + αnσn + γn, n ∈ N,

where
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(i) {α}n ⊂ (0, 1),
∞∑
n=1

αn = ∞;

(ii) lim sup {σ}n ≤ 0;

(iii) γn ≥ 0,
∞∑
n=1

γn <∞.

Then, an → 0 as n→ ∞.

Lemma 2.7. Chidume and Idu [12]. For a real number p > 1, let X, Y be real uniformly convex

and uniformly smooth Banach spaces. Let W := X × Y with the norm ∥w∥W = (∥u∥pX + ∥v∥pY )
1
p

for arbitrary w := (u, v) ∈ W . Let W ∗ := X∗ × Y ∗ denotes the dual space of Z. For arbitrary
z = (u, v) ∈ Z, define the map jZp : Z → Z∗ by

jWp (z) = jWp (u, v) =
(
jXp (u), j

Y
p (v)

)
,

such that for arbitrary w1 = (u1, v1), w2 = (u2, v2) in Z, the duality pairing ⟨., .⟩ is given by〈
w1, j

W
p (w2)

〉
=

〈
u1, j

X
p (u2)

〉
+
〈
v1, j

Y
p (v2)

〉
.

Then,

(i) W is uniformly smooth and uniformly convex,

(ii) jWp is single-valued duality mapping on W .

Lemma 2.8. Chidume and Idu [12]. Let E be a uniformly convex and uniformly smooth real Banach
space. Let F : E → E∗ and K : E∗ → E be monotone mappings with D(F ) = R(K) = E. Let
T : E ×E∗ → E∗ ×E be defined by T (u, v) = (Ju−Fu+ v, J−1v−Kv− u) for all (u, v) ∈ E ×E∗,
then T is J-pseudocontractive. Moreover, if the Hammerstein equation u+KFu = 0 has a solution
in E, then u∗ is a solution of u+KFu = 0 if and only if (u∗, v∗) ∈ F J

E(T ), where v
∗ = Fu∗.

Lemma 2.9. Zǎlinescu [31]. Let ψ : R+ → R+ be increasing with lim
t→∞

ψ(t) = ∞. Then J−1
ψ is

single-valued and uniformly continuous on bounded sets of E∗ if and only if E is a uniformly convex
Banach space.

Theorem 2.10. Xu [27]. Let E be a real uniformly convex Banach space. For arbitrary r > 0, let
Br(0) := {x ∈ E : ∥x∥ ≤ r}. Then, there exists a continuous strictly increasing convex function

g : [0,∞) → [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), jp(x) ∈ Jp(x), jp(y) ∈ Jp(y), the following inequalities hold:

(i) ∥x+ y∥p ≥ ∥x∥p + p ⟨y, jp(x)⟩+ g(∥y∥);

(ii) ⟨x− y, jp(x)− jp(y)⟩ ≥ g(∥x− y∥).

Lemma 2.11. B. T. Kien [21]. The dual space E∗ of a Banach space E is uniformly convex if and
only if the duality mapping Jp is a single-valued map which is uniformly continuous on each bounded
subset of E.
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Lemma 2.12. Kamimura and Takahashi [19]. Let E be a smooth uniformly convex real Banach
space and let {xn} and {yn} be two sequences from E. If either {xn} or {yn} is bounded and
ϕ(xn, yn) → 0 as n→ ∞, then ∥xn − yn∥ → 0 as n→ ∞.

Theorem 2.13. Kido [20]. Let E∗ be a real strictly convex dual Banach space with a Fréchet dif-
ferentiable norm and A a maximal monotone operator from E into E∗ such that A−10 ̸= ∅. Let
Jtx := (J + tA)−1x be the resolvent of A and P be the nearest point retraction of E onto A−10.
Then, for every x ∈ E, Jtx converges strongly to Px as t→ ∞.

3. Main Results

We give and prove the following lemmas which are useful in establishing our main result.

Lemma 3.1. Suppose E is a Banach space with the dual E∗. Let F : E → E∗ and K : E∗ → E be
mappings such that D(K) = R(F ) and the following conditions hold:

(i) For each u1, u2 ∈ E, there exists a strictly increasing function Φ1 : [0,∞) → [0,∞) with
Φ1(0) = 0 such that

⟨Fu1 − Fu2, u1 − u2⟩ ≥ Φ1(∥u1 − u2∥);

(ii) For each v1, v2 ∈ E∗, there exists a strictly increasing function Φ2 : [0,∞) → [0,∞) with
Φ2(0) = 0 such that

⟨Ku1 −Ku2, v1 − v2⟩ ≥ Φ2(∥v1 − v2∥);

(iii) Φi(t) ≥ rit for t ∈ [0,∞) and ri > 0, i = 1, 2.

Let W := E × E∗ with norm ∥w∥W := ∥u∥E + ∥v∥E∗ for w = (u, v) ∈ W. Define a mapping
A : W → W ∗ by Aw := (Fu− v, u+Kv).

(i) Then for each w1, w2 ∈ W, there exists a strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0 such that

⟨Aw1 − Aw2, w1 − w2⟩ ≥ Φ(∥w1 − w2∥);

(ii) Suppose that F and K are bounded mappings, then A is a bounded map.

Proof .

(i) Define Φ : [0,∞) → [0,∞) by Φ(t) := min {r1, r2} t for each t ∈ [0,∞). Clearly, Φ is a
strictly increasing function with Φ(0) = 0. For w1 = (u1, v1), w2 = (u2, v2) ∈ W , we have
Aw1 = (Fu1 − v1, Kv1 + u1) and Aw2 = (Fu2 − v2, Kv2 + u2) such that

Aw1 − Aw2 = (Fu1 − Fu2 − (v1 − v2), Kv1 −Kv2 + (u1 − u2)) .

Therefore, the following estimate follows from the properties of F and K.

⟨Aw1 − Aw2, w1 − w2⟩ = ⟨Fu1 − Fu2 − (v1 − v2), u1 − u2⟩
+ ⟨Kv1 −Kv2 + (u1 − u2), v1 − v2⟩

= ⟨Fu1 − Fu2, u1 − u2⟩ − ⟨v1 − v2, u1 − u2⟩
+ ⟨Kv1 −Kv2, v1 − v2⟩+ ⟨u1 − u2, v1 − v2⟩

≥ Φ1(∥u1 − u2∥) + Φ2(∥v1 − v2∥)
≥ r1∥u1 − u2∥+ r2∥v1 − v2∥
≥ min {r1, r2} (∥u1 − u2∥+ ∥v1 − v2∥)
= Φ(∥w1 − w2∥).
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(ii) By the definition of A, it is a bounded map since F and K are bounded mappings.

□

Remark 3.2. Recall that a mapping A : E → E∗ is said to be strongly monotone if there exists a
constant k ∈ (0, 1) such that

⟨Ax− Ay, x− y⟩ ≥ k∥x− y∥2 ∀ x, y ∈ D(A).

Therefore for a strongly monotone mapping, it is required that the norm on W be defined as

∥w∥2W := ∥u∥2E + ∥v∥2E∗ .

An analogue of Lemma 2.5, Chidume and Djitte, [11], which was proved in a Hilbert space is
given below in a uniformly smooth and uniformly convex Banach space.

Lemma 3.3. Let E be a uniformly smooth and uniformly convex Banach space with dual E∗. Suppose
D(A) = E and A : E → 2E

∗
is a multivalued generalized Φ-strongly monotone mapping such that

R(Jp + t0A) = E∗ for some t0 > 0. Then A satisfies the range condition, that is, R(Jp + tA) = E∗

for all t > 0.

Proof . By the strict convexity of E, we obtain for every x ∈ E, there exist unique xt0 ∈ E and
such that

Jpx ∈ Jpxt0 + t0Axt0 .

Taking Jpt0
(x) = xt0 , one can define a single-valued mapping Jpt0

: E → D(F ) by

Jpt0
:= (Jp + t0A)

−1Jp.

Jpt0
is called the resolvent of A. It is known that (Jp + t0A) is a bijection since it is monotone and

R(Jp + t0A) = E∗. Since E is a smooth and strictly convex Banach space and A : E → 2E
∗
is such

that R(Jp + t0A) = E∗, for each t0 > 0, one can verify that the resolvent Jpt0
of A, defined by

Jpt0
(x) = {z ∈ E : Jpx ∈ Jpz + t0Az} =

{
(Jp + t0A)

−1 Jpx
}

for all x ∈ E is a firmly nonexpansive type map. Infact, for x1, x2 ∈ E and t0 > 0, and for

every Jpt0
(x1), Jpt0

(x2) ∈ D(F ), we have that
Jpx1−Jp(Jpt0 (x1))

t0
,
Jpx2−Jp(Jpt0 (x2))

t0
∈ A, and generalized

Φ-strongly monotonicity property of A gives,〈
Jpx1 − Jp(Jpt0

(x1))

t0
−
Jpx2 − Jp(Jpt0

(x2))

t0
, Jpt0

(x1)− Jpt0
(x2)

〉
≥

Φ(∥Jpt0 (x1)− Jpt0
(x2)∥) ≥ 0.

Consequently,〈
Jp(Jpt0

(x1))− Jp(Jpt0
(x2)), Jpt0

(x1)− Jpt0
(x2)

〉
≤〈

Jpx1 − Jpx2, Jpt0
(x1)− Jpt0

(x2)
〉
. (3.1)
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Thus, the resolvent Jpt0
is a firmly nonexpansive type map. A simple computation from (3.1) shows

that for x, y ∈ E,

∥Jpt0 (x)− Jpt0
(y)| ≤ ∥x− y∥. (3.2)

We claim that
R(Jp + tA) = E∗

for any t > t0
2
. Indeed, let t > t0

2
, for every x ∈ E, we solve the equation

Jpx+ tAx = w∗, x∗ ∈ E∗. (3.3)

Notice that x ∈ E is a solution of (3.3) provided that

Jpx+ t0Ax =
t0
t
w∗ + (1− t0

t
)Jpx,

which is equivalent to

x = Jpt0

(
t0
t
w∗ + (1− t0

t
)Jpx

)
.

By the contraction mapping principle, Eq.(3.3) has a unique solution since |1 − t0
t
| < 1 and this

justifies the claim. It is given that A is a monotone mapping and R(Jp+ t0A) = E∗ for some t0 > 0.
By the claim, it follows that R(Jp + tA) = E∗ for any t > t0

2
. By induction, we therefore have that

R(Jp + tA) = E∗ for any t > t0
2n

and any n ∈ N. Thus, R(Jp + tA) = E∗ for any t > 0. □

Lemma 3.4. Let E be a uniformly smooth and uniformly convex real Banach space and denote the
dual space by E∗. Suppose F : E → E∗ is a generalized Φ1-strongly monotone mapping such that
R(Jp + t1F ) = E∗ for all t1 > 0 and K : E∗ → E is a generalized Φ2-strongly monotone mapping
such that R(Jq+ t2K) = E for all t2 > 0. Let W := E×E∗ with norm ∥w∥W := ∥u∥E+∥v∥E∗ ∀ w =
(u, v) ∈ W and define a map A : W → W ∗ by

Aw = (Fu− v,Kv + u) ,∀ w = (u, v) ∈ W, (3.4)

then R(Jp + tA) = W ∗ for all t > 0.

Proof . We show that R(Jp + tA) = W ∗ for all t > 0. Indeed, let t0 be such that 0 < t0 < 1.
Denote the resolvents Jpt0

: E → D(F ) of F by Jpt0
:= (Jp + t0F )

−1Jp and Jqt0
: E∗ → D(K) of K

by Jqt0
= (Jq + t0K)−1Jq. Jpt0

and Jqt0
are firmly nonexpansive type maps and hence (3.2) holds.

Therefore, for h := (h1, h2) ∈ X∗, define G : W → W by

Gw =
(
Jpt0

(h2 − t0u), Jqt0
(h1 + t0v)

)
, ∀ w = (u, v) ∈ W.

From the fact that (3.2) holds for Jpt0
and Jqt0

, we have

∥Gw1 −Gw2∥ ≤ t0∥w1 − w2∥ ∀ w1, w2 ∈ W.

Therefore G is a contraction and by Banach contraction mapping principle, G has a unique fixed
point w∗ := (u∗, v∗) ∈ W , that is Gw∗ = w∗ or equivalently u∗ = Jpt0

(h2− t0u
∗), v∗ = Jqt0

(h1+ t0v
∗).

These imply that (Jp + t0A)w = h. Lemma 3.1 gives that A is a generalized Φ-strongly monotone
mapping and by Lemma 3.3, R(Jp + tA) = W ∗ for all t > 0. □
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Theorem 3.5. Let E be a uniformly smooth and uniformly convex real Banach space and denote
the dual space by E∗. Let F : E → E∗ be a generalized Φ1-strongly monotone mapping such that
R(Jp + t1F ) = E∗ for all t1 > 0 and K : E∗ → E be a generalized Φ2-strongly monotone mapping
such that R(Jq + t2K) = E for all t2 > 0. Suppose F and K are bounded mappings such that
D(K) = R(F ) = E∗. Define {un} and {vn} iteratively for arbitrary u1 ∈ E and v1 ∈ E∗ by

un+1 = Jq (Jpun − λn (Fun − vn + θn(Jpun − Jpu1))) , n ∈ N, (3.5)

vn+1 = Jp (Jqvn − λn (Kvn + un + θn(Jqvn − Jqv1))) , n ∈ N, (3.6)

where Jp is the generalized duality mapping from E to E∗ and Jq is the generalized duality mapping
from E∗ to E. Let the real sequences {λn} and {θn} in (0, 1) be such that,

(i) lim θn = 0 and {θn} is decreasing;

(ii)
∞∑
n=1

λnθn = ∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞∑
n=1

λn <∞.

Suppose that u+KFu = 0 has a solution in E. There exists a real constant γ0 > 0 with ψ(λnM) ≤
γ0, n ∈ N for some constant M > 0. Then, the sequence {un} converges strongly to the solution of
0 = u+KFu.

Proof . Let W := E × E∗ with norm ∥x∥pW := ∥u∥pE + ∥v∥pE∗ ∀ w = (u, v) ∈ W and define
∧p : W ×W → R by

∧p(w1, w2) = ϕp(u1, u2) + ϕp(v1, v2),

where respectively w1 = (u1, v1) and w2 = (u2, v2). Let u∗ ∈ E be a solution of u + KFu = 0.
Observe that setting v∗ := Fu∗ and w∗ := (u∗, v∗), we have that u∗ = −Kv∗.

We divide the proof into two parts.
Part 1: We prove that {wn} is bounded, where wn := (un, vn). Let r > 0 be sufficiently large such
that

Φ(
δ

2
) ≥ r ≥ max

{
4∧p(w∗, w1), δ

p +
p

q
∥x∗∥q

}
, (3.7)

where δ is a positive real number and Φ := min {Φ1,Φ2} . The proof is by induction. By construction,
∧p(w∗, w1) ≤ r. Suppose that ∧p(w∗, wn) ≤ r for some n ∈ N. We show that ∧p(w∗, wn+1) ≤ r.
Suppose this is not the case, then ∧p(w∗, wn+1) > r.

From inequality (2.1), we have ∥wn∥ ≤ r
1
p +∥w∗∥. Let B := {w ∈ E : ∧p(w∗, w) ≤ r} and notice that

by Lemma (2.9 and 2.11), Jq and Jp are uniformly continuous on bounded subsets. Consequently,
since F and K are bounded, we define

M1 := sup {∥Fu+ θn(Jpu− Jpu1)∥ : θn ∈ (0, 1), u ∈ B}+ 1, (3.8)

M2 := sup {∥Kv + θn(Jpv − Jpv1)∥ : θn ∈ (0, 1), v ∈ B}+ 1. (3.9)

Let ψ1 : [0,∞) → [0,∞) be the modulus of continuity of Jq and ψ2 : [0,∞) → [0,∞) be the modulus
of continuity of Jp. Recall that by the uniform continuity of Jq and Jp on bounded subsets of E∗ and
E respectively. Then we have

∥Jq(Jpun)− Jq(Jpun − λn (Fun + θn(Jpun − Jpu1)))∥ ≤ ψ1(λnM1), (3.10)
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∥Jp(Jqvn)− Jp(Jqvn − λn (Kvn + θn(Jqvn − Jqv1)))∥ ≤ ψ2(λnM2). (3.11)

Let M0 :=M1 +M2, since Φ := min {Φ1,Φ2} , one can define

γ0 := min

{
1,

Φ( δ
2
)

2M0

}
where ψ(λnM0) ≤ γ0 with ψ(λnM0) ≥

δ

2
,

and ψ := ψ1 + ψ2. Applying Lemma 2.3 with y∗ := λn (Fun + θn(Jpun − Jpu1)) and by using the
definition of un+1, we compute as follows,

ϕp(u
∗, un+1) = ϕp (u

∗, Jq (Jpun − λn (Fun + θn(Jpun − Jpu1))))

= Vp (u
∗, Jpun − λn (Fun + θn(Jpun − Jpu1)))

≤ Vp(u
∗, Jpun)

−pλn ⟨Jq(Jpun − λn (Fun + θn(Jpun − Jpu1)))− u∗, Fun + θn(Jpun − Jpu1)⟩
= ϕp(u

∗, un)− pλn ⟨un − u∗, Fun + θn(Jpun − Jpu1)⟩
−pλn ⟨Jq(Jpun − λn (Fun + θn(Jpun − Jpu1)))− un, Fun + θn(Jpun − Jpu1)⟩ .

By Schwartz inequality and uniform continuity property of Jq on bounded sets of E∗ (Lemma 2.9),
we obtain

ϕp(u
∗, un+1) ≤ ϕp(u

∗, un)− pλn ⟨un − u∗, Fun + θn(Jpun − Jpu1)⟩
+pλnψ1(λnM1)M1 (By applying inequality (3.10))

≤ ϕp(u
∗, un)− pλn ⟨un − u∗, Fxn − Fu∗⟩ since u∗ ∈ N(F ))

−pλnθn ⟨un − u∗, Jpun − Jpu1⟩+ pλnψ1(λnM1)M1.

By Lemma 2.5, p ⟨un − u∗, Jpu1 − Jpun⟩ ≤ ϕp(u
∗, u1) − ϕp(u

∗, un) ≤ ϕp(u
∗, u1). Also, since F is

generalized Φ-strongly monotone, we have,

ϕp(u
∗, un+1) ≤ ϕp(u

∗, un)− pλnΦ1(∥un − u∗∥)
+pλnθn ⟨un − u∗, Jpu1 − Jpun⟩+ pλnψ1(λnM1)M1

≤ ϕp(u
∗, un)− pλnΦ1(∥un − u∗∥) + pλnθnϕp(u

∗, u1) + pλnψ1(λnM1)M1. (3.12)

By the uniform continuity property of Jq on bounded sets of E∗, we have

∥un+1 − un∥ = ∥Jq(Jpun+1)− Jq(Jpun)∥ ≤ ψ1(λnM1),

such that
∥un+1 − u∗∥ − ∥un − u∗∥ ≤ ψ1(λnM1),

which gives

∥un − u∗∥ ≥ ∥un+1 − u∗∥ − ψ1(λnM1). (3.13)

From Lemma 2.4,

∥un+1 − u∗∥p ≥ ϕp(u
∗, un+1)−

p

q
∥u∗∥

≥ r − p

q
∥u∗∥

≥
(
δp +

p

q
∥u∗∥

)
− p

q
∥u∗∥

≥ δp.
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So,
∥un+1 − u∗∥ ≥ δ.

Therefore, the inequality (3.13) becomes,

∥un − u∗∥ ≥ δ − ψ1(λnM1)

≥ δ

2
.

Thus,

Φ1(∥un − u∗∥) ≥ Φ1(
δ

2
). (3.14)

Substituting (3.14) into (3.12) gives

ϕp(u
∗, un+1) ≤ ϕp(u

∗, un)− pλnΦ1(
δ

2
) + pλnθnϕp(u

∗, u1)

+pλnψ1(λnM1)M1. (3.15)

Similarly,

ϕq(v
∗, vn+1) = ϕp (v

∗, Jq (Jpvn − λn (Kvn + θn(Jqvn − Jqv1))))

= Vp (v
∗, Jqvn − λn (Kvn + θn(Jqvn − Jqv1)))

≤ Vp(v
∗, Jqvn)

−pλn ⟨Jp(Jqvn − λn (Kvn + θn(Jqvn − Jqv1)))− v∗, Kvn + θn(Jqvn − Jqv1)⟩
= ϕp(v

∗, vn)− pλn ⟨vn − v∗, Kvn + θn(Jqvn − Jqv1)⟩
−pλn ⟨Jp(Jqvn − λn (Kvn + θn(Jqvn − Jqv1)))− vn, Kvn + θn(Jqvn − Jqv1)⟩ .

By Schwartz inequality and uniform continuity property of J on bounded subsets of E (Lemma 2.11),
we obtain

ϕp(v
∗, vn+1) ≤ ϕp(v

∗, vn)− pλn ⟨vn − v∗, Fxn + θn(Jpun − Jpu1)⟩
+pλnψ1(λnM1)M1 (By applying inequality (3.11))

≤ ϕp(u
∗, un)− pλn ⟨un − u∗, Kvn −Kv∗⟩ since v∗ ∈ N(K))

−pλnθn ⟨vn − v∗, Jqvn − Jqv1⟩+ pλnψ2(λnM2)M2.

By Lemma 2.5, p ⟨vn − v∗, Jqv1 − Jqvn⟩ ≤ ϕp(v
∗, v1)− ϕp(v

∗, vn) ≤ ϕp(v
∗, v1). Also, since K is gener-

alized Φ-strongly monotone, we have,

ϕp(v
∗, vn+1) ≤ ϕp(v

∗, vn)− pλnΦ2(∥vn − v∗∥)
+pλnθn ⟨vn − v∗, Jqv1 − Jqvn⟩+ pλnψ2(λnM2)M2

≤ ϕp(v
∗, vn)− pλnΦ2(∥vn − v∗∥) + pλnθnϕp(v

∗, v1) + pλnψ2(λnM2)M2. (3.16)

By the uniform continuity property of Jp on bounded sets of E∗, we have

∥vn+1 − vn∥ = ∥Jp(Jqvn+1)− Jp(Jqvn)∥ ≤ ψ2(λnM2),

such that
∥vn+1 − v∗∥ − ∥vn − v∗∥ ≤ ψ2(λnM2),
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which gives

∥vn − v∗∥ ≥ ∥vn+1 − v∗∥ − ψ2(λnM2). (3.17)

From Lemma 2.4,

∥vn+1 − v∗∥p ≥ ϕp(v
∗, vn+1)−

p

q
∥v∗∥

≥ r − p

q
∥u∗∥

≥
(
δp +

p

q
∥v∗∥

)
− p

q
∥v∗∥

≥ δp.

So,
∥vn+1 − v∗∥ ≥ δ.

Therefore, the inequality (3.17) becomes,

∥vn − v∗∥ ≥ δ − ψ2(λnM2)

≥ δ

2
.

Thus,

Φ2(∥vn − v∗∥) ≥ Φ2(
δ

2
). (3.18)

Substituting (3.18) into (3.16) gives

ϕp(v
∗, vn+1) ≤ ϕp(v

∗, vn)− pλnΦ2(
δ

2
) + pλnθnϕp(v

∗, v1)

+pλnψ2(λnM2)M2. (3.19)

Add (3.15) and (3.19) gives

r < ∧p(w∗, wn+1) ≤ ∧p(w∗, wn)− pλnΦ(
δ

2
) + pλnθn∧p(w∗, w1) + pλnψ(λnM0)M0

≤ ∧p(w∗, wn)− pλnΦ(
δ

2
) + pλnθn∧p(w∗, w1) + pλnγ0M0

≤ ∧p(w∗, wn)−
pλn
2

Φ(
δ

2
) + pλnθn∧p(w∗, w1)

≤ ∧p(w∗, wn)−
pλn
2

Φ(
δ

2
) + pλnθn∧p(w∗, w1)

≤ ∧p(w∗, wn)−
pλn
2

Φ(
δ

2
) + pλn∧p(w∗, w1) (Since θn ∈ (0, 1))

≤ r − prλn
2

+
prλn
4

= r − prλn
4

< r,

a contradiction. Hence, ∧p(w∗, wn+1) ≤ r. By induction, ∧p(w∗, wn) ≤ r ∀ n ∈ N. Thus, from
inequality (2.1), {wn} is bounded.
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Part 2: Define A : W → W ∗ by Aw = (Fu − v,Kv + u), ∀ w = (u, v) ∈ W. We show that
{wn} strongly converges to a solution of Aw = 0. Since A satisfies the range condition (Lemma 3.3)
and by the strict convexity of X (Lemma 2.7), we obtain for every t > 0, and w ∈ W , there exists a
unique wt ∈ D(A), where D(A) is the domain of A such that

JWp w ∈ JWp wt + tAwt.

Taking Jtw = wt, then we define a single-valued mapping Jt : E → D(A) by Jt = (JWp + tA)−1JWp .
Such a Jt is called the resolvent of A. Therefore, by Theorem 2.13, for each n ∈ N, there exists a
unique xn ∈ D(A) such that,

xn = (JWp +
1

θn
A)−1JWp w1.

Then, setting xn := (yn, zn) ∈ E × E∗ and w1 := (u1, v1) ∈ E × E∗, we have

(yn, zn) = (JWp +
1

θn
A)−1JWp (u1, v1),

which is equivalent to

(JWp +
1

θn
A)(yn, zn) = JWp (u1, v1).

Since A(yn, zn) = (Fyn − zn, Kzn + yn), then,

Jpyn +
1

θn
(Fyn − zn) = Jpu1,

Jqzn +
1

θn
(Kzn + yn) = Jqv1,

and these lead to
θn(Jpyn − Jpu1) + Fyn − zn = 0, (3.20)

θn(Jqzn − Jqv1) +Kzn + yn = 0. (3.21)

Notice that the sequences {yn} and {zn} are bounded because they are convergent sequences by
Theorem 2.13. Moreover, by Theorem 2.13, limxn ∈ A−10. Let yn → u∗ and zn → v∗, then u∗ in
E solves the equation u + KFu = 0 if and only if x∗ = (u∗, v∗) is a solution of Ax = 0 in W for
v∗ = Fu∗ ∈ E∗. The implication is that

Fu∗ − v∗ = 0,

Kv∗ + u∗ = 0.

Following the same arguments as in part 1, we get,

ϕp(yn, un+1) ≤ ϕp(yn, un)− pλn ⟨un − yn, Fun − vn + θn(Jun − Ju1)⟩+ pλnψ1(λnM1)M1 (3.22)

and

ϕp(zn, vn+1) ≤ ϕp(zn, vn)− pλn ⟨vn − zn, Kvn + un + θn(Jqvn − Jqv1)⟩+ pλnψ2(λnM2)M2. (3.23)
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By Theorem 2.10, Lemma 2.4 and Eq. (3.20), the generalized Φ-strongly monotonicity of F is used
to obtain for some p > 1,

⟨un − yn, Fun − vn + θn(Jpun − Jpu1)⟩
= ⟨xn − yn, Fun − vn + θn(Jpun − Jpyn + Jpyn − Jpu1)⟩
= θn ⟨un − yn, Jpun − Jpyn⟩+ ⟨un − yn, Fun − vn + θn(Jpyn − Jpu1)⟩
= θn ⟨un − yn, Jpun − Jpyn⟩+ ⟨un − yn, Fun − vn − (Fyn − zn)⟩
≥ θng(∥un − yn∥) + Φ(∥un − yn∥) + ⟨un − yn, zn − vn⟩

≥ 1

p
θnϕp(yn, un) + ⟨un − yn, zn − vn⟩

This makes the inequality (3.22) to become

ϕp(yn, un+1) ≤ (1− λnθn)ϕp(yn, un)− pλn ⟨un − yn, zn − vn⟩+ pλnψ1(λnM1)M1. (3.24)

From Lemma 2.5, we obtain that

ϕp(yn, un) ≤ ϕp(yn−1, un)− p ⟨yn − un, Jpyn−1 − Jpyn⟩
= ϕp(yn−1, un) + p ⟨un − yn, Jpyn−1 − Jpyn⟩
≤ ϕp(yn−1, un) + ∥Jpyn−1 − Jpyn∥∥un − yn∥. (3.25)

Let R > 0 such that ∥x1∥ ≤ R, ∥yn∥ ≤ R for all n ∈ N. Then the estimates below follows from
(3.20),

Jpyn−1 − Jpyn +
1

θn
(Fyn−1 − zn−1 − (Fyn − zn) =

θn−1 − θn
θn

(Jpu1 − Jpyn−1) .

Taking the duality pairing of each side of this equation with respect to yn−1 − yn and using the
generalized Φ-strongly monotonicity property of F , then

⟨Jpyn−1 − Jpyn, yn−1 − yn⟩ ≤
θn−1 − θn

θn
∥Jpu1 − Jpyn−1∥∥yn−1 − yn∥,

which gives,

∥Jpyn−1 − Jpyn∥ ≤
(
θn−1

θn
− 1

)
∥Jpyn−1 − Jpu1∥. (3.26)

Using (3.25) and (3.26), the inequality (3.22) becomes

ϕp(yn, un+1) ≤ (1− λnθn)ϕp(yn−1, un) + C1

(
θn−1

θn
− 1

)
−pλn ⟨un − yn, zn − vn⟩+ pλnψ1(λnM1)M1, (3.27)

for some constant C1 > 0. Similar analysis gives that

ϕp(zn, vn+1) ≤ (1− λnθn)ϕp(zn−1, vn) + C2

(
θn−1

θn
− 1

)
−pλn ⟨vn − zn, un − yn⟩+ pλnψ2(λnM2)M2, (3.28)

for some constant C2 > 0. Since ψ := ψ1 + ψ2, M0 := M1 +M2 and ψ(λnM0) ≤ γ0, adding (3.26)
and (3.28) generates

∧(xn, wn+1) ≤ (1− λnθn) ∧ (xn−1, wn) + C

(
θn−1

θn
− 1

)
+ pλnγ0M0,
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where C := C1+C2 > 0. By Lemma 2.6, ϕ(xn−1, wn) → 0 as n→ ∞ and using Lemma 2.12, we have
that wn − xn−1 → 0 as n→ ∞. Since by Theorem 2.13, xn → w∗ ∈ N(A), we obtain that wn → w∗

as n → ∞. But wn = (un, vn) and w
∗ = (u∗, v∗), this implies that un → u∗ with u∗ the solution of

the Hammerstein equation. □

Corollary 3.6. Let E be a uniformly smooth and uniformly convex real Banach space with the dual
space E∗. Suppose F : E → E∗ and K : E∗ → E are bounded and strongly monotone mappings.
Define {un} and {vn} iteratively for arbitrary u1 ∈ E and v1 ∈ E∗ by

un+1 = Jq (Jpun − λn (Fun − vn + θn(Jpun − Jpu1))) , n ∈ N, (3.29)

vn+1 = Jp
(
J∗
q vn − λn

(
Kvn + un + θn(J

∗
q vn − J∗

q v1)
))
, n ∈ N, (3.30)

where Jp : E → E∗ is the generalized duality mapping with the inverse, Jq : E∗ → E and the real
sequences {λn} and {θn} in (0, 1) are such that,

(i) lim θn = 0 and {θn} is decreasing;

(ii)
∞∑
n=1

λnθn = ∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞∑
n=1

λn <∞.

Suppose that u+KFu = 0 has a solution in E. There exists a real constant γ0 > 0 with ψ(λnM) ≤
γ0, n ∈ N for some constant M > 0. Then, the sequence {un} converges strongly to the solution of
0 = u+KFu.

Proof . Define Φ1(∥u1 − u2∥) := k1∥u1 − u2∥2 and Φ2(∥v1 − v2∥) := k2∥v1 − v2∥2 for some constants
k1, k2 ∈ (0, 1) and let W := E ×E∗ with norm ∥w∥2W := ∥u∥2E + ∥v∥2E∗ ∀ w = (u, v) ∈ W. The result
follows from Theorem 3.5. □

Corollary 3.7. Chidume and Idu [12]. Let E be a uniformly convex and uniformly smooth real
Banach space and F : E → E∗, K : E∗ → E be maximal monotone and bounded maps, respectively.
For (x1, y1), (u1, v1) ∈ E × E∗, define the sequences {un} and {vn} in E and E∗ respectively, by

un+1 = J−1 (Jun − λn(Fun − vn)− λnθn(Jun − Jx1)) , n ∈ N, (3.31)

vn+1 = J
(
J−1vn − λn(Kvn + un)− λnθn(J

−1vn − J−1y1)
)
, n ∈ N, (3.32)

where {λn} and {θn} are real sequences in (0, 1) satisfying the following conditions:

(i)
∞∑
n=1

λnθn = ∞,

(ii) λnM
∗
0 ≤ γ0θn; δ

−1
E (λnM

∗
0 ) ≤ γ0θn,

(iii)
δ−1
E

(
θn−1−θn

θn
K
)

λnθn
→ 0;

δ−1
E∗

(
θn−1−θn

θn
K
)

λnθn
→ 0 as n→ ∞,

(iv) 1
2
θn−1−θn

θn
K ∈ (0, 1),
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for some constants M∗
0 > 0 and γ0 > 0, where δE : (0,∞) → (0,∞) is the modulus of convexity of

E and K := 4RL sup {∥Jx− Jy∥ : ∥x∥ ≤ R, ∥y∥ ≤ R} + 1, x, y ∈ E, R > 0. Assume that the
equation u+KFu = 0 has a solution. Then the sequences {un}∞n=1 and {vn}∞n=1 converge strongly to
u∗ and v∗, respectively, where u∗ is the solution of u+KFu = 0 with v∗ = Fu∗.

Proof . From Lemma 2.8, we see that T : E × E∗ → E∗ × E defined by T (u, v) = (Ju − Fu +
v, J−1v − Kv − u) for all (u, v) ∈ E × E∗ is J-pseudocontractive and A := (J − T ) is maximal
monotone. Therefore, the iterative sequences (3.31) and (3.32) are respectively equivalent to

un+1 = J−1 (Jun − λn (Fun + θn(Jun − Jx1))) , n ∈ N and (3.33)

vn+1 = J
(
J−1vn − λn

(
Kvn + θn(J

−1vn − J−1y1)
))
, n ∈ N, (3.34)

where J : E → E∗ is the normalized duality mapping with the inverse, J−1 : E∗ → E. Hence, the
result follows from Theorem 3.5. □

Remark 3.8. Prototype for our iteration parameters in Theorem 3.5 are, λn = 1
(n+1)a

and θn =
1

(n+1)b
, where 0 < b < a and a < 1.
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[8] H. Brézis and F.E. Browder, Nonlinear integral equations and system of Hammerstein type, Adv. Math. 18,-

(1975) 115–147.
[9] F.E. Browder and C.P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull.

Amer. Math. Soc. 75 (1969) 1347–1353.
[10] R.Sh. Chepanovich, Nonlinear Hammerstein equations and fixed points, Publ. Inst. Math. (Beograd) (N.S.)

35(49) (1984) 119–123.
[11] C. E. Chidume and N. Djitte, Strong convergence theorems for zeros of bounded maximal monotone nonlinear

operators, Abst. Appl. Anal. 2012 (2012) Article ID 681348.
[12] C.E. Chidume and K.O. Idu, Approximation of zeros of bounded maximal monotone mappings, solutions of

Hammerstein integral equations and convex minimization problems, Fixed Point Theory Appl. 2016(97) (2016).
[13] C.E. Chidume, M.O. Nnakwe and A. Adamu, A strong convergence theorem for generalized Φ-strongly monotone

maps with applications, Fixed Point Theory Appl. 2019(11) (2019) 19 pages.
[14] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Pub-

lishers Group, Dordrecht, 1990.
[15] D. G. De Figueiredo and C. P. Gupta, On the variational method for the existence of solutions of nonlinear

equations of Hammerstein type, Proc. Amer. Math. Soc. 40 (1973) 470–476.
[16] N. Djitte, J.T. Mendy and T.M.M. Sow, Computation of zeros of monotone type mappings: on Chidume’s open

problem, J. Aust. Math. Soc. 108 (2) (2020) 278–288.
[17] V. Dolezale, Monotone Operators and Applications in Control and Network Theory, Studies in Automation and

Control, Elsevier Scientific, New York, USA, 2, (1979).



632 Aibinu, Mewomo

[18] A. Hammerstein, Nichtlineare integralgleichungen nebst anwendungen, Acta Math. 54(1) (1930) 117–176.
[19] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in Banach a space, SIAM J.

Optim. 13 (2002) 938–945.
[20] K. Kido, Strong convergence of resolvents of monotone operators in Banach spaces, Proc. Am. Math. Soc. 103(3)

(1988) 755–7588.
[21] B.T. Kien, The normalized duality mappings and two related characteristic properties of a uniformly convex

Banach space, Acta Math. Vietnam. 27(1) (2002) 53–67.
[22] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive type mappings

in Banach spaces, SIAM J. Optim. 19(2) (2008) 824–835.
[23] S.Y. Matsushita and W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings

in Banach spaces, Fixed Point Theory Appl. 2004(1) (2004) 37–47.
[24] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Editura Academiae, Bucharest, Romania,

1978.
[25] W. Takahashi, Convex Analysis and Approximation Fixed Points, Yokohama Publishers, Yokohama, Japanese,

2000.
[26] W. Takahashi, Fixed Point Theory and its Applications: In Nonlinear Functional Analysis, Yokohama Publishers,

2000.
[27] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16(12) (1991) 1127–1138.
[28] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. II 66(1) (2002) 240–256.
[29] Z.B. Xu and G.F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces,

J. Math. Anal. Appl. 157 (1991) 189–210.
[30] S. Yekini, Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces,

Results Math. 74:138, (2019) 24 pages.
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