On new classes of neutrosophic continuous and contra mappings in neutrosophic topological spaces

N. M. Ali Abbas\(^a\), Shuker Mahmood Khalil\(^b\),\(^*\)

\(^a\)Ministry of Education, Directorate General of Education, Baghdad, Al-Kark, 3, Baghdad, Iraq
\(^b\)Department of Mathematics, College of Science, Basrah University, Basrah, Iraq

Abstract
The aim of this paper is to investigate some new types of neutrosophic continuous mappings like, neutrosophic \(\alpha^*\)-continuous mapping \((N\alpha^* - CM)\), neutrosophic irresolute \(\alpha^*\)-continuous mapping \((NI\alpha^* - CM)\), and neutrosophic strongly \(\alpha^*\)-continuous mapping \((NS\alpha^* - CM)\) are given and some of their properties are studied. Moreover, new kind of neutrosophic contra continuous mappings is investigated in this work, it is called neutrosophic contra \(\alpha^*\)-continuous mapping \((NC\alpha^* - CM)\).

Keywords: neutrosophic sets, neutrosophic topological space, neutrosophic \(\alpha\)-open sets, neutrosophic \(\alpha^*\)-open set.

1. Introduction
In 1998, the connotation of Contra continuity is investigated by Dontchev \([6]\). Also, the connotation of \(\alpha^*\)-open set \((\alpha^* - OS)\) is shown \([7]\). The idea of neutrosophic sets is presented by Smarandache \([35]\), in 2014, the connotations of “neutrosophic closed set “and” neutrosophic continuous function” are given.

The neutrosophic set is studied in topology, algebra and other fields. It is one of the non-classical sets, such as soft set, fuzzy sets, nano set, permutation sets and so on, see \([1, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36]\). In this research, we introduce a new types of neutrosophic mappings, they are said neutrosophic \(\alpha^*\)-continuous and neutrosophic contra \(\alpha^*\)-continuous mappings. Next, we studied and discussed their basic properties.

2. Preliminaries
Here basic definitions and notations, which are used in this section are referred from the references \([2, 5, 9, 32, 34]\).

\(^*\)Corresponding author

Email addresses: mali.nadia@yahoo.com (N. M. Ali Abbas), shuker.alsalem@gmail.com (Shuker Mahmood Khalil)

Received: September 2020 Revised: February 2021
Definition 2.1. Assume that $\Psi \neq \emptyset$. A neutrosophic set (NS) θ is defined as

$$\theta = \langle \alpha, \partial_\omega(\alpha), \omega_\theta(\alpha), \ell_\theta(\alpha) : \alpha \in \Psi \rangle,$$

where $\partial_\omega(\alpha)$ is the degree of membership, $\omega_\theta(\alpha)$ is the degree of indeterminacy and $\ell_\theta(\alpha)$ is the degree of nonmembership, for all $\alpha \in \Psi$.

Definition 2.2. We say (Ψ, τ) is a neutrosophic topological space (NTS) if and only if τ is a collection of (NSs) in Ψ and it such that:

1. $1_N, 0_N \in \tau$, where $0_N = \{\langle \alpha, (0, 1, 1) \rangle : \alpha \in \Psi\}$ and $1_N = \{\langle \alpha, (1, 0, 0) \rangle : \alpha \in \Psi\}$,
2. $A \cap \beta \in \tau$ for any $\theta, \beta \in \tau$,
3. $\bigcup_{i \in I} A_i \in \tau$ for any arbitrary family $\{A_i \mid i \in I\} \subseteq \tau$.

Moreover, any $A \in \tau$ is called neutrosophic open set (NOS) and we say neutrosophic closed set (NCS) for its complement.

Definition 2.3. Assume A is a neutrosophic set in (NTS) X.

(i) The neutrosophic closure (resp., neutrosophic α-closure) of A is the intersection of all neutrosophic closed (resp., neutrosophic α-closed) sets containing A and is denoted by $\text{Ncl}(A)$ (resp., $\text{Ncl}_\alpha(A)$).

(ii) The neutrosophic interior (resp., neutrosophic α-interior) of A is the union of all neutrosophic open (resp., neutrosophic α-open) sets contained in A and is denoted by $\text{Nint}(A)$ (resp., $\text{Nint}_\alpha(A)$), where A is neutrosophic α-open set ($N\alpha - O\alpha$) (resp., neutrosophic semi α-open set ($NSe\alpha - OS\alpha$), neutrosophic α^*-open set ($N\alpha^* - OS\alpha$) if $A \subseteq \text{Nint}(\text{Ncl}(\text{Nint}(A)))$ (resp., $A \subseteq \text{Ncl}(\text{Nint}(\text{Ncl}(\text{Nint}(A))))$ or equivalently $A \subseteq \text{Ncl}(\text{Nint}(A)), A \subseteq \text{Nint}_\alpha(\text{Ncl}(\text{Nint}_\alpha(A)))$.

The symbols of the above neutrosophic sets and their complements are referred as $N\alpha - O(X)$ (resp., $NSe\alpha - O(X), N\alpha^* - O(X)$), $N\alpha - C(X)$ (resp., $SNe\alpha - C(X), N\alpha^* - C(X)$).

Proposition 2.4. (1) If A is ($N\alpha^* - OS\alpha$) and B is (NOS), then $A \cap B$ is ($N\alpha^* - OS\alpha$).

(2) If $\{G_\lambda\}_{\lambda \in \Gamma}$ is a collection of ($N\alpha^* - OS\alpha$s), then their union is also ($N\alpha^* - OS\alpha$s).

Theorem 2.5. Assume that X_1 and X_2 are two neutrosophic topological spaces (NTSs), $A_1 \subseteq X_1$ and $A_2 \subseteq X_1$. Then A_1 and A_2 are ($N\alpha^* - OS\alpha$s) (resp., ($N\alpha^* - CS\alpha$s)) in X_1 and X_2, respectively if and only if $A_1 \times A_2$ is ($N\alpha^* - OS\alpha$) (resp., ($N\alpha^* - CS\alpha$s)) in $X_1 \times X_2$.

Theorem 2.6. Assume that W is a subspace of Z satisfies $G \subseteq W \subseteq Z$. The following assertions hold.

(i) If $G \in N\alpha^* - O(Z)$, then $G \in N\alpha^* - O(W)$.

(ii) If $G \in N\alpha^* - O(W)$, then $G \in N\alpha^* - O(Z)$, where W is a neutrosophic closed subspace of Z.

Proposition 2.7. (1) Every (NOS) (resp., $N\alpha$-open, Ncl-open) set is ($N\alpha^* - OS\alpha$).
(2) Every \((N\alpha^* - OS)\) is \((NS\alpha - OS)\).

Definition 2.8. A (NTS) \(X\) is called a

(i) neutrosophic ultra-\(T_2\) (\(N-ultra-T_2\)) if for any \(t \neq h \in Z\), there are two disjoint neutrosophic closed sets (NDCSs) \(T, H\) satisfy \(t \in T, h \in H\).

(ii) neutrosophic ultra normal, if for all neutrosophic closed sets (NCSs) \(T, F\) with \(T \neq \emptyset \neq F\) and \(T \cap F = \emptyset\), there are two (NCSs) \(D, H\) with \(D \cap H = \emptyset\) and \(T \subseteq D, F \subseteq H\).

(iii) If \(h\) is (NOS) in \(W\).

Thus by Theorem 2.6, \((h|_G)^{-1}(B) \cap G\) is \((N\alpha^* - OS)\) in \(W_1\).

Theorem 3.3. Assume that \(W_1\) and \(W_2\) are NTSs and \(h : W_1 \to W_2\) is any map from \(W_1\) into \(W_2\).

(1) Every \((N\alpha^* - CM)\) is \((NI\alpha^* - CM)\).

(2) Every \((NI\alpha^* - CM)\) is \((NS\alpha^* - CM)\).

Proof. It follows from Proposition 2.7. \(\square\)

Theorem 3.4. Suppose that \(h : W_1 \to W_2\) is any mapping and \(W_1 = T \cup H\), where \(T, H\) are disjoint neutrosophic sets in \(W_1\). Then,
(i) h is $(\text{N} \alpha^* - \text{CM})$ if and only if $h|_T$ and $h|_H$ are also, where T and H are neutrosophic open sets.

(ii) h is $(\text{NI} \alpha^* - \text{CM})$ if and only if $h|_T$ and $h|_H$ are also, where T and H are neutrosophic open sets.

(iii) h is $(\text{NS} \alpha^* - \text{CM})$ if and only if $h|_T$ and $h|_H$ are also, where T, H are neutrosophic α^*-open sets.

Proof. (i) Suppose that G is (NOS) in W_2, since $h|_T$ and $h|_H$ are $(\text{N} \alpha^* - \text{CM})$, $(h|_T)^{-1}(G)$ and $(h|_H)^{-1}(G)$ are $(\text{N} \alpha^* - \text{OS})$ in W_1. So, their union is also, see Proposition 2.4. However, $h^{-1}(G) = (h|_T)^{-1}(G) \cup (h|_H)^{-1}(G)$ and hence $h^{-1}(G)$ is $(\text{N} \alpha^* - \text{OS})$ in W_1. Thus h is $(\text{N} \alpha^* - \text{CM})$. Sufficiency, follows by using Theorem 3.3. The proofs of (i) and (iii) are the same way of proof (i).

□

Theorem 3.5. Suppose $h : W_1 \to W_2$ is any mapping and $h_T : h^{-1}(T) \to T$ is defined as $h_T(t) = h(t)$, for any neutrosophic set T in W_2 and $t \in h^{-1}(T)$.

(i) If h is $(\text{N} \alpha^* - \text{CM})$, then h_T is also, where T is (NOS) in W_2.

(ii) If h is $(\text{NI} \alpha^* - \text{CM})$ (resp., $(\text{NS} \alpha^* - \text{CM})$), then h_T is also, where T is neutrosophic closed set (NCS) in W_2.

Proof. We shall prove the second case. The first case is similar to (ii). Suppose that B is $(\text{N} \alpha^* - \text{OS})$ in T. Since T is (NCS) in W_2, B is $(\text{N} \alpha^* - \text{OS})$ in W_2, see Theorem 2.6(ii). Also, since h is $(\text{NI} \alpha^* - \text{CM})$ (resp., $(\text{NS} \alpha^* - \text{CM})$), $h^{-1}(B)$ is $(\text{N} \alpha^* - \text{OS})$ (resp., (NOS)) in W_1. Therefore, $h^{-1}(B)$ is $(\text{N} \alpha^* - \text{OS})$ (resp., (NOS)) in $h^{-1}(T)$, see Theorem 2.6(i). □

Theorem 3.6. Suppose X_1, X_2, X_3 are three (NTSs) $L : X_1 \to X_2$ and $X_2 \subseteq X_3$. If $L : X_1 \to X_2$ is $(\text{N} \alpha^* - \text{CM})$ (resp., $(\text{NI} \alpha^* - \text{CM})$, $(\text{NS} \alpha^* - \text{CM})$), then $L : X_1 \to X_3$ is also.

Proof. Assume that A is(NOS) (resp., $(\text{N} \alpha^* - \text{OS})$) in X_3, then A is (NOS) (resp., $(\text{N} \alpha^* - \text{OS})$ in X_2, see Theorem 2.6(i) and hence $L^{-1}(A)$ is a neutrosophic α^*-open set $(\text{N} \alpha^* - \text{OS}, \text{neutrosophic open})$ in X_1. Now, we recall that the set $\{(x, L(x)), x \in X\} \subseteq X \times Y$ is called the neutrosophic graph of the mapping $L : X \to Y$ and is denoted by $\text{NG}(L)$. □

Theorem 3.7. Suppose that W_1 and W_2 are two (NTSs), $h : W_1 \to W_2$ is any mapping and $L : W_1 \to W_1 \times W_2$ is a neutrosophic graph mapping of h defined by $L(t) = (t, h(t))$, for all $t \in W_1$. If L is $(\text{N} \alpha^* - \text{CM})$ (resp., $(\text{NI} \alpha^* - \text{CM})$, $(\text{NS} \alpha^* - \text{CM})$), then h is also.

Proof. Assume that K is (NOS) (resp., $(\text{N} \alpha^* - \text{OS})$) in W_2. Since W_1 is (NOS) (resp., $(\text{N} \alpha^* - \text{OS})$) in any NTS, $W_1 \times K$ is (NOS) (resp., $(\text{N} \alpha^* - \text{OS})$) in $W_1 \times W_2$, see Theorem 2.5. Therefore, $L^{-1}(W_1 \times K) = h^{-1}(K)$ is a neutrosophic α^*-open (resp., $(\text{N} \alpha^* - \text{OS})$, (NOS)) in W_1. Hence, the proof is complete. □

4. Neutrosophic contra α^*-continuity:

In this section, we define a new type of neutrosophic α^*-continuity that we call it a neutrosophic contra α^*-continuous mapping $(\text{NC} \alpha^*\text{-CM})$ and several propositions related to this new notion are investigated.
Definition 4.1. Assume that \(W_1 \) and \(W_2 \) are two (NTSs) and \(h : W_1 \to W_2 \) is a mapping, then \(h \) is called a neutrosophic contra \(\alpha^* \)-continuous mapping (NC\(\alpha^* \)-CM). If \(h^{-1}(K) \) is (\(\alpha^* \)-CS) in \(W_1 \), for any (NOS) \(K \) in \(W_2 \).

Theorem 4.2. Let \(h : W_1 \to W_2 \) be a mapping. The following statements are equivalent:

(i) \(h \) is (NC\(\alpha^* \)-CM),

(ii) for each \(t \in W_1 \) and each (NCS) \(K \) in \(W_2 \) containing \(h(t) \), there exists (\(\alpha^* \)-OS) \(B \) in \(W_1 \), such that \(B, h(B) \subseteq K \),

(iii) for every (NCS) \(K \) of \(W_2 \), \(h^{-1}(K) \) is (\(\alpha^* \)-OS) of \(W_1 \).

Proof. (i) \(\to \) (ii) Assume that \(\in W_1 \) and \(K \) is any (NCS) in \(W_2 \), then \(K^c \) is (NOS) in \(W_2 \). Thus \(h^{-1}(K^c) \) is (\(\alpha^* \)-CS) in \(W_1 \), but \(h^{-1}(K^c) = [h^{-1}(K)]^c \). Hence \(h^{-1}(K) \) is (\(\alpha^* \)-OS) in \(W_1 \), and \(t \in h^{-1}(K) \). Put \(B = h^{-1}(K) \), thus \(h(B) \subseteq K \).

(ii) \(\to \) (iii) Assume that \(K \) is a neutrosophic closed set in \(W_2 \) and \(t \in h^{-1}(K) \), then \(h(t) \in K \) and hence there exists (\(\alpha^* \)-OS) \(B \) containing \(t, h(B) \subseteq K \), thus \(t \in B = h^{-1}(K) \). So \(h^{-1}(K) = \bigcup \{B_t \mid t \in h^{-1}(K)\} \). Hence by Proposition 2.4, (1), we get \(h^{-1}(K) \) is (\(\alpha^* \)-OS) in \(W_1 \).

(iii) \(\to \) (i) Obviously holds. \(\square \)

Theorem 4.3. The restriction \(L_A \) of (NC\(\alpha^* \)-CM) \(L : X \to Y \) to (\(\alpha^* \)-CS) \(A \subseteq X \) is also (NC\(\alpha^* \)-CM).

Proof. Assume that \(B \) is (NOS) in \(Y \), thus \(L^{-1}(B) \) is (\(\alpha^* \)-CS) in \(X \). Since \(A \) is (\(\alpha^* \)-CS) in \(X \), \(L^{-1}(B) \cap A \) is also (\(\alpha^* \)-CS) in \(X \) and hence it is also (\(\alpha^* \)-CS) in \(A \), see Theorem 2.6(i), but \((L|_A)^{-1}(B) = L^{-1}(B) \cap A \), hence the proof is complete. \(\square \)

Theorem 4.4. If \(L : X \to Y \) is (NC\(\alpha^* \)-CM), then \(L_A : L^{-1}(A) \to A \) is also, where \(A \) is (NCS) in \(Y \).

Proof. Assume that \(B \) is (NCS) in \(A \). Since \(A \) is (NCS) in \(Y \), \(B \) is (NCS) in \(Y \). Then \(L^{-1}(B) \) is (\(\alpha^* \)-OS) in \(X \). Since \(L^{-1}(B) \subseteq L^{-1}(A) \subseteq X \), \(L^{-1}(B) \) is (\(\alpha^* \)-OS) in \(L^{-1}(A) \), see Theorem 2.6(i). \(\square \)

Theorem 4.5. Assume that \(X \) and \(Y \) are two (NTSs), \(L : X \to Y \) is a mapping and \(X = A \cup B \), where \(A, B \) are disjoint (\(\alpha^* \)-CSs) in \(X \). Then \(L|_A \) and \(L|_B \) are (NC\(\alpha^* \)-CMs) if and only if \(L \) is (NC\(\alpha^* \)-CM).

Proof. Necessity follows by using Theorem 4.3. Assume that \(G \) is (NCS) in \(Y \). Since \(L|_A \) and \(L|_B \) are (NC\(\alpha^* \)-CMs), \((L|_A)^{-1}(G) \) and \((L|_B)^{-1}(G) \) are (\(\alpha^* \)-OS) in \(X \). So, their union is also, see Proposition 2.4. But \(L^{-1}(G) = (L|_A)^{-1}(G) \cup (L|_B)^{-1}(G) \) and hence the proof is complete. \(\square \)

Definition 4.6. An (NTS) \(W \) is called:

(i) an \(N - \alpha^* \)-T2 space (resp., \(N \)-ultra-\(\alpha^* \)-T2) space if, for each \(t \neq d \in W \), there exist two disjoint (\(\alpha^* \)-OSs) (resp., (\(\alpha^* \)-CSs)) \(T, D \) satisfy \(t \in T, d \in D \).

(ii) an \(N - \alpha^* \)-ultra normal space if for each pair nonempty (NDCSs) can be separated by disjoint \(N \)-clopen).
• (iii) a neutrosophic α^*-compact space (Na^C-space) if for each Na^*-open cover of W has a finite subcover.

Theorem 4.7. Suppose that $h : W_1 \to W_2$ is injective ($NC\alpha^* - CM$) and W_2 is $N - T_2-$ space. Then W_1 is N-α^*-$\cdot T_2$ space.

Proof. Assume that $t \neq d \in W_1$. Since h is injective, $h(t) \neq h(d)$ in W_2 and since W_2 is $N - T_2-$ space, there exist two (NDOSs) T,D satisfy $h(t) \in T, h(d) \in D$. Since h is ($NC\alpha^* - CM$), $h^{-1}(T),h^{-1}(D)$ are ($Na^* - CS$) in W_1 containing t,d and $h^{-1}(T) \cap h^{-1}(D) = \emptyset = h^{-1}(T \cap D)$. Hence W_1 is N-α^*-$\cdot T_2$ space. \hfill \square

Theorem 4.8. Suppose that $L : X \to Y$ is injective ($NC\alpha^* - CM$) and Y is an N-α^* T_2-space. Then X is an $N - \alpha^*$ T_2 space.

Proof. Take $x \neq y$ in X. Since L is injective, $f(x) \neq f(y)$ in Y. Since Y is an N-α^* T_2- space, there exist two (NDCSs) A,B satisfy $L(x) \in A, L(y) \in B$. Moreover, from L is ($NC\alpha^* - CM$), we have $L^{-1}(A), L^{-1}(B)$ are ($Na^* - OSs$) in X containing x,y and $L^{-1}(A) \cap L^{-1}(B) = \emptyset$. Then X is an $N - \alpha^*$-T_2 space. \hfill \square

Theorem 4.9. Suppose that $h : W_1 \to W_2$ is a neutrosophic closed injective ($NC\alpha^* - CM$) and W_2 is a neutrosophic ultra normal space. Then W_1 is $N - \alpha^*$ - is an ultra normal space.

Proof. Assume that A_1, A_2 are two (NCSs) in W_1 with $A_1 \cap A_2 = \emptyset$. Since h is a neutrosophic closed mapping, $h(A_1), h(A_2)$ are (NCSs) in W_2. Since, W_2 is a neutrosophic ultra normal space, there exist two disjoint neutrosophic clopen sets B_1, B_2 in W_2 satisfy $h(A_1) \subseteq B_1, h(A_2) \subseteq B_2$. Hence $A_1 \subseteq h^{-1}(B_1), A_2 \subseteq h^{-1}(B_2)$. From injectivity of h, we get $h^{-1}(B_1), h^{-1}(B_2)$ are disjoint neutrosophic α^*-clopen sets. Thus W_1 is a neutrosophic α^*-ultra normal space. \hfill \square

Theorem 4.10. Suppose that $h : W_1 \to W_2$ is a neutrosophic closed surjective ($NC\alpha^* - CM$) and W_1 is (Na^*C- space). Then W_2 is a neutrosophic strongly closed space.

Proof. Assume that $\{V_i : i \in I\}$ is any neutrosophic closed cover of W_2. Since h is ($NC\alpha^* - CM$), $h^{-1}(V_i) : i \in I\}$ is a neutrosophic α^*-open cover of W_1, but W_1 is (Na^*C- space), thus W_1 has finite subcover. This means that $W_1 = \bigcup_{i=1}^{n} h^{-1}(V_i)$, where $I_0 = \{1,\ldots,n\}$. Since h is neutrosophic surjective, we have

$$h(W_1) = h \left(\bigcup_{j=1}^{n} h^{-1}(V_i) \right) = \bigcup_{j=1}^{n} hh^{-1}(V_i).$$

Hence, $W_2 = \bigcup_{i \in I_0} V_i$. Thus W_2 is a neutrosophic strongly closed space. \hfill \square

References

[29] S. M. Khalil and A. Rajah, Solving the class equation $x^d = \beta$ in an alternating group for each $\beta \in H \cap C^\alpha$ and $n \notin \theta$, J. Assoc. Arab Univer. Basic and Appl. Sci. 10 (2011), 42-50.

[30] S. M. Khalil and A. Rajah, Solving class equation $x^d = \beta$ in an alternating group for all $n \in \theta \& \beta \in H_n \cap C^\alpha$, J. Assoc. Arab Univer. Basic and Appl. Sci. 16 (2014), 38-45.

