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Abstract

Accelerated failure time model sometimes symbolized as AFT model, is an important regression
model in survival analysis. In this article, we applied AFT model to the data of lung cancer patient
in order to identify the must important factors affecting the patient’s survival time. The results
showed a well performance for this model, as based on some statistical criteria, the factors that are
consistent with the opinion of specialists in influencing survival time were identified, as the factors
(smoking, treatment, proliferation, location of residence) of the main factors affecting the life of a
person with this disease.
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1. Introduction

Accelerated failure time model sometimes symbolized as AFT model, is an important regression
model in survival analysis (Khanal et al., 2014). This model is sometimes applied in reliability
analysis in industrial experiments, it is used as an alternative to the Cox regressionmodel in the
medical field where a better description and interpretation is obtained (Yamaguchi,1992). Using this
model, the explanatory variables that have an effect on the acceleration or deceleration of the time to
hold until the occurrence of an event are determined (Pan, 2001) This model is considered one of the
statistical techniques that can deal with censoring data, The accelerated failure time model is also
characterized by an attention to the time that affects patient survival. However, it is accelerating or
slowing, assuming that the dependent variable is binary. The model is used in the following cases
(Wei, 1992).

1. It uses an accelerated failure time model when the dependent variable is two-response and
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2. It uses an accelerated failure time model to predict survival time and determine an individual’s
risk level.

3. It is used to study the effects of explanatory variables that influence survival time.

4. It is used for a comparative study between two or more types of treatment for a specific disease.

This article amins to apply the AFT model to analyze lung cancer patient’s data and testing the
validity of the estimated model in identifying the important factors that affect the patient survival
time.

2. Accelerated Failure Time (AFT) Model

The formula for the AFT model is as follows (Kay & Kinnersley, 2002 )

T = eµ + eβ̂xi + eσεi i = 1, 2, 3, . . . , p (2.1)

Where the risk function of the accelerated failure time model is as follows:

hi(t) = e−ηih0

(
t

eηi

)
(2.2)

Where ηi = β̂xi = β1x1i + β2x2i + · · ·+ βpxpi
h0 It is the primary risk function.
The survival function of the accelerated failure time model is as follows:

Si = P (Ti ≥ t)

= P
{

exp
(
µ+ β̇xi + σεi

)
≥ t
}

(2.3)

The survival function can be written as following:

Si = P (Ti ≥ t)

= P
{

exp (µ+ σεi) ≥ t/ exp
(
β̂xi

)}
(2.4)

Si(t) = S0

{
t

exp (ηi)

}
(2.5)

S0 is the primary survival function depends on time.
It is also possible to use transfers for acceleration failure time model it gives great clarification and
facilitation, to understand and interpret the model and its effect for explanatory variables on the
time preceding the occurrence of the event. Which affects either accelerating or slowing down (Orbe
et al., 2002 ), where the function is converted by taking the logarithm to it and in the following
(Walker & Mallick,1999).

Y = log(T ) = µ+ β̇ixi + σεi (2.6)

Where Y is the two-response dependent variable; µ is constant paramiter; β is the vector form
parameter; xi is the explanatory variables; σεi is the error with a fixed limit.

Lawless (1982) estimated the parameters of the accelerated failure time (AFT) model. Which
determines the relationship between the explanatory variables available for the studied item (Daviad,
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2015 ), And compute the risk function and the survival function, The parameters of the AFT model
are estimated in maximum likelihood method as follows (Kestenbaum, 2019)(Wei, 1992)

L(β, µ, σ) =
n∏
i=1

{fi (ti)}δi {Si (ti)}1−δi (2.7)

Where fi (ti) and Si (ti) are the survival probability and density functions of an individual (i) in time
(ti) , δi is the event index for the individual (i), Where the event indicator is equal to the correct one
when the event (death) occurs and zero if the individual is subject to censoring (Pan, 2001 ).

Si (ti) = Sεi (zi)

Where zi = (log ti − µ− β1x1i − β2x2i − · · · − βpxpi) /σ

fi (ti) =
1

σti
fεi (zi)

Thus, it is possible to write the maximum likelihood function of survival probability as follows:

L(β, µ, σ) =
n∏
i=1

(σti)
−δi {fεi (zi)}δi {Sεi (zi)}1−δi (2.8)

Then you take the natural logarithm of the maximum likelihood function as follows:

logL(β, µ, σ) =
n∏
i=1

{−δi log (σti) + δi log fεi (zi) + (1− δi) logSεi (zi)} (2.9)

From the above formula the logarithm of a maximum likelihood function is derived to (P + 2)
from the first times the derivative, and after obtaining the product of these derivations (Huang et
al., 2006 ), it is equal to zero (P + 2) is obtained from the equations, by using the iterative method
(Newton Raphson) to solve the equations, we obtain estimates of the parameters of the accelerated
failure time model (Zeng & Lin, 2007 ).

3. Model Evaluation

The first step in the process of evaluating the fit of the model that has been fitted is usually
the evaluation of the significance of the model, that is, the effect of the explanatory variables is
determined as a whole in the model (Faruk, 2018 ). This will be taken in the following sections.

3.1. Likelihood Ratio Test

Likelihood ratio (L.R.) is a test through which a decision is made about the relevance of the
model as a whole. It also has importance in knowing which of the models is more suitable for the
studied data, this test is as follows

LR = −2 log

(
LM
L0

)
= 2 logL0 − 2 logLM

Where L0 is the log likelihood when only the primary risk function is present in the model, LM is
log likelihood when there are (M) of the explanatory variables with in the model.

The value of the test is compared to a chi-square distribution with a degree of freedom equal to
the number of variables in the model (Wienke, 2010 ).
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3.2. Model selection Criteria

Akaike information criterion (AIC) is considered one of the criteria for selecting the best model,
this is done by calculating the criterion value for the models [3].The model with the lowest value for
the criterion is the best.This criterion is defined as follows (Akaike, 1974 )

AIC = −2 logLM + 2k

LM is log likelihood when there are (M) of the explanatory variables within the model, k is the
number of explanatory variables included in the model.
Another criterion can be used to select best model is the Baysian information criterion (BIC), this
criterion can be calculated as follow (Schwarz, 1978 )

BIC = −2 logLM + (k) log(n)

Where n is the ample size. The model with the least value is the best.

3.3. Test Significance of Variables

To determent the significance of the explanatory variables, this dependants on Wald Test. Where
after choosing the model as a whole the parameters of the estimated model have to be tested (Cleves
et al., 2008), The Wald test is one of the methods used to test the parameters accompany explanatory
variables that entered within the model. The null hypothesis for this test states that the parameter
is equal to zero, as following (Faruk, 2018 )

H0 : bj = 0
H1 : bj 6= 0

Wald Test can be calculated as following:

W 2 =

(
b̂j

s · eb̂j

)2

Where b̂j is the estimated value of a parameter of the explanatory variable Xj

S. eb̂j is the standard error of a parameter of the explanatory variable Xj.
As the value of Wald test follows the chi-square distribution with one degree of freedom.

4. Application to Lung Cancer Data

In this article, the sample represents patients with lung cancer in Kirkuk governorate-Iraq. A
random sample was selected for patients with the disease from Azadi teaching hospital and the spe-
cialized center for oncology and hematology. As the information was taken from the files of (103)
patient’s with lung cancer, it included the time period from (1/1/2017) to (1/9/2020), The sample
also included the number of cases of censored (43) persons and the number of deaths (60) persons.
The information was recorded about the time of the disease surviving since the disease, the age of the
patient, the gender of the patient, the cessation of smoking, the type of treatment that the patient
receives, the proliferation of the spread of the disease and finally the patient’s residence in the city
center or in the city parties. After collecting information on patient’s with lung cancer, the variables
that will be used in estimating the (AFT) model were defined as follows
T: Survival time, which is the time of survival of patients with lung cancer until the occurrence of
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an event (death) or cencoring.
Yi : (Consoring); i.e. the final condition of the patient:(0) Consored;(1): (death).
X1 : Age of the patient.
X2 : Gender;(1) Male,(2) female.
X3 : Smoking; (0) non-smoker;(1) Smoker.
X4 : Treatment;(1) Chemotherapy,(2) Radiotherapy.
X5 : Proliferation; (0) Not diffuse, (1) Diffuse.
X6 : location; (1) City center, (2) City parties.

It is worth noting that a program has been designed to calculate the indicators of the AFT model
using the matlab program.
Before strarting to estimate the parameters of (AFT) model, it is necessary to know distribution
that the error follows. As the error often follows the distributions (Exponential, Log-normal,Weibull,
Log-logistic). The determination of the distribution of the error is based on the (AIC) and (BIC)
criteria, as show in tabel 1 .

5. Results and Discussion

Table 1 shows the criteria and testing for the distribution of error, through the results of the table
1 , by comparing the values of AIC and BIC, it becomes clear that the error follows the log-logistic
distribution, due to the possession of the lowest value for the AIC criteria, which equals 179.6858 ,
and the lowest value for the BIC criteria, which equals 200.7636 . Thus, the distribution of the error
is the Log-logistic.

Table 1: Determination the distribution of Error for (AFT) Model.

Model No. of parameters (p) logLM AIC BIC
Exponential 7 -101.0792 216.1583 234.6014

Weibull 8 -89.9003 195.8005 216.8784
Log-logistic 8 -81.8429 179.6858 200.7636
log-normal 8 -82.2267 180.4534 201.5313

It is noted from the results in table 2 . where using the backward Wald method that analyzes the
variables and then determines the largest non-significant variable and excludes it from the model to
form a new model, the program will repeat the same process until the remaining variables are all
significant, then the analysis stops, so that the remaining variables in the model are all significant
variables according to the type of study and the type of explanatory variables in the analysis.
Also through table 2 and by comparing the results of the column Wald test with the tabular value,
which is distributed chi-square with one degree of freedom and the level of significance (0.01) , it
was found that the gender variable in the first step was one of the largest non-significant variables
through comparison with the significant level or through the Wald test. therefore, it is excluded
from the model and the analysis is done again with the presence of five explanatory variables (age,
smoking, treatment, proliferation, location) in edition the constant term.
As for the step-2 of the analysis, the (AFT) model, we notice that the age variable is of the largest
non-significant level in the new model, so it is excluded and the analysis is done again with the
presence of four explanatory variables (smoking, treatment, proliferation, location).
After excluding the gender variable in the step-1 and excluding the age variable in the step-2, all the
remaining variables in the model are significant variables, so the final model contains the following
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explanatory variables (smoking, treatment, proliferation, location) in edition the constant term.
Returning to the table 2 , we note that there are three models for the accelerated failure time

Table 2: Results of data analysis and statistical indicators of the accelerated failure time model according to backward
wald method

Steps Variable’s in model β S.E (β) Wald d.f Sig.

Step-1

Constant 5.4612 0.7967 46.9844 1 0.000
Age -0.0095 0.007 1.8396 1 0.175

Gender -0.1718 0.2253 0.5819 1 0.445
Smoking -0.6989 0.2375 8.6630 1 0.003

Treatment 0.4821 0.2072 5.4126 1 0.02
Proliferation -0.6635 0.1968 11.367 1 0.0007

Location 0.6124 0.1535 15.9153 1 0.0001

Step-2

Constant 5.1579 0.6863 56.4848 1 0.000
Gender -0.0099 0.007 2.0195 1 0.1553

Smoking -0.5625 0.1509 13.8954 1 0.0002
Treatment 0.4976 0.203 6.0095 1 0.0142

Proliferation -0.665 0.1932 11.8438 1 0.0006
Location 0.5974 0.1510 15.6489 1 0.0001

Step-3

Constant 4.3808 0.4363 100.7940 1 0.0000
Smoking -0.5993 0.1517 15.6093 1 0.0001

Treatment 0.5802 0.201 8.3271 1 0.0039
Proliferation -0.6803 0.1994 11.638 1 0.0006

Location 0.6383 0.152 17.6445 1 0.0000

(AFT), as it is important to determine which of the three models is the largest significant model
among the models, and this is done by calculating the values of the likelihood retio test, a comparison
with chi-square distribution with a degree of freedom equal to the number of parameters model as
shown in table 3 . From Table 3, specifically from the results of the likelihood ratio test, and in

Table 3: Statistical indicators for selection the best AFT model
Steps logL0 logLM LR test D.f. χ2

tabel AIC BIC
Step-1 -120.9616 -81.8429 78.2374 6 16.81 175.69 175.76
Step-2 -120.9616 -82.1428 77.6377 5 15.08 172.29 174.35
Step-3 -120.9616 -83.1346 75.6541 4 13.28 170.27 174.32

comparison with the tabular values, the null hypothesis of the three models was rejected, which
states that all parameters of the explanatory variables in the model have no effect on the dependent
variable, so the alternative hypothesis has been accepted which states that the parameters of the
explanatory variables entering the model have a significant effect on the dependent variable. As for
which model is the best, the model in the Step- 3 is the best.Also by referring to the results of table
2 through the Wald test, the same model in step- 3 is the best.

With regard to the (AIC) and (BIC) criterion, the values of each of the AIC criterion and the BIC
criterion for the accelerated failure time models are evident. That is the model in the step-3 is the
best on each of (smoking, treatment, prolieration and location) as significant explanatory variables.
As for the accelerated failure time (AFT) model, the value of the AIC criterion was equal to (170.27)
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for the accelerated failure time model, while the BIC criterion was equal to (174.32). Thus this model
is best model according to statistical indicators which includes four explanatory variables (Smoking,
treatment, proliferation, and location). Accordingly the mathematical formula for the accelerated
failure time model can be written as follows:

log(T ) = 4.3808− 0.5933X1 + 0.5802X2 − 0.6803X3 + 0.6383X4

With regard to the relevance of the statistical results to the medical reality, the accelerated failure
time (AFT) model kept the proliferation variable in the model. According to the opinion of the
specialists in this disease, this variable is considered essential in diagnosing the lung cancer and
influencing the time of the patient’s survival as well as other variables in the same model. In
addition, it is noted that the prolieration variable had a negative effect in the accelerated failure
time model,this is evidence of the importance of using this model in representation the data of lung
cancer, so was the case with the smoking variable.

6. Conclusions

The article dealt with applying the accelerated failure time model to the data of lung cancer
patients in order to identify the most important factors affecting the patient’s survival time. We
reached the following conclusions:

1. Through the results of applying the accelerated failure time model, it was found that each
variable (smoking and proliferation) had a negative effect on the survival time,this results is in
agreement with the medical opinion.

2. Also through the results of applying the accelerated failure time model, it was found that each
variable (treatment and location) have a positive effect on the survival time, this results is in
agreement with the medical opinion.

3. In general, the accelerated failure time model has well performance in analyzing and identifying
the most logical factors affecting the final state of a patient with lung cancer.
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