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Abstract

In this work, some new connotations of continuous mappings such as a* - continuous mapping
(o — C'M) , irresolute a*— mapping (Ia* — CM) , and strongly a*— continuous mapping (Sa* — C'M)
are studied and some of their characteristics are discussed. In other side, new some classes of contra
continuous mappings are investigated in this work, they are called contra a* - continuous mappings
(Ca* — CMs). Finally they are studied in soft setting.
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1. Introduction

In general the concept of mappings is so useful notion in topology and mathematic. In this
work, we study a new classes of mapping that are called a*— continuous and contra a*— continuous
mappings; the connotation of the a— open set (o« — OS) was first introduced by O. Njasted in 1965
[1], where the homely of all (&« — OSs) in (X, 7) is also topology on X and it is finer than 7[2|. G.
Navalagi defined the connotation of semi a— open sets (Sea — OSs)([3],[4]). The connotation of
a*— open set (a* —OS) was first shown in 2019 by Nadia M. Ali and Shuker M. Khalil for more
details see [5] the concept is an extension of (aw — OS), it is robustly weaker than (a« — OSs) and
bigger than (Sear — OSs). The notion of Contra continuity is given in 1998 by Dontchev [6]. The
mathematical idea of these notions were studied in non-classical sets, where some types of sets and
maps can be extended in non-classical sets like fuzzy sets, nano set, permutation sets and so on and

*Corresponding author

Received: September 2020  Rewvised: March 2021


http://www.ijnaa.semnan.ac.ir

1108 Abbas, Hamza, Khalil

applied in topology and algebra see ([7]-[32]). In this research attempt has been considered to apply
the concept of (a* — OSs) to consider some kinds of (a* — C'Ms) like; (Ia* — CMs), (Sa* — CMs)
and (Ca* — C'Ms). The interior (resp., closure, « - interior, « - closure) of a subset A of a topological

space (TS) will be referred as int(A) (resp., a int (A), cl(A), acl(A4)).

2. Preliminaries
Here, some definitions and characteristics of (a* — OS) which we need in our work are recalled.

Definition 2.1. ([1],[3],[5]) Let A be a set in (TS) X. We say A is a -open set (a — OS) (re-
sp., semi a— open set (Sea — OS),a*— open set (a* —0S)) if A C int(cl(int(A)))( resp., A C
cl(mt(clint(A)))) or equivalently A C cl(int(A)), A C int, (¢l (int,(A)))) . Also, their complement are
called a— closed set (a—C'S) (resp., semi a— closed set (Sea—CS),a*— closed set (o — CS)). The

symbol of above sets and their complement are referred as a—O(X) (resp., Sea — O(X),a* — O(X)),
C(X) (resp., sea — C(X),a* — C(X)).

Proposition 2.2. [5] (1) Every (OS) (resp., a— open, clopen ) set is (a* — OS), (2) Every (a* — OS)
is (sea — OS).

o—

Proposition 2.3. [5] (1) If {G\},cr is a collection of (o — OSs) , then their union is also (a* — OS's),

(2) If A is (a* — OS) and B is (0S), then AN B is (a* — OS).

Proposition 2.4. [5| Let X; and X5 be two topological spaces (TSs), Ay C Xy and Ay C Xy. Then
Ay and As are (a* — OSs) (resp ., (a* — CSs)) in Xy and X, respectively if and only if Ay x Ay is
(a* — O8) (resp., (a* — CS)) in X1 x Xs.

Theorem 2.5. Assume W is a subspace of Z satisfy G CW C Z. Then; (i) if G € a* —O(Z), then
Gear—0OW) (i) if G € a* — O(W), then G € o* — O(Z), where W is a closed subspace of Z.

Definition 2.6. ([34]) A (TS) X s called: (i) Ultra =Ty if for any t # h € Z, there exist two
disjoint closed sets (DCSs) T, H satisfy t € T,h € H (ii) Ultra Normal if for each T, F closed sets
(CSs) with T # ¢ # F and TNF = ¢. Then, 3D, H two (CSs) with DNH = ¢ andT C D, F C H,
(#ii) Strongly closed if for any homely of (CSs) that form a cover of x has a finite sub-homely that
form a cover of X too.

Definition 2.7. ([36]) Assume ([, A) is soft subset in soft topological space (STS) (¥, E, (). We
say (f, A) is a soft a— open set(Sa — 0OS) if (f, A) =~ int® (cls (intS (f, A))) and its complement
is called soft a— closed set (Sae — C'S). The intersection of all soft closed sets (SCSs) [res. (Sa-
CSs)] which containing ([, A) is called soft closure [resp., soft a— closure ] of ([, A) and referred
as cl® ([, A) (cl5 ([, A)). Moreover, the union of all soft open sets (SOSs) [ resp., (Sa — OSs)] is
contained in (f, A) is called soft interior [res. soft o -interior] of (f, A) and referred as int ° (f, A)

(int o (f,A))

Definition 2.8. ([35]) Assume (U, E) and (V', E') are two soft spaces and uw: ¥V — V' p: E — E'
are two maps. We say L : (V, E) — (V', E') is a soft mapping (SM) and recognized as:, (L (f, A) ,B)
in (U, E") whenever ([, A)in(V,E),B = P(A) C K and L ([,A) (w) =t (Usgp-1()na [()), for
we K (L (f,A) ,K) 15 referred as (L (f,A), when B = K.
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Definition 2.9. ([33]) Let (U, E, () be a (STS) has soft subset ([, A). Then ([,A) is said to be
a soft a*— open set (Sa*— OS) if (f, A) Cint? (cl® (int3 (I, A)) and its complement is called soft o
-closed set (Sa* — C9).

Definition 2.10. ([33]) Let(V, £, ¢) and (V', E', (') be (STSs) and L : (¥, E) — (V', E’) be a (SM),
then L is said to be a soft contra o*— continuous mapping (SCa* — C M), if for each (f, A) e, Lt ((f, A))
is (Sa*— CS)in(V¥, E,?)

3. Some New Classes of a*— Continuity

Some new classes of a*— continuity such as; irresolute a*— continuous mapping (Ia* — CM),
stronger o*— continuhgous mapping (Sa* — C'M) and contra a* - continuous mapping (Ca* — CM)
in this section are investigated. Also, their relationships among them are given.

Definition 3.1. Assume Wy and Wy are (TSs) and h : Wy — Ws is any map from Wy into Wy. We
say h is a*— continuous mapping (a* —CM) (resp., irresolute o - continuous mapping (Ia* —CM),
stronger o*— continuous mapping (Sa* —CM) ) mapping if each G(OS) (resp.,a* —OS) in Wy, then
h~Y(G) is a* — OS( resp. ,(0S)) in Wy

Lemma 3.2. (1) Every (a* — CM) is (Ia* — CM) ,(2) Every (Ia* — CM) is (Sa* — CM).
Proof . It follows from [Proposition (2.2)]. O

Theorem 3.3. Assume Wy and Wy are (TSs) and h : Wy — Ws. Then, (i) If h is (a* — CM),
then h|g : G — Wy is (i) If h is (Ia* — CM), then h|, : G — Ws is also, where G is (OS) also,
where G is (0S) of Wi, of Wi, (iii) If h is (Sa* — CM), then h|, : G — Wy is also, where G is
(a* — OS) of W.

Proof . (i) Assume B is an (OS) in Wy, since h is (a* — CM), then h='(B) is (a* — OS) in Wy,
since G is (OS) in ;. Hence, by Proposition (2.3) we have h™'(B) N G is (a* — OS) in Wy, but
(hlg) " (B) = h(B) N G, thus by Theorem (2.5)(h|,)”" (B) is a*— open in G.

(ii) and (iii) are snmlar to (i). O

Theorem 3.4. Suppose h : Wy — Wy is any mapping and Wy = T U H, where T, H are disjoint
sets in Wy. Then, (i) h is (o — CM) iff hl; and h|, are also, where T, H are open sets, (ii) h is
(Ia* — CM) iff h|; and h|, are also, where T, H are open sets, (iii) h is (Sa* — CM) iff h|; and
h|y are also, where T, H are a*— open sets.

Proof . (i) Necessity: Suppose that G is (OS) in W, since h|, and h|, are (a* — CM), then
(hl;) " (G) and (h|,)~" (G ) are (a* —0S) in W;. So, their union is also, see Proposition (2.3)
However, h™'(G) = (h|,)"" (G) U (hl,)~" (G) and hence h~'(G) is (a* — OS) in Wi. Thus h is
(a* — CM). Sufficiency: Follows by using Theorem (3.3). The proofs of (i) and (iii) are the same
way of proof (i). O

Theorem 3.5. Suppose h : Wi — Wy is any mapping and hy : h™(T) — T is defined as hr(t) =
h(t), for any set T in Wy and t € h™*(T). Then, (i) If h is («* — CM), then hy is also, where T
is (0S) in Wy, (ii) If h is (Ia* — CM) (resp., (Sa* — CM)), then hr is also, where T is closed set
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Proof . We shall prove the second case. The first case is similar to (ii). Suppose that B is (a* — OS)
in T, since T' is (CS) in Ws, then B is (a* — OS) in W, see Theorem (2.5-(ii)). Also, since h is
(Ia* — CM) (resp., (Sa* — CM)), then h™1(B) is (a* — OS) (resp., (OS)) in W;. Therefore, h~'(B)
is (a* — OS8) (resp., (0S)) in h=1(T), see Theorem (2.5-(i)). O

Theorem 3.6. Suppose Xy, Xy, X3 are three (TSs) L : X1 — X5 and Xo C X3. If L : X1 — X5 is
(a* = CM) (resp. (Ia* —CM),(Sa* —CM)), then L : Xy — X3 is also.

Proof . Assume A is (OS) (resp (a* — 08))in X3, then A is (OS) (resp., (a* — OS)) in Xs, see
Theorem (2.5 — (i)) and hence L™(A) is a*— open set (resp., (a* — 0S8, open)) in X;. Now, we recall
that the set {(z,L(x)),z € X} € X x Y is called the graph of the mapping L : X — Y and is
denoted by G(L). O

Theorem 3.7. Suppose Wy and Wy are two (TSs), h : Wi — Wy is any mapping and L : Wy —
Wy x Wy be a graph mapping of h defined by L(t) = (t,h(t)),¥t € Wy. If L is (a* — CM)( resp.
,(Ia* = CM), (Sa* —. CM ) ), then h is also.

Proof . Assume that K is (OS) (resp., (a* — OS)) in Wy, since W is (OS) (resp., (a* — 0S)) in
any (TS). Hence, W; x K is (OS) (resp., (a* — OS) ) in Wy x Wy, see Theorem (2.4). Therefore,
LYWy x K) = h™}(K) is a*— open (resp., (a* — OS), (08S)) in W;. Hence, the proof is complete.
0

4. Contra o*— continuity

New class of a* - continuity is called contra a*— continuous mapping (Ca* — CM). and some
theorems are shown in this section.

Definition 4.1. Assume Wy and Wy are two (TSs) and h : Wy — Wy is a mapping, then h is
called contra o* - continuous mapping (Ca* — CM). If hY(K) is (a* — CS) in Wy, for any (OS)K
m WQ.

Theorem 4.2. The following statements are equivalent, if h : W1 — W is a mapping:

(i) h is (Ca* — CM)

(i1) for each t € Wy and each (CS) K in Wy containing h(t), there exists (o — OS) B in Wi, such
that t € B, h(B) C K,

(iii) for every (CS)K of Wy, then h™*(K) is (a* — OS) of Wj.

Proof . (i) — (ii): Assumet € Wi, and K is any (CS) in Ws, then K¢ is (OS) in Wy, thus h™! (

is (a* — CS) in Wy, but h™! (K¢) = [h71(K)], hence h™1(K) is (a* — OS) in Wy, and t € h™}(K).
Put B = h~}(K), thus h(B) C K. (ii) — (iii): Assume that K is a closed set in Wy and t € h™1(K),
then h(t) € K and hence there exists (a* — OS) B containing ¢, h(B) C K, thus t € B = h™(K).
So h™Y{(K) =U{B; |t € h}(K)}. Hence by Theorem (2.3 — (1)) we get h~'(K) is (a* — OS) in Wj.
(iii) — (i): Obvious. O

Ke)

Theorem 4.3. The restriction Ly of (Ca*—CM)L : X — Y to (¥ —CS)A C X is also
(Ca*—CM).

Proof . Assume B is (OS) in Y, thus L™(B) is (a* — CS)in X, since A is (o* — CS) in X. Then
L7Y(B)N Ais also (a* — CS) inXand hence it is also (a* — CS) in A, see [Theorem (2.5-(i))], but
(L|,)~" (B) = L7Y(B) N A hence the proof is complete. [



On a*— Continuous and Contra o*— Continuous Mappings in Topological Spaces with Soft
Setting 12 (2021) No. 1, 1107-1113 1111

Theorem 4.4. If L: X — Y is (Ca* —CM), then Ly : LY(A) — A is also, where A is (CS) in
Y.

Proof . Assume B is (CS) in A, since A is (CS) in Y, thus B is (CS) in Y, then L™!(B) is (a* — OS)
in X, since L™Y(B) C L™*(A) C X, then L7!(B) is (a* — OS) in L7'(A), see [ Theorem (2.5 — (1))].
U

Theorem 4.5. Assume X and Y are two (TSs), L : X — Y is a mapping and X = AU B, where
A, B are disjoint (o*— CSs) in X. Then L|, and L|z are (Ca* — CMs) iff L is (Ca* — CM)

3). Sufﬁc1ency Assume that G is (CS) in Y, since
) and (L|;) " (G) are (a —0S) in X. So, their

(L|A) IB( G)U (L|g )"'(G) and hence the proof

Proof . Necessity: Follows by using Theorem (4
L|, and L|, are (Ca* — CMs), thus (L|,)"" (G
union is also, see [Proposition (2.3)]. But L™(G)
is complete. [J

Definition 4.6. A (TS) W is called: (i) o*Ty (resp., Ultra- «Ty ) space if for eacht # d € W, there
(ii) o*— Ultra Normal ezist two disjoint (a* — OSs) (resp., (a* —CSs))T, D satisfyt € T,d € D
space if for each pair nonempty (DCSs) can be separated by disjoint (a*— clopen ), (iii) a*— Compact
space (a*C'— space ) if for each a*— open cover of W has a finite subcover.

Theorem 4.7. Suppose h : Wi — Wy is injective (Ca* — CM) and Wy is To— space. Then Wy is
Ultra — T space.

Proof . Assumet # d € W1, since h is injective, then h(t) # h(d) in Wy, since Wy is To— space, then
there exist two (DOSs) T, D satisfy h(t) € T, h(d) € D. Sinceh is (Ca* — CM), then h='(T), h~1(D)
are (o* — C'S) in W containing t,d and h™"(T)Nh™ (D) = ¢ = h~Y(T N D).

Hence W is Ultra- o1 space. [J

Theorem 4.8. Suppose L : X — Y is injective (Ca* — CM) and Y is Ultra To— space. Then X is
a*Ty space.

Proof . Take z # yin X, since L is injective, then f(x) # f(y) in Y, since Y is Ultra Th— space,
then there exist two (DCSs) A, B satisfy L(z) € A, L(y) € B. Slnce L is (Ca*—CM), then
L7Y(A), L7Y(B) are (a* — OSs) in X containing x,y and L=Y(A)NL™Y(B) = ;Y(ANB) = L™} (p) =
. Then X is ,+T5 space. [

Theorem 4.9. Suppose h : Wi — Wy is closed injective (Ca* — CM) and Wy is Ultra Normal
space. Then Wy is a* -Ultra Normal space.

Proof . Assume A, Ay are two (CSs) in Wy with A; N Ay = ¢, since h is closed mapping, then
h (A1), h(A2) are (CSs) in Wy, since Wy is Ultra Normal space, then there exist two disjoint clopen
sets By, By in Wy satisfy h (A1) C By, h(As) C By. Hence Ay C h™' (By), Ay C h™1(By). Since h is
injective (Ca* — CM), then h™! (By),h™! (By) are disjoint a*— clopen sets. Thus W is a* -Ultra
Normal space. [J

Theorem 4.10. Supposeh: Wy — Wy is closed surjective (Ca* — CM) and Wy is (a*C— space )
Then Wy is strongly closed space.
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Proof . Assume {V; | i € I} is any closed cover of W5, since h is (Ca* — CM) , then {h™' (V;) |i € I
}Hs a* -open cover of Wi, but Wy is (a* C- space) , thus W; has finite subcover. That means
Wi =Ujer At (V;) and hence (h (W1) =h (Uico Pt (Vi) =Uiae, PR (Vi) = Wo = Ui, Vi
since h is surjective). Thus Wj is strongly closed space. [

Theorem 4.11. [fL: (Y, E) — (V' E') is (SCa* — CM), then L( cL7H(([,A) = ([, A) s
also, where ([, A) is (SCS) in (V', E).

Proof . Suppose that (0, B) is a (SCS) in ([, A), thus (6, B) is (SCS) in (\I/’ E’ (since (f )
(SCS) in (¥, E')). Then L™1((0, B))is (Sa* —OS) in (¥, E), since L7*((6,B))CL~* ((/, ))
then L7((6, B)) is (Sa* — OS) in L7 (([, A)). O

Theorem 4.12. Assume (U, E) and (V', E') are two (STSs), L : (V, E) — (¥, E’) be any (SM) and
= ([,A)L(©, B), where ([, A), (0, B) are disjoint (Sa* — C'Ss)in(V¥, E). Then L|(f,A) and

L|(0,B) are (SCa* — C’Ms) iff L is (SCa* — CM)

Proof . Necessity: Follows by using Theorem (3.4) in [33]. Sufficiency: Assume that (H, M)

-1
s (SCS) in (¥, E'), since L’(LA) and L|, ) are (SCa™ — CMs), thus (L‘(va>) (H,M) and

-1
<L|(9’B)) ((H, M)) are (Sa* —OSs) in (¥, E). So, their union is also. But L~\((H,M)) =

<h|(f,A)> ((H, M) ] <h|(973)) ((H, M)) and hence the proof is complete. [
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