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Abstract

In this work, we have considered a new multi-parametric family of modified Newton-like meth-
ods(MNL) of order three to approximate a zero of a nonlinear operator in B-space (Banach space).
Here, we studied the semilocal convergence analysis of this family of methods by using a new type of
majorant condition. Note that this majorant condition generalizes the earlier majorant conditions
used for studying convergence analysis of third order methods. Moreover, by using second-order
directional derivative of the majorizing function we obtained an error estimate. We also established
relations between our majorant condition and assumption based on Kantorovich, Smale-type and
Nesterov-Nemirovskii-type, that will show our result generalize these earlier convergence results.

Keywords: Multi-parametric family of modified Newton-like (MNL) methods, Majorant
conditions, Majorizing sequence, Majorizing function Nesterov-Nemirovskii condition, Smale-type
assumption, Kantorovich-type assumption.
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1. Introduction

Assume f : Ω ⊆ W1 −→ W2 is a non-linear operator, on Ω which is a non-empty open convex
subset in a B-space W1 to another B-space W2. Finding solution σ of

f(w) = 0 (1.1)

is a classical occurring problem that come out in several areas of scientific, engineering and math-
ematical computing area. Generally, such equations are nonlinear equations, differential equations,
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integral equations, algebraic equations and so on. Conventionally, iterative methods along with
semilocal as well as local convergence are used for finding the approximating solution of these types
of equations. Semi-local convergence provide information about the initial point, while through lo-
cal convergence, we find radius of convergence ball and the information about the solution of Eq.
(1.1). The most widely used one parametric iterative method is Newton’s method [13] defined as
wn+1 = wn − f ′(wn)

−1f(wn) with initial approximation w0, which is quadratic convergent.

Due to less order of convergence, many researchers studied higher order iterative methods, to
do the same work. These iterative methods are Chebyshev method, Halley’s method, Super-Halley
method, Euler-Chebyshev method, Newton-like, Househölder-like method and so on [2, 14, 15, 17,
18, 19, 20, 21, 22, 23, 24], which have third order of convergence or more than two. Many researchers
have worked for semilocal and local convergence analysis of these iterative methods for solving the
nonlinear operator equation (1.1) by using majorizing sequence, Recurrence relation and so on under
the γ-condition, centered Lipschitz condition, Lipschitz condition, Hölder condition, majorant con-
dition and so on[3, 4, 14, 17, 18, 19, 20, 21, 22, 23, 24, 27]. When Eq.(1.1) is a stiff type differential
equation, for finding its solution we need to improve the speed of convergence of Newton method.
For this, in 1993 Aygrous [1] introduce Newton-type method, which has R-order of convergence at
least two

wn+1 = wn − Λ(£f (wn))Γnf(wn), n ≥ 0. (1.2)

Here, f ′(wn) is first and f
′′(wn) is second Fréchet-derivative of f , Γn = f ′(wn)

−1, £f (wn) is defined
by

£f (wn) = Γnf
′′(wn)Γnf(wn), wn ∈ W1.

and

Λ : £(W1,W1) −→ £(W1,W1),

where £(W1,W1) is the set of bounded linear operators from W1 into W1. When W1 = W2 = R, in
order to find the function Λ such that the iterative method has R-order of convergence at least three,
Gander[6] provided that if Λ(0) = 1, Λ′(0) = 1

2
and |Λ′′(w1)| < ∞, the method (1.2) is an iterative

method with R-order of convergence at least three. Observe that, the well-known iterative methods
with R-order of convergence at least three will fit into the form of algorithm (1.2), when Λ(Lf (wn))
is in the following form:

Chebyshev Method [5]:

Λ(£f (wn)) = I +
1

2
£f (wn) :

Super-Halley Method[1]:

Λ(£f (wn)) = I +
1

2
£f (wn) +

∑
m≥2

1

2
£f (wn)

m;

Halley Method[8]:

Λ(£f (wn)) = I +
1

2
£f (wn) +

∑
m≥2

1

2m
£f (wn)

m.
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where I is the identity operator. Another famous method for solving Eq. (1.1) is MNL method
[9, 10, 11, 15], which is cubically convergent and defined as:

wn+1 = wn −
[
I +

1

2
£f (wn)Λf (wn)

]
Γnf(wn), n ≥ 0. (1.3)

where

Γn = f ′(wn)
−1, Λf (wn) = Λ(£f (wn)) =

[
I +

∑
m≥2

2Sm£f (wn)
m−1

]
, Sm ∈ R+, m ≥ 2,

Here, we suppose that there exist r > 0 such that the series
∑

m≥2 2Smt
m−1 is convergent for

|t| < r. Due to third order of convergence, MNL method (1.3) is far better than Newton’s method.
In 2005, Hernández and Romero [9] provided the semilocal convergence of this method under Lipschitz
condition ∥f ′′(v)−f ′′(w)∥ ≤ K∥v−w∥, where v, w ∈ Ω, K > 0, on the second derivative and proved
the method is of R-order at least three. The Lipschitz condition is further weakened by ω-condition
[10, 11] i.e. ∥f ′′(v) − f ′′(w)∥ ≤ ω

(
∥v − w∥

)
, where v, w ∈ Ω, and ω : R+ −→ R+ continuous and

non-decreasing, ω(0) > 0 to get better results when the operator does not satisfy Lipschitz condition.
Suppose that there exist ℘ > 0 and g : (0, ℘) −→ R be function of class C2 on (0, ℘) such that

B(w0, ℘) ⊆ Ω

∥Γ0[f
′′(v)− f ′′(w)]∥ ≤ g′′(∥v − w∥+ ∥w − w0∥)− g′′(∥w − w0∥) (1.4)

for w, v ∈ B(w0, ℘), ∥v − w∥+ ∥w − w0∥ < ℘, and the following assumption hold:

I. g(0) > 0, g′′(0) > 0, g′(0) = −1.

II. g′′ is strictly increasing and convex in (0, ℘).

III. g(α) = 0 for some α ∈ (0, ℘). Then g has a minimal zero ᾱ and g′(ᾱ) < 0.

Also, the following initial condition also hold:

∥Γ0f(w0)∥ ≤ g(0) and ∥Γ0f
′′(w0)∥ ≤ g′′(0). (1.5)

Note that this majorant condition is a generalization of Lipschitz condition, Smale-type condition
and Nesterov-Nemirovskii type assumption. The details of these will be discussed in section 3. Using
this majorant condition Ling and Xu [16] presented semilocal convergence of Halley’s method. On
the other hand Argyros and Ren [3] presented local convergence of third order methods such as
Halley’s method and Chebyshev’s method under similar majorant condition on second derivative of
f given above. In 2018 [14], we also presented local convergence of Chebyshev’s method for solving
Eq. (1.1) which is also a third order iterative method by using majorant function and and provided
error estimate.

Inspired with the idea of Ling and Xu [16], In this article we present the semilocal convergence
of MNL method (1.3) by using the new type of majorant condition. By using majorant function and
their condition, we proved that the MNL method (1.3) is cubically convergent. Here, we establish
relation between the nonlinear operator and majorant function. Additionally, we obtain a new priori
and posteriori error estimate based on twice directional derivative of the majorant function. We also
present the convergence result based on Kantorovich, Smale-type and Nesterov-Nemirovskii type
assumption which are particular cases of above mentioned majorant condition. Three numerical
examples are also presented to show the efficiency of our study.
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The organization of our article has been given as follows: In subsection 1.1, we present some
auxiliary results and notations. In section 2, we state and prove the main result, establish relation
between non-linear operator and majorizing function. In section 3, we provide special cases of our
main result. By using Kantorovich-type, Smale-type and Nesterov-Nemirovskii-type assumption, we
present semilocal convergence theorems for MNL method (1.3). We also give some examples to show
the efficiency of our method in subsection 3.1, 3.2 and 3.3, respectively.

1.1. Notation and auxiliary results

Throughout the paper we will assume that W1 and W2 be a B-spaces. Let B(w, ℘) = {w ∈ W1 :
∥z−w∥ < ℘} be the open ball with ℘ > 0 and B̄(w, ℘) be its closure. The following auxiliary results
are recalled on scalar valued functions which are given in any elementary convex analysis books.
These results are important one and will be used in our analysis.

Lemma 1.1. [16, 12] Let ℘ > 0. If p : (0, ℘) −→ R is continuously differentiable and convex, then

(i1) (1− ϕ)p′(ϕα) ≤ p(α)− p(ϕα)

α
≤ (1− ϕ)p′(α). ∀ s ∈ (0, ℘) and 0 ≤ ϕ ≤ 1.

(i2)
p(u1)− p(ϕu1)

u1
≤ p(u2)− p(ϕu2)

u2
. ∀ u1, u2 ∈ (0, ℘), u1 < u2 and 0 ≤ ϕ ≤ 1.

Lemma 1.2. ([16, 12]) Let I ⊂ R be an interval and p : I −→ R be convex. Then

(i1) For any u0 ∈ int(I), there exists (in R)

D−p(u0) := lim
z→u−

0

p(u0)− p(u)

u0 − u
= sup

u<u0

p(u0)− p(u)

u0 − u
. (1.6)

(i2) If u1, u2, u3 ∈ I and u1 ≤ u2 ≤ u3, then

p(u2)− p(u1) ≤ [p(u3)− p(u1)]
u2 − u1
u3 − u1

.

2. Main Result

Here, our aim is to state and prove the semilocal convergence analysis of MNL method with
the help of majorizing function and their properties. First we prove some basic results about the
majorant function and will establish the relation between nonlinear operators and the majorant
function. Finally we will show that the MNL method is well defined and converges with Q-cubic.
We also shows its uniqueness in suitable region. The statement of the theorem is:

Theorem 2.1. Let W1 and W2 be B-space and Ω ⊂ W1, Ω is a non-empty open convex subset in
B-space and f : Ω −→ W2 be a twice continuously differentiable nonlinear operator. Take w0 ∈ Ω,
w0 is a initial point with Γ0 = f ′(w0)

−1. Suppose that there exist ℘ > 0 and g : (0, ℘) −→ R be
function of class C2 on (0, ℘) such that B(w0, ℘) ⊆ Ω

∥Γ0[f
′′(v)− f ′′(w)]∥ ≤ g′′(∥v − w∥+ ∥w − w0∥)− g′′(∥w − w0∥), (2.1)

for w, v ∈ B(w0, ℘), ∥v − w∥+ ∥w − w0∥ < ℘, and the following assumption hold:
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I. g(0) > 0, g′′(0) > 0, g′(0) = −1.

II. g′′ is strictly increasing and convex in (0, ℘).

III. g(α) = 0 for some α ∈ (0, ℘). Then g has a minimal zero ᾱ and g′(ᾱ) < 0.

The following initial condition also hold:

∥Γ0f(w0)∥ ≤ g(0) and ∥Γ0f
′′(w0)∥ ≤ g′′(0). (2.2)

Then the sequence {wn} and {αn} obtained by applying MNL method on operator f and function g
respectively, where

αn+1 = αn −
(
1 +

1

2
£g(αn)Λg(αn)

)
.
g(αn)

g′(αn)
(2.3)

with,

Λg(αn) = 1 +
∑
m≥2

2Sm£g(αn)
m−1, and £g(αn) =

g(αn)g
′′(αn)

(g′(αn))2
Sm ∈ R+, m ≥ 2

for solving f(w) = 0 and g(α) = 0 with initial point w0 and α0 = 0 are well defined. It is to be
mentioned that {αn} is strictly increasing, contained in (0, ᾱ)and converges to ᾱ. Also, {wn} is
contained in B(w0, ᾱ) and converge to a point σ ∈ B̄(w0, ᾱ), which is the solution of Eq. (1.1).

Remark 2.2. Under Theorem 2.1, assumption (I.)− (III.) on g : (0, ℘) −→ R,

1. g(α) = 0 has at most one zero on (ᾱ, ℘), where ᾱ is the minimal zero of g in [0, ℘).

The condition g′(ᾱ) < 0 in (III.) implies the following properties:

2. g(ᾱ∗) = 0 for some ᾱ∗ ∈ (ᾱ, ℘).

3. g(α) < 0 for some α ∈ (ᾱ, ℘).

For proving this theorem we use the following Lemma. In this Lemma we prove some basic properties
of the function g.

Lemma 2.3. Let ℘ > 0, and g : (0, ℘) −→ R be function of class C2 on (0, ℘) which satisfies the
condition (I.) - (III.), then the following hold:

(a1) g
′ is strictly convex and strictly increasing in (0, ℘).

(a2) g is strictly convex on (0, ℘), for α ∈ (0, ᾱ) g(α) > 0 and equation g(α) = 0 has at most one
root in (ᾱ, ℘).

(a3) for α ∈ (0, ᾱ), g′(α) ∈ (−1, 0) .
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Proof . From (II.), we have g′′ is convex and strictly increasing in (0, ℘) and g′′(0) > 0. Then g′ can
be concluded as a strictly convex and strictly increasing on (0, ℘), which proves (a1).
(a1) implies that g is strictly convex on (0, ℘). By the condition (I.), (a1) and g(ᾱ) = 0, we get
g(α) = 0 has at most one root on (ᾱ, ℘). Since g(ᾱ) = 0 and g(0) > 0, one has g(α) > 0 for
α ∈ (0, ᾱ), which proves (a2).
Since g is strictly convex, from Lemma 1.1, we obtain

g′(α) <
g(ᾱ)− g(α)

ᾱ− α
, α ∈ (0, ᾱ),

this implies that g(α) + g′(α)(ᾱ − α) < g(ᾱ). Here g(ᾱ) = 0 and g(α) > 0 in (0, ᾱ) then we
get g′(α) < 0. From (a1) and (I.), g′ is strictly increasing and g′(α) > 1 for α ∈ (0, ᾱ), thus
−1 < g′(α) < 0 for α ∈ (0, ᾱ), which proves (a3).
Hence the Lemma is proved. □
Here, we will consider the majorant function g and prove required results regarding only the sequence
{αn}. Suppose that g is the majorizing function to f . Then MNL method(1.3) applied to g can be
denoted as

α0 = 0, αn+1 = Φg(αn), n = 0, 1, ...,

where,

Φg(α) := α−
(
1 +

1

2
£g(α)Λg(α)

)
.
g(α)

g′(α)
, (2.4)

Λg(α) = 1 +
∑
m≥2

2Sm£g(α)
m−1, Sm ∈ R+, m ≥ 2

and £g(α) =
g(α)g′′(α)

(g′(α))2
. For obtaining the convergence of the majorizing sequence generated by

MNL method on the majorizing function, we need some useful Lemma.

Lemma 2.4. Let g : (0, ℘) −→ R be a family of C2(0, ℘) and satisfy conditions (I.)–(III.). Then we
have 0 ≤ £g(α) ≤ 1

2
for α ∈ [0, ᾱ].

Proof . Here we define a function

θ(t) = g(α) + g′(α)(t− α) +
1

2
g′′(α)(t− α)2, t ∈ [α, ᾱ].

Now,

θ(α) = g(α) + g′(α)(α− α) +
1

2
g′′(α)(α− α)2 = g(α).

Then by Lemma 2.3 (a2), g(α) > 0 for α ∈ (0, ᾱ), implies θ(α) = g(α) > 0 for α ∈ (0, ᾱ).
Additionally, we have

θ(ᾱ) = g(α) + g′(α)(ᾱ− α) +
1

2
g′′(α)(ᾱ− α)2. (2.5)
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By Taylor’s formula,

g(ᾱ) = g(α) + g′(α)(ᾱ− α) +
1

2
g′′(α)(ᾱ− α)2

+

∫ 1

0

(1− ψ)[g′′(α + ψ(ᾱ− α))− g′′(α)](ᾱ− α)2dψ. (2.6)

As g′′ is increasing and g(ᾱ) = 0, then from Eq. (2.5) and (2.6) we get, θ(ᾱ) ≤ 0. Thus, there exist
a real root of θ(t) on [α, ᾱ]. So the discriminant of θ(t)is greater than or equal to zero i.e.

g′(α)2(t− α)2 − 4× 1

2
g(α)g′′(α)(t− α)2 ≥ 0

or

g′(α)2 − 2g(α)g′′(α) ≥ 0

which is equivalent to 0 ≤ g(α)g′′(α)

(g′(α))2
≤ 1

2
. Hence, 0 ≤ £g(α) ≤ 1

2
for α ∈ [0, ᾱ]. The proof is

complete. □

Lemma 2.5. Let g : (0, ℘) −→ R be a twice continuously differentiable function and satisfy the
assumption (I.)-(III.). Then,

(i1)

∀α ∈ (0, ᾱ), g(α) > 0, g′(α) < 0, α < Φg(α) < ᾱ. (2.7)

Moreover, g′(ᾱ) ≤ 0

g′(ᾱ) < 0 ⇌ ∃α ∈ (ᾱ, ℘), such that g(α) < 0. (2.8)

(i2)

ᾱ− Φg ≤ − 1

g′(ᾱ)

[
1

6
D−g′′(ᾱ) +

1

8

(
1 +

∑
m≥2

(
1

2

)m−2

Sm

)
g′′(ᾱ)

(ᾱ− α)

]
(ᾱ− α)3, (2.9)

α ∈ (0, ᾱ), Sm ∈ R+ and m ≥ 2 .

Proof . For α ∈ (0, ᾱ), since (from Lemma 2.3) g(α) > 0, −1 < g′(α) < 0 and (from Lemma 2.6)
we have 0 ≤ £g(α) ≤ 1

2
, thus α < Φg(α). Furthermore, for any α ∈ (0, ᾱ], by the definition of

directional derivatives (1.6) and the condition (II.), we get D−g′′(α) > 0. Thus we have

D−Φg(α) =
1

2

g(α)g′′(α)

g′(α)2
− 1

2

D−g′′(α)

g′(α)
+

3

2

g(α)2g′′(α)2

g′(α)4

+
∑
m≥2

Sm

(
− (m+ 1)g(α)g′′(α)m+1

g′(α)2m+1
− mg(α)m+1g′′(α)D−g′′(α)m−1

g′(α)2m+1

+
2mg(α)m+1g′′(α)3m−1

g′(α)4m
+
g(α)m+1g′′(α)m+1

g′(α)2m+2

)
> 0,
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α ∈ (0, ᾱ], Sm ∈ R+ and m ≥ 2 . Thus Φg(α) is strictly increasing. This implies that Φg(α) <
Φg(ᾱ) = ᾱ. Hence α < Φg(α) < ᾱ. Thus first part of (i1) is proved.
For second part of (i1), if g

′(ᾱ) < 0, then it is obvious that there exists α ∈ (ᾱ, ℘) such that g(α) < 0.
Conversely, we know that g(ᾱ) = 0 from (III.). By Lemma 1.2, we have

g′(ᾱ) <
g(α)− g(ᾱ)

α− ᾱ
ᾱ ∈ (ᾱ, ℘)

or

g(α) > g(ᾱ) + g′(ᾱ)(α− ᾱ) ᾱ ∈ (ᾱ, ℘),

which implies g′(ᾱ) < 0. This proves the second part of (i1). By the definition of Φg in (2.4), we
obtain

ᾱ− Φg = (ᾱ− α) +

[
1 +

1

2
£g(α)

(
1 +

∑
m≥2

2Sm£g(α)
m−1

)]
.
g(α)

g′(α)

= (ᾱ− α) +
g(α)

g′(α)
+

1

2
£g(α).

g(α)

g′(α)
+

(∑
m≥2

Sm£g(α)
m

)
.
g(α)

g′(α)

=
1

g′(α)

[
(ᾱ− α)g′(α) + g(α)

]
+

1

2

£g(α)

g′(α)
g(α) +

1

g′(α)

(∑
m≥2

Sm£g(α)
m

)
g(α)

= − 1

g′(α)

∫ 1

0

[g′′(α + ϑ(ᾱ− α))− g′′(α)](ᾱ− α)2(1− ϑ)dϑ

− 1

2

£g(α)

g′(α)

∫ 1

0

g′′(α + ϑ(ᾱ− α))(ᾱ− α)2(1− ϑ)dϑ

− 1

g′(α)

(∑
m≥2

Sm£g(α)
m

)∫ 1

0

g′′(α + ϑ(ᾱ− α))(ᾱ− α)2(1− ϑ)dϑ. (2.10)

Since g′′ is convex and α < ᾱ, then by Lemma 1.2 (i2) we get,

g′′(α + ϑ(ᾱ− α))− g′′(α) ≤ [g′′(ᾱ)− g′′(α)]
ϑ(ᾱ− α)

ᾱ− α
.

Thus, by using above inequality in Eq. (2.10),

ᾱ− Φ ≤ − 1

g′(α)

∫ 1

0

[g′′(ᾱ)− g′′(α)](ᾱ− α)2ϑ(1− ϑ)dϑ

− 1

2

£g(α)

g′(α)

∫ 1

0

g′′(ᾱ)(ᾱ− α)2(1− ϑ)dϑ

− 1

g′(α)

(∑
m≥2

Sm£g(α)
m

)∫ 1

0

g′′(ᾱ)(ᾱ− α)2(1− ϑ)dϑ

≤ −1

6

g′′(ᾱ)− g′′(α)

g′(α)
(ᾱ− α)2 − 1

4
£g(α)

g′′(ᾱ)

g′(α)
(ᾱ− α)2

− 1

2

(∑
m≥2

Sm£g(α)
m

)
g′′(ᾱ)

g′(α)
(ᾱ− α)2. (2.11)
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By condition (I.), (II.) and Lemma 2.3 we have, g′′(0) > 0, g′(α) < 0 and g′, g′′ are strictly increasing
on (0, ᾱ). By Lemma 2.4, 0 ≤ £g(α) ≤ 1

2
, then above relation in Eq. (2.11) can be reduced to

ᾱ− Φg ≤ −1

6

g′′(ᾱ)− g′′(α)

g′(α)
(ᾱ− α)2 − 1

8

g′′(ᾱ)

g′(α)
(ᾱ− α)2

− 1

2

(∑
m≥2

Sm

(
1

2

)m)
g′′(ᾱ)

g′(α)
(ᾱ− α)2

≤ −1

6

g′′(ᾱ)− g′′(α)

g′(α)
(ᾱ− α)2

− 1

8

(
1 +

∑
m≥2

(
1

2

)m−2

Sm

)
g′′(ᾱ)

g′(α)
(ᾱ− α)2.

As g′ is increasing, g′(ᾱ) < 0 and g′(α) < 0, we have

g′′(ᾱ)− g′′(α)

−g′(α)
≤ g′′(ᾱ)− g′′(α)

−g′(ᾱ)
=

1

−g′(ᾱ)
g′′(ᾱ)− g′′(α)

ᾱ− α
(ᾱ− α)

≤ D−g′′(ᾱ)

−g′(ᾱ)
(ᾱ− α).

Then,

ᾱ− Φg ≤ − 1

g′(ᾱ)

[
1

6
D−g′′(ᾱ) +

1

8

(
1 +

∑
m≥2

(
1

2

)m−2

Sm

)
g′′(ᾱ)

(ᾱ− α)

]
(ᾱ− α)3,

and hence (i2) is proved. This complete the proof. □
Now, in the following two lemmas we will establish the relation between the majorant function g

and the nonlinear operator f .

Lemma 2.6. Suppose ∥w−w0∥ ≤ α < ᾱ. If g : (0, ᾱ) −→ R be a family of C2(0, ᾱ) and majorizing
function of f at w0. Then Γ = f ′(w)−1 ∈ £(W2,W1), and

(i1)
∥Γf ′(w0)∥ ≤ −g′(∥w − w0∥)−1 ≤ −g′(α)−1. (2.12)

(i2)
∥Γ0f

′′(w)∥ ≤ g′′(∥w − w0∥) ≤ g′′(α). (2.13)

Proof . Let w ∈ B̄(w0, α) and 0 ≤ α ≤ ᾱ. By Taylor series we have

f ′(w) = f ′(w0) +

∫ 1

0

[f ′′(wϑ)− f ′′(w0)](w − w0)dϑ

+ f ′′(w0)(w − w0)

where wϑ = w0 + ϑ(w − w0) or

Γ0[f
′(w)− f ′(w0)] =

∫ 1

0

Γ0[f
′′(wϑ)− f ′′(w0)](w − w0)dϑ

+ Γ0f
′′(w0)(w − w0)
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where, Γ0 = f ′(w0)
−1. Use majorant condition (I.), Eq. (2.1), initial condition given in Eq. (2.2)

and Lemma 2.3 (a3) in above inequality, to get

∥Γ0

[
f ′(w)− f ′(w0)

]
∥ ≤

∫ 1

0

[g′′(ϑ∥w − w0∥)− g′′(0)]∥w − w0∥dϑ

+ g′′(0)∥w − w0∥
≤ g′(∥w − w0∥)− g′(0) ≤ g′(α)− g′(0) < 1.

This implies that,

∥Γ0f
′(w)− I∥ < 1.

Then B-space Lemma on invertible operator [13, 25] imply that Γ ∈ £(W2,W1) and

∥Γf ′(w0)∥ ≤ 1

1− (g′(∥w − w0∥)− g′(0))

≤ − 1

g′(∥w − w0∥)
≤ − 1

g′(α)
.

which shows that (i1) is proved. Now we use Eq. (2.1), initial condition Eq. (2.2) and by condition
(II.), g′′ is strictly increasing, then we obtain

∥Γ0f
′′(w)∥ ≤ ∥Γ0[f

′′(w)− f ′′(w0)]∥+ ∥Γ0f
′′(w0)∥

≤ g′′(∥w − w0∥)− g′′(0) + g′′(0)

= g′′(∥w − w0∥) ≤ g′′(α).

which proves (i2). □

Lemma 2.7. Assume that g : (0, ᾱ) −→ R be a family of C2(0, ᾱ) and let the sequence {wn} and
{αn} be generated by MNL method given by (1.3) and (2.3) respectively. If g is the majorizing
function to f at w0, then, for all n ≥ 1, we have

(a1) Γn exists and ∥Γnf
′(w0)∥ ≤ −g′(∥wn − w0∥)−1 ≤ −g′(αn)

−1.

(a2) ∥Γ0f
′′(wn)∥ ≤ g′′(αn).

(a3) ∥Γ0f(wn)∥ ≤ g(αn)

(
∥wn − wn−1∥
αn − αn−1

)3

.

(a4) ∥wn+1 − wn∥ ≤ (αn+1 − αn)

(
∥wn − wn∥
αn − αn−1

)3

.

Proof . We prove this Lemma by The Principle of Mathematical Induction.
By the hypothesis, it is obvious that (a1)–(a4) are true for i=1. Now, assume that (a1)–(a4) hold for
some i ∈ N.
For n = i+ 1, (a1) and (a2) hold by Lemma 2.6. For (a3), notice that we have the relation [7]

f(wi+1) =
1

2
f ′′(wi)£f (wi)(wi+1 − wi)

2

+

∫ 1

0

[f ′′(wϑ)− f ′′(wi)](wi+1 − wi)
2(1− ϑ)dϑ
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where, wϑ
i = wi + ϑ(wi+1 − wi). Then, we get

∥Γ0f(wi+1)∥ ≤ 1

2
∥Γ0f

′′(wi)∥∥£f (wi+1)∥∥wi+1 − wi∥2

+

∫ 1

0

∥Γ0[f
′′(wϑ)− f ′′(wi)]∥∥wi+1 − wi∥2(1− ϑ)dϑ. (2.14)

By Eq. (2.1), we obtain∫ 1

0

∥Γ0[f
′′(wϑ)− f ′′(wi)]∥∥wi+1 − wi∥2(1− ϑ)dϑ ≤

∫ 1

0

[g′′(ϑ∥wi+1 − wi∥+ ∥wi+1 − w0∥)

− g′′(∥wi+1 − w0∥)]×
∥wi+1 − wi∥2(1− ϑ)dϑ.

By using above inequality and inductive hypothesis (a1)–(a2) in Eq. (2.14), we obtain

∥Γ0f(wi+1)∥ ≤ 1

2
g′′(αi)£g(αi)∥wi+1 − wi∥2

+

∫ 1

0

[g′′(ϑ∥wi+1 − wi∥+ ∥wi+1 − w0∥)− g′′(∥wi+1 − w0∥)]×

∥wi+1 − wi∥2(1− ϑ)dϑ. (2.15)

We use Lemma 1.2 (i2) then, we have

g′′(ϑ∥wi+1 − wi∥+ ∥wi − w0∥)− ϑ′′(∥wi − w0∥) ≤ g′′(ϑ∥wi+1 − wi∥+ αi)

− g′′(αi+1)

≤
[
g′′(ϑ(αi+1 − αi) + αi)

− g′′(αi)
]∥wi+1 − wi∥
αi+1 − αi

.

Then by using above inequality, (2.15) becomes

∥Γ0f(wi+1)∥ ≤
(
∥wi+1 − wi∥
αi+1 − αi

)3[
1

2
g′′(αi)£g(αi)(αi+1 − αi)

2

+

∫ 1

0

[g′′(ϑ(αi+1 − αi) + αi)− g′′(αi)](αi+1 − αi)
2(1− ϑ)dϑ

]
≤ g(αi+1)

(
∥wi+1 − wi∥
αi+1 − αi

)3

.
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Thus (a3) holds for n = i+ 1. Finally, for (a4), we have

∥wi+2 − wi+1∥ ≤
∥∥∥∥I + 1

2
£f (wi+1)

(
I +

∑
m≥2

2Sm£f (wi+1)
m−1

)∥∥∥∥×∥∥Γi+1f
′(w0)

∥∥∥∥Γ0f(wi+1)
∥∥

≤ −
[
1 +

1

2
£g(αi+1)

(
1 +

∑
m≥2

2Sm£g(αi+1)
m−1

)]
×

g(αi+1)

g′(αi+1)

(
∥wi+1 − wi∥
αi+1 − αi

)3

= (αi+2 − αi+1)

(
∥wi+1 − wi∥
αi+1 − αi

)3

. (2.16)

Hence, the statements hold for all n. The proof is complete □
By using these Lemmas, now we prove Theorem 2.1.

2.1. Proof of Theorem 2.1

Proof . From Lemma 2.7, we can say that the sequence {wn} is well defined. By using Corollary
2.10 and Lemma 2.7 (a4), we get ∥wn − w0∥ ≤ αn < ᾱ, for any n ∈ N, i.e. {wn} is belongs to
B(w0, ᾱ). By (2.16) and Corollary 2.10, we have

∥wn+1 − wn∥ ≤ αn+1 − αn, n = 0, 1, ....

Since {αn} converges to ᾱ, then the above inequality implies that

∞∑
n=M

∥wn+1 − wn∥ ≤
∞∑

n=M

(αn+1 − αn) = ᾱ− αM < +∞,

for any M ∈ N. Hence {wn} is a Cauchy sequence in B(w0, ᾱ) and converge to some σ ∈ B̄(w0, ᾱ).
The above inequality implies that ∥σ − wn∥ ≤ ᾱ− αn for any n ∈ N.
Now, we have to prove that f(σ) = 0. From the first part of Lemma 2.6, it follows that {∥f ′(wn)∥}
is bounded. Now by Lemma 2.7, we have

∥f(wn)∥ ≤ ∥Γnf
′(w0)∥∥Γ0f(wn)∥∥f ′(wn)∥ ≤ (αn+1 − αn)

2

£g(αn)Λg(αn)
∥f ′(wn)∥.

Due to the fact that {∥f ′(wn)∥} is bounded, £g(αn) is also bounded from Lemma 2.4 and {αn} and
Λg(αn) are convergent, we can take limit in the above inequality to get

lim
n→∞

f(wn) = 0.

Since f is continuous in B̄(w0, ᾱ), {wn} ⊂ B(w0, ᾱ) and {wn} converges to σ, we also have

lim
n→∞

f(wn) = f(σ).

Thus, theorem is proved. □

Theorem 2.8. With the assumption of Theorem 2.1, we get the following a priori and a posteriori
error estimate:
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(i) ∀ n ≥ 0, we have the a priori estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥σ − wn+1∥
ᾱ− αn

)3

, n = 0, 1, .... (2.17)

Thus, the sequence {wn} and {αn} generated by MNL method given as (1.3) and (2.3) converges
Q-cubic as follows

∥σ − wn+1∥ ≤ − 1

g′(ᾱ)

[
1

6
D−g′′(ᾱ)

+
1

8

(
1 +

∑
m≥2

(
1

2

)m−2

Sm

)
g′′(ᾱ)

(ᾱ− α)

]
∥σ − wn∥3 n = 0, 1, .... (2.18)

and

ᾱ− αn+1 ≤ − 1

g′(ᾱ)

[
1

6
D−g′′(ᾱ) +

1

8

(
1 +

∑
m≥2

(
1

2

)m−2

Sm

)
g′′(ᾱ)

(ᾱ− α)

]
(ᾱ− α)3, (2.19)

α ∈ (0, ᾱ), Sm ∈ R+ and m ≥ 2 .

(ii) ∀ n ≥ 0, we have a posteriori error estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥wn+1 − wn∥
αn+1 − αn

)3

, n = 0, 1, ....

In particularly, conclusion can be drawn that convergence of MNL method to σ is cubic.

Proof .

σ − wn+1 = σ − wn +

[
I +

1

2
£f (wn)

(
I +

∑
m≥2

2Sm£f (wn)
m−1

)]
Γnf(wn)

= (σ − wn) + Γnf(wn) +
1

2
£f (wn)Γnf(wn)

+

(∑
m≥2

Sm£f (wn)
m

)
Γnf(wn)

= Γn

[
(σ − wn)f

′(wn) + f(wn)
]
+

1

2
£f (wn)Γnf(wn)

+

(∑
m≥2

Sm£f (wn)
m

)
Γnf(wn)

= −Γn

∫ 1

0

[f ′′(wϑ
n)− f ′′(wn)](σ − wn)

2(1− ϑ)dϑ

− 1

2
£f (wn)Γn

∫ 1

0

f ′′(wϑ
n)(σ − wn)

2(1− ϑ)dϑ

− Γn

(∑
m≥2

Sm£f (wn)
m

)∫ 1

0

f ′′(wϑ
n)(σ − wn)

2(1− ϑ)dϑ,
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where, wϑ
n = wn + ϑ(σ − wn). Now,

∥σ − wn+1∥ ≤ ∥Γnf
′(w0)∥×∥∥∥∥∫ 1

0

Γ0[f
′′(wϑ

n)− f ′′(wn)](σ − wn)
2(1− ϑ)dϑ

∥∥∥∥
+

1

2
∥∥£f (wn)∥∥Γnf

′(w0)∥×∥∥∥∥∫ 1

0

[Γ0f
′′(wϑ

n)](σ − wn)
2(1− ϑ)dψ

∥∥∥∥
+

∥∥∥∥(∑
m≥2

Sm£f (wn)
m

)∥∥∥∥∥Γnf
′(w0)∥×∫ 1

0

∥[Γ0f
′′(wϑ

n)](σ − wn)
2(1− ϑ)dϑ

∥∥∥∥. (2.20)

By using Eq. (2.1), we have∫ 1

0

Γ0[f
′′(wϑ

n)− f ′′(wn)](1− ϑ)dϑ ≤
∫ 1

0

[
g′′(ϑ∥σ − wn∥+ ∥wn − w0∥)

− g′′(∥wn − w0∥)
]
(1− ϑ)dϑ

We use above inequality, Lemma 2.6 and Lemma 2.7 in Eq. (2.20) to get,

∥σ − wn+1∥ ≤ − 1

g′(αn)
×[ ∫ 1

0

[
g′′(ϑ∥σ − wn∥+ ∥wn − w0∥)− g′′(∥wn − w0∥)

]
(1− ϑ)dϑ∥σ − wn∥2

+
1

2
£g(αn)

∫ 1

0

[
g′′(ϑ∥σ − wn∥+ ∥wn − w0∥)

]
(1− ϑ)dϑ∥σ − wn∥2

+

(∑
m≥2

Sm£g(αn)
m

)
×

∫ 1

0

[
g′′(ϑ∥σ − wn∥+ ∥wn − w0∥)

]
(1− ϑ)dϑ∥σ − wn∥2

]
. (2.21)

Then, by using Lemma 1.2, we obtain

g′′(ϑ∥σ − wn∥+ ∥wn − w0∥)− g′′(∥wn − w0∥) ≤ g′′(ϑ∥σ − wn∥+ αn)− g′′(αn)

≤ [g′′(ϑ(ᾱ− αn) + αn)− g′′(αn)]
∥σ − wn∥
ᾱ− αn

.
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We use above inequality and Lemma 2.7 in (2.21) to obtain

∥σ − wn+1∥ ≤ − 1

g′(αn)

[ ∫ 1

0

[
g′′(ϑ(ᾱ− αn) + αn)− g′′(αn)

]
(1− ϑ)dϑ∥σ − wn∥2

+
1

2
£g(αn)

∫ 1

0

g′′(ϑ(ᾱ− αn) + αn)(1− ϑ)dϑ∥σ − wn∥2

+

(∑
m≥2

Sm£g(αn)
m

)
×

∫ 1

0

g′′(ϑ(ᾱ− αn) + αn)(1− ϑ)dϑ∥σ − wn∥2
]

≤ − 1

g′(αn)

[ ∫ 1

0

[
g′′(ϑ(ᾱ− αn) + αn)− g′′(αn)

]
(1− ϑ)dϑ

]
∥σ − wn∥3

ᾱ− αn

− 1

2

£g(αn)

g′(αn)

(
1 +

∑
m≥2

2Sm£g(αn)
m−1

)
×

[ ∫ 1

0

g′′(ϑ(ᾱ− αn) + αn)(1− ϑ)dϑ

]
∥σ − wn∥3

ᾱ− αn

≤ (ᾱ− αn+1)

(
∥σ − wn∥
ᾱ− αn

)3

.

This shows (2.17) holds for all n ∈ N and (2.18) follows from Lemma 2.5 (i2). Now, from Lemma
2.7 (a4), for all j ≥ 0 and n ≥ n0 ≥ 0, we have

∥wn+j+1 − wn+j∥ ≤ (αn+j+1 − αn+j)

(
∥wn0+1 − wn0∥
αn0+1 − αn0

)3n−n0+j

. (2.22)

Then, by (2.17),

∥σ − wn+1∥ ≤
∞∑
j=0

(αn+j+1 − αn+j)

(
∥wn0+1 − wn0∥
αn0+1 − αn0

)3n−n0+j

≤
∞∑
j=0

(αn+i+1 − αn+i)

(
∥wn0+1 − wn0∥
αn0+1 − αn0

)3n−n0

≤ (ᾱ− αn)

(
∥wn0+1 − wn0∥
αn0+1 − αn0

)3n−n0

and hence by taking n = n0, the Theorem 2.8 is proved. □

Theorem 2.9. Under the assumption of Theorem 2.1, the limit σ of {wn} is the unique zero of
f(w) = 0 in B(w0, ρ), where ρ is defined as ρ := sup{α ∈ (ᾱ, ℘) : g(α) ≤ 0}.

Proof . We have to show that σ is the unique zero of (1.1) in B̄(w0, ᾱ). For this, let τ ∈ B̄(w0, ᾱ)
be another zero of (1.1). Then ∥τ − w0∥ ≤ ᾱ. Now, we will prove by induction that

∥τ − wn∥ ≤ ᾱ− αn, n = 0, 1, .... (2.23)
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For n = 0 the above inequality hold trivially, due to α0 = 0. Now we assume that (2.23) is true for
n = i. Note that Eq. (2.17) implies

∥τ − wn+1∥ ≤ ᾱ− αn+1

(ᾱ− αn)3
∥τ − wn∥3.

By using inductive hypothesis (2.23) to the above inequality, we get (2.23) also hold for n = i + 1.
Since {wn} converges to σ and {αn} converges ᾱ, from (2.23) we conclude that τ = σ. Hence,
σ ∈ B̄(w0, ᾱ) is the unique zero of the operator f .
It remains to prove that the operator f does not have zero in B(w0, ρ)⧹B̄(w0, ᾱ). We prove this by
contradiction. For this, we assume that operator f does have zero in B(w0, ρ)⧹B̄(w0, ᾱ), i.e. there
exist τ ∈ Ω ⊂ W1,

ᾱ < ∥τ − w0∥ < ρ, f(τ) = 0.

We will prove that the above assumption cannot hold. Now by the Taylor’s series

f(τ) = f(w0) + f ′(w0)(τ − w0) +
1

2
f ′′(w0)(τ − w0)

2

+ (1− ϑ)

∫ 1

0

[
f ′′(wϑ

n)− f ′′(w0)
]
(τ − w0)

2dϑ,

where, wϑ
n = w0 + ϑ(τ − w0). Since f(τ) = 0, then

0 ≤
∥∥Γ0[f(w0) + f ′(w0)(τ − w0) +

1

2
f ′′(w0)(τ − w0)

2]
∥∥

+

∥∥∥∥(1− ϑ)

∫ 1

0

Γ0

[
f ′′(wϑ

n)− f ′′(w0)
]
(τ − w0)

2dϑ

∥∥∥∥, (2.24)

Use (2.1) and g′(0) = −1 from (I.) in the last term of (2.24) to infer∥∥∥∥(1− ϑ)

∫ 1

0

Γ0

[
f ′′(wϑ

n)− f ′′(w0)
]
(τ − w0)

2dϑ

∥∥∥∥
≤

∫ 1

0

(1− ϑ)
[
g′′(ϑ∥τ − w0∥)− g′′(0)

]
∥τ − w0∥2

≤ g(∥τ − w0∥)− g(0)− g′(0)∥τ − w0∥ −
1

2
g′′(0)∥τ − w0∥2

≤ g(∥τ − w0∥)− g(0) + ∥τ − w0∥ −
1

2
g′′(0)∥τ − w0∥2. (2.25)

Applying the condition of Eq. (2.2) in the first term of (2.24) to get∥∥∥∥Γ0[f(w0) + f ′(w0)(τ − w0) +
1

2
f ′′(w0)(τ − w0)

2]

∥∥∥∥
≥ ∥τ − w0∥ − ∥Γ0f(w0)∥ −

1

2
∥Γof

′′(w0)∥∥τ − w0∥2

≥ ∥τ − w0∥ − g(0)− 1

2
g′′(0)∥τ − w0∥2. (2.26)

Combining (2.25) and (2.26), we obtain that

g(∥τ − w0∥) ≥ 0.
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By Lemma 2.3, g is strictly convex. Hence g is strictly positive in the interval (∥τ − w0∥, ρ). Thus
we get σ ≤ ∥τ − w0∥, which is a contradiction of our assumption. Thus, operator f does not have
zeros in B(w0, ρ)⧹B̄(w0, ᾱ) and σ is the unique zero of (1.1). Thus the uniqueness part is proved.
Hence the proof is complete. □

Consequently, by using Lemma 2.5, we conclude that

Corollary 2.10. Let sequence {αn} be defined by (2.3). Then {αn} is well defined, strictly increasing
and is contained in (0, ᾱ). Furthermore, {αn} satisfies

ᾱ− αn+1 ≤ − 1

g′(ᾱ)

[
1

6
D−g′′(ᾱ) +

1

8

(
1 +

∑
m≥2

(
1

2

)m−2

Sm

)
g′′(ᾱ)

(ᾱ− α)

]
(ᾱ− α)3

α ∈ (0, ᾱ) Sm ∈ R+ and m ≥ 2 . Thus, {αn} is Q-cubically converges to ᾱ.

Thus, all statements about the sequence {αn} in Theorem 2.1 and Theorem 2.8 are true.

3. Special cases with examples

In this section, we will present special cases of Theorem 2.1 and Theorem 2.8 and we present
convergence theorem on MNL method under Lipschitz and Smale-type condition. We also provide
some examples to show efficiency of our method

3.1. Convergence result under Lipschitz condition

We define majorizing function g by

g(α) =
µ

6
α3 +

ϱ

2
α2 − α + β, (3.1)

for positive numbers µ, ϱ, and β. We choose this cubic polynomial as the majorizing function g in
Eq. (2.1), then we see that the majorant condition (2.2) and assumptions (I.) and (II.) are satisfied
for g.

Theorem 3.1. Let W1 and W2 be B-space and Ω ⊂ W1, Ω is a non-empty open convex subset in
B-space and f : Ω −→ W2 be a twice continuously differentiable nonlinear operator. Take w0 ∈ Ω, w0

is an initial point with f ′(w0)
−1 ∈ £(W2,W1). With the choice of g(α) from Eq. (3.1), the majorant

condition (2.1) reduces to the Lipschitz condition

∥[Γ0[f
′′(v)− f ′′(w)]∥ ≤ µ∥v − w∥, w, v ∈ Ω (3.2)

and

∥Γ0f(w0)∥ ≤ β and ∥Γ0f
′′(w0)∥ ≤ ϱ. (3.3)

Let

b :=
2(ϱ+ 2

√
ϱ2 + 2µ)

3(ϱ+
√
ϱ2 + 2µ)2

. (3.4)

Moreover, if β < b holds, then the sequence {wn} generated by MNL method (1.3) for solving f(w) = 0
with initial point w0 are well defined. Sequence {wn} is contained in B(w0, ᾱ) and converge to a point
σ ∈ B̄(w0, ᾱ), which is the solution of Eq. (1.1). By using condition (III.), ᾱ is the minimal positive

zero of g in [0, r1], where r1 =
(−ϱ+

√
ϱ2 + 2µ)

µ
is the positive root of g′. The limit σ of the sequence

{wn} is the unique zero of (1.1) in B(w0, ᾱ
∗), where ᾱ∗ is the root of g in (r1,+∞).
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Theorem 3.2. With the assumption of Theorem 3.1, we get the following a priori and a posteriori
error estimate:

(i) for all n ≥ 0, we have a priori estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥σ − wn+1∥
ᾱ− αn

)3

. (3.5)

Thus, the sequence {wn} generated by MNL method (1.3) converges Q-cubic as follows

∥σ − wn+1∥ ≤
(7ᾱ− 4α)µ+ 3ϱ+ 3

(∑
m≥2

(
1
2

)m−2

Sm

)
(µᾱ + ϱ)

24(ᾱ− α)
(
1− ϱᾱ− µ

2
ᾱ
) ∥σ − wn∥3

(ii) For all n ≥ 0, we have a posteriori error estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥wn+1 − wn∥
αn+1 − αn

)3

. (3.6)

In particularly, conclusion can be drawn that convergence of MNL method to σ is Q-cubic.

Example 3.3. Let W1 = C[0, 1] be the set of continuous functions on interval [0, 1]. We consider
the integral equation f(w) = 0, where

f(w)(ς) = w(ς)− ς +
1

2

∫ 1

0

ς cos(w(ϑ))dϑ (3.7)

with max norm

∥w∥ = max
ς∈[0,1]

|w(ς)|.

The first and second Fréchet derivative of f are

f ′(w)x(ς) = w(ς)− 1

2

∫ 1

0

ς sin(w(ϑ))x(ϑ)dϑ

and

f ′′(w)xy(ς) = −1

2

∫ 1

0

ς cos(w(ϑ))xy(ϑ)dϑ

respectively. Also,

[I − f ′(w)]x(ς) =
1

2

∫ 1

0

ς sin(w(ϑ))x(ϑ)dϑ

and

[f ′′(v)− f ′′(w)] ≤ ς

2

∫ 1

0

[
cos(v(ϑ))− cos(w(ϑ))

]
dϑ.
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Here, we choose the initial value as w0 = w0(ς) = ς and use max norm, then we have

∥f(w0)∥ ≤ 1

2
sin 1.

Since,

∥I − f ′(w0)∥ ≤ 1

2
[sin 1− cos 1] < 1,

then by using Banach Lemma [25, 13], Γ0 = f ′(w0)
−1 exist. Thus

∥Γ0∥ ≤ 1

1− ∥I − f ′(w0)∥
≤ 2

2 + cos 1− sin 1
.

It is to be noted that,

∥Γ0f(w0)∥ ≤ sin 1

2− sin 1 + cos 1
, ∥Γ0f

′′(w0)∥ ≤ sin 1

2− sin 1 + cos 1
(3.8)

and ∥∥f ′′(v)− f ′′(w)
∥∥ =

∥∥∥∥ ς2
∫ 1

0

[
cos(v(ϑ))− cos(w(ϑ))

]
dϑ

∥∥∥∥ ≤ 1

2
∥v − w∥.

Thus, ∥∥Γ0[f
′′(v)− f ′′(w)]

∥∥ ≤ 1

2 + cos 1− sin 1
∥v − w∥. (3.9)

By comparing Eq. (3.2) and (3.3) from Theorem 3.1 with Eq. (3.8) and (3.9) respectively, we get

β = ϱ =
sin 1

2− sin 1 + cos 1
= 0.495323446404751

and µ =
1

2 + cos 1− sin 1
= 0.588639959484558. Also from Eq. (3.4)

b :=
2(ϱ+ 2

√
ϱ2 + 2µ)

3(ϱ+
√
ϱ2 + 2µ)2

= 0.585678917891157.

Here β < b, thus the Kantorovich convergence criterion hold. Then the sequence {wn} gener-
ated by MNL method (1.3) converges to the zero of f(w) defined by Eq. (3.7) with initial point
w0. Sequence {wn} is contained in (ς, 0.609569634694877), where ς ∈ [0, 1]. By using condi-
tion (III.), 0.609569634694877 is the minimal positive zero of g in [0, 1.184790612418399], where

r1 =
(−ϱ+

√
ϱ2 + 2µ)

µ
= 1.184790612418399 is the positive root of g′. Thus, the uniqueness and

existence solution ball of Eq.(3.7) are B(ς, 1.709908005327262) and B̄(ς, 0.609569634694877) respec-
tively, where 1.709908005327262 is the root of g in (1.184790612418399,+∞).

Example 3.4. Let W1 = W2 = C[0, 1], we consider the following nonlinear boundary value problem

w′′ + λ(w3 − ηw2) = 0 with w(0) = 0 and w(1) = 1.
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The above nonlinear boundary value problem can be converted as the integral equation

w(ς) = ς + λ

∫ 1

0

Q(ς, ϑ)(w3(ϑ) + ηw2(ϑ))dϑ (3.10)

where, Q(ς, ϑ) is the Kernel function defined as

Q(ς, ϑ) =

{
(1− ς)ϑ, ϑ ≤ ς,

(1− ϑ)ς, ς ≤ ϑ.
(3.11)

Let W1 = W2 = C[0, 1] equipped with the maximum norm

∥w∥ = max
ς∈[0,1]

|w(ς)|.

For finding the solution of Eq.(3.10), it needs to find the solution of f(w) = 0, where f : Ω ⊆
C[0, 1] −→ C[0, 1] and Ω = {w ∈ [0, 1] : w(ς) ≥ 0, ς ∈ [0, 1]} is defined as

f(w)(ς) = w(ς)− ς − λ

∫ 1

0

Q(ς, ϑ)(w3(ϑ) + ηw2(ϑ))dϑ. (3.12)

Now, the first and second Fréchet derivative of Eq. (3.12) are

f ′(w)x(ς) = w(ς)− λ

∫ 1

0

Q(ς, ϑ) (3w2(ϑ) + ηw(ϑ) dϑ

and

f ′′(w)xy(ς) = −λ
∫ 1

0

Q(ς, ϑ) (6w(ϑ) + η)xy(ϑ) dϑ

respectively. Then,

[I − f ′(w)]x(ς) = −λ
∫ 1

0

Q(ς, ϑ) (3w2(ϑ) + ηw(ϑ) dϑ

and

∥f ′′(v)− f ′′(w)∥ =

∥∥∥∥6λ∫ 1

0

Q(ς, ϑ) (v(ϑ)− w(ϑ)) dϑ

∥∥∥∥
≤ 6|λ|

∥∥∥∥∫ 1

0

Q(ς, ϑ)dϑ

∥∥∥∥∥∥v(ϑ)− w(ϑ)
∥∥.

Since, ∥∥∥∥∫ 1

0

Q(ς, ϑ)dϑ

∥∥∥∥ = max
0≤ς≤1

∣∣∣∣ ∫ 1

0

Q(ς, ϑ)dϑ

∣∣∣∣
= max

0≤ς≤1

∣∣∣∣ ∫ ς

0

(1− ς)ϑdϑ+

∫ 1

ς

ς(1− ϑ)dϑ

∣∣∣∣
= max

0≤ς≤1

∣∣∣∣18 − 1

2

(
ς − 1

2

)2∣∣∣∣ = 1

8
,
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then,

∥f ′′(v)− f ′′(w)∥ ≤ 6

8
|λ|

∥∥v − w
∥∥.

We choose w0 = w0(ς) = ς as the initial approximation, then we have

∥f(w0)∥ ≤ |λ|
8
(1 + η).

Now,

∥I − f ′(w0)∥ ≤ |λ|
8

(3 + 2η).

If 2η < 5, then ∥I − f ′(w0)∥ < 1, then by using Banach Lemma [13, 25] Γ0 = f ′(w0)
−1 exist. Thus

∥Γ0∥ ≤ 1

1− ∥I − f ′(w0)∥
≤ 8

8− |λ|(3 + 2η)

Also,

∥Γ0f(w0)∥ ≤ |λ|(1 + η)

8− |λ|(3 + 2η)
, ∥Γ0f

′′(w0)∥ ≤ |λ|(6 + η)

8− |λ|(3 + 2η)

and, ∥∥Γ0

[
f ′′(v)− f ′′(w)

]
∥ ≤ 6|λ|

8− |λ|(3 + 2η)
∥v − w∥.

Then,

β :=
|λ|(1 + η)

8− |λ|(3 + 2η)
, ϱ :=

|λ|(6 + η)

8− |λ|(3 + 2η)
and µ :=

6|λ|
8− |λ|(3 + 2η)

. (3.13)

In Table 1 and Table 2, we find the value of ϱ, β, µ from Eq. (3.13), b from Eq.(3.4) and r1 from
Theorem 3.1, for η = 0, λ = 0.25, 0.5, 0.75, 1 and η = 1, λ = 0.25, 0.5, 0.74. Here, we see that
for all the values of β from Table 1 and Table 2, β < b. Therefore, the convergence criterion β < b
holds and by the Theorem 3.1 we conclude that the sequence {wn} generated by MNL method (1.3)
with initial point w0 converges to a zero of operator f which is defined by (3.12). In both the tables,
we also present the existence and uniqueness domain of solution, for respective value of η and λ.

3.2. Convervece result under Smale’s condition

In this section, we will present a convergence theorem on MNL method under Smale’s condition.
Here, we applied the γ-condition in the MNL method (1.3) for convergence result.

Let w0 ∈ Ω, f : Ω ⊆ W1 −→ W2 is analytic, Γ0 = f ′(w0)
−1 ∈ £(W1,W2) and f satisfies∥∥Γ0f

(k)(w0)
∥∥ ≤ k!γk−1, k ≥ 2
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For η=0 in Eq. (3.13),

λ 0.25 0.5 0.75 1

ϱ 0.1034482... 0.230769... 0.39130434... 0.60000000...

β 0.0344827... 0.07692307... 0.13043478... 0.20000000...

µ 0.0344827... 0.07692307... 0.13043478... 0.200000000...

b 2.993317... 1.6169946... 1.04493404... 0.72127199...

r1 2.265986... 1.309401... 0.88561808... 0.63299316...

Existence B̄(ς, 0.03460809...) B̄(ς, 0.07837774...) B̄(ς, 0.13825957...) B̄(ς, 0.23606797...)

Uniqueness B(ς, 4.06814039...) B(ς, 2.3502617...) B(ς, 1.544540158...) B(ς, 1)

Table 1: Existence and Uniqueness domain of solution for (3.12)

For η=1 in Eq. (3.13),

λ 0.25 0.5 0.74

ϱ 0.129629629629630 0.318181818181818 0.602325581395349

β 0.074074074074074 0.181818181818182 0.344186046511628

µ 0.037037037037037 0.090909090909091 0.172093023255814

b 2.627912743775339 1.274787453668897 0.731101199888517

r1 2.685128379379139 1.610317298281767 1.097766959465200

Existence B̄(ς, 0.074815160834724) B̄(ς, 0.194527701995009) B̄(ς, 0.583090301569012)

Uniqueness B(ς, 3.683184296822359) B(ς, 1.853235541162442) B(ς, 0.714884978608793)

Table 2: Existence and Uniqueness domain of solution for (3.12)
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where

γ := sup
n>1

∥∥∥∥f ′(w0)
−1f (n)(w0)

n!

∥∥∥∥ 1
n−1

.

Define majorizing function, which was introduced by Wang[26] as

g(α) =
γα2

1− γα
− α + β, γ > 0, 0 ≤ α <

1

γ
(3.14)

Here, g satisfies assumption (I.) and (II.). Thus, by Theorem 2.1 we provide convergence results
under γ condition as follows.

Theorem 3.5. Let f be a continuously twice Fréchet differentiable nonlinear operator on Ω, with
initial point w0 ∈ Ω such that Γ0 ∈ £(W2,W1) exist. With the choice of g(α) given in Eq. (3.14),
the majorant condition (2.1) reduce to the γ-condition

∥Γ0[f
′′(v)− f ′′(w)]∥ ≤ 2γ

[
1

(1− γ∥v − w∥ − γ∥w − w0∥)3
− 1

(1− γ∥w − w0∥)3

]
, (3.15)

where, ∥v − w∥+ ∥w − w0∥ < 1
γ
and

∥Γ0f(w0)∥ ≤ β and ∥Γ0f
′′(w0)∥ ≤ 2γ. (3.16)

Additionally, if

κ := βγ < 3− 2
√
2. (3.17)

Then, the sequence {wn} generated by method MNL (1.3) with starting point w0 is well defined,
contained in B(w0, ᾱ

∗) and converges to σ ∈ B̄(w0, ᾱ) which is the zero of Eq. (1.1). The limit point
σ is the unique zero of (1.1) in B(w0, ᾱ

∗), where ᾱ and ᾱ∗ given by

ᾱ =
1 + κ−

√
(1 + κ)2 − 8κ

4γ
and ᾱ∗ =

1 + κ+
√

(1 + κ)2 − 8κ

4γ
(3.18)

respectively.

Theorem 3.6. With the assumption of Theorem 3.5, we get the following a priori and a posteriori
error estimate:

(i) For all n ≥ 0, we have the following a priori estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥σ − wn+1∥
ᾱ− αn

)3

.

Thus, the sequence {wn} generated by MNL (1.3) converges cubic as follows

∥σ − wn+1∥ ≤
(3ᾱ− 4α)γ2 + γ +

(∑
m≥2

(
1
2

)m−2

Sm

)
(1− γᾱ)γ

4(ᾱ− α)(1− γᾱ)(γ2ᾱ2 − 2γᾱ)
∥σ − wn∥3.
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(ii) For all n ≥ 0, we have the following a posteriori error estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥wn+1 − wn∥
αn+1 − αn

)3

.

Example 3.7. Let W1 = W2 = R2 endowed with max norm ∥.∥ = ∥.∥∞ and Ω = B̄(0, 1). Here, we
define the analytic function f : W1 −→ W2 on Ω for w = (w1, w2)

t ∈ Ω by

f(w) = (x(w), y(w))T =
(
10w1e

w2 + 5w1w2, 5w2
1 + sinw1 + 10w2

)T

(3.19)

We assume that w0 = (a, b)T be the initial approximation. The first and second Fréchet derivatives
of f from Eq. (3.19) are:

f ′(w) =

[
10ew2 + 5w2 10w1e

w2 + 5w1

10w1 + cosw1 10

]
and

f ′′(w) =


0 10ew2 + 5

10ew2 + 5 10w1e
w2

10− sinw1 0
0 0

 .

Now, we find the inverse of f ′(w) at the initial point w0 = (a, b)T

Γ0 = f ′(w0)
−1 =

1

d

[
10 −(10aeb + 5a)

−(10a+ cos a) 10eb + 5b

]
where,

d = det(f ′(w0)) = 100eb + 50b− (10aeb + 5a)(10a+ cos a).

Thus,

Γ0f(w0) =
1

d

(
10x(w0)− (10aeb + 5a)y(w0), (10eb + 5b)x(w0)− (10a+ cos a)y(w0)

)T

and

Γ0f
′′(w0) =

1

d



−(10aeb + 5a)(10− sin a) 10(10eb + 5)

10(10eb + 5) 100aeb

(10eb + 5b)(10− sin a) −(10a+ cos a)(10eb + 5)

−(10a+ cos a)(10eb + 5) −(10a+ cos a)(10aeb)


.

Note that,

∥Γ0f(w0)∥ ≤ 1

|d|
max

{∣∣10x(w0)− (10aeb + 5a)y(w0)
∣∣,

∣∣(10eb + 5b)x(w0)− (10a+ cos a)y(w0)
∣∣} (3.20)
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w0 β γ κ:=βγ ᾱ ᾱ∗

(0.005, 0.005)T 0.004991418... 1.3298437705... 0.006637806... 0.005025226... 0.3734544972...

(0.025, 0.025)T 0.0248019056... 1.3499787325... 0.0334820451... 0.0257276226... 0.3570495353...

(0.05, 0.05)T 0.0492865108... 1.3769060641... 0.0678628956... 0.0535490831... 0.3342271506...

(0.075, 0.075)T 0.0735652726... 1.4058782672... 0.103423818... 0.085142697... 0.3072895083...

Table 3: Estimate value of β, γ, κ, ᾱ, ᾱ∗

and

∥Γ0f
′′(w0)∥ ≤ 1

|d|
max

{∣∣(10aeb + 5a)(10− sin a)
∣∣+ ∣∣10(10eb + 5)

∣∣+ ∣∣(10eb + 5b)(10− sin a)
∣∣

+
∣∣(10a+ cos a)(10eb + 5)

∣∣, ∣∣10(10eb + 5)
∣∣+ ∣∣100aeb∣∣+ ∣∣(10a+ cos a)(10eb + 5)

∣∣
+
∣∣(10a+ cos a)(10aeb)

∣∣} (3.21)

By comparing Eq. (3.16) with (3.20) and (3.21), we have

β :=
1

|d|
max

{∣∣10x(w0)− (10aeb + 5a)y(w0)
∣∣,

∣∣(10eb + 5b)x(w0)− (10a+ cos a)y(w0)
∣∣} (3.22)

and

γ ≤ 1

2|d|
max

{∣∣(10aeb + 5a)(10− sin a)
∣∣+ ∣∣10(10eb + 5)

∣∣+ ∣∣(10eb + 5b)(10− sin a)
∣∣

+
∣∣(10a+ cos a)(10eb + 5)

∣∣, ∣∣10(10eb + 5)
∣∣+ ∣∣100aeb∣∣+ ∣∣(10a+ cos a)(10eb + 5)

∣∣
+
∣∣(10a+ cos a)(10aeb)

∣∣} (3.23)

So, we find the value of β, γ, ᾱ and ᾱ∗ from Eq. (3.22), (3.23), (3.16) and (3.18), respectively
for the initial value w0 = (0.005, 0.005)T , (0.025, 0.025)T , (0.05, 0.05)T ,
(0.075, 0.075)T , are concluded in Table 3. We also see that in Table 3, the convergence criterion
κ = βγ < 3− 2

√
2 is also hold for corresponding initial values. Thus, we conclude that the sequence

{wn} generated by MNL method (1.3) with initial point w0, converges to a zero of f defined by
(3.19). For the initial values w0 = (0.005, 0.005)T , (0.025, 0.025)T , (0.05, 0.05)T , (0.075, 0.075)T , the
corresponding existence and uniqueness domain of solution are concluded in Table 4.
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w0 Existence Uniqueness

(0.005, 0.005)T B̄(w0, 0.005025226942780) B(w0, 0.373454497231585)

(0.025, 0.025)T B̄(w0, 0.025727622633057) B(w0, 0.357049535363272)

(0.05, 0.05)T B̄(w0, 0.053549083157285) B(w0, 0.334227150625873)

(0.075, 0.075)T B̄(w0, 0.085142697083026) B(w0, 0.307289508382676)

Table 4: Domain of existence and uniqueness of solution for (3.19)

3.3. Convergence result under the Nesterov-Nemirovskii condition

In this subsection, we will present a convergence theorem for MNL method under the Nesterov-
Nemirovskii condition.

Let Ω ⊆ Rn be an open convex set and f : Ω −→ R be a self-concordant function with parameter
a > 0. Also, assume that f is a strictly convex function and of family C3(Ω) i.e. f is thrice
continuously differentiable function in Ω and satisfies the following inequality

|f ′′′(w)[h, h, h]| ≤ 2 a−1/2(f ′′[h, h])3/2, w ∈ Ω, h ∈ Rn.

Take initial point w0 ∈ Ω such that f ′′(w0) is invertible. Define the Hilbert space W1 = (Rn, ⟨., .⟩w0)
as the Euclidean space Rn with a new inner product and the associated norm defined as

∥w1∥w0 =
√

⟨w1, w1⟩w0
∀ w1 ∈ Rn

where, ⟨w1, w2⟩w0 = a−1⟨f ′′(w0)w1, w2⟩ for all w1, w2 ∈ Rn and some a > 0. Now, we define

B℘(w0) = {w ∈ Rn : ∥w − w0∥w0 < ℘} and B℘[w0] = {w ∈ Rn : ∥w − w0∥w0 ≤ ℘}

open and closed balls with radius ℘ > 0 and center w0 in W1 (Dikin’s ellipsoid of radius ℘ > 0 and
center w0), respectively. Let

g(α) =
µα2

(1− α)
− α + β, µ > 0 (3.24)

be the majorant function to f ′. Here, the majorant function g satisfied all assumption (I.) - (III.).

Theorem 3.8. Let f : Ω −→ R a-self-concordant function, Ω ⊆ Rn be a convex set, with initial
point w0 ∈ Ω and f ′′(w0) is non-singular. Let W1 = (Rn, ⟨., .⟩w0) be a Hilbert space. With the choice
of g(α) from Eq. (3.24), the majorant condition (2.1) reduces to

∥f ′′(w0)
−1[f ′′′(v)− f ′′′(w)]∥ ≤ 2µ

[
1

(1− ∥v − w∥ − ∥w − w0∥)3

− 1

(1− ∥w − w0∥)3

]
µ > 0 (3.25)

and initial condition

∥f ′′(w0)
−1f ′(w0)∥ ≤ β and ∥f ′′(w0)

−1f ′′′(w0)∥ ≤ 2µ. (3.26)
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Additionally, if

β < 3− 2
√
2, (3.27)

then the sequence {wn} generated by MNL method to solve f ′(w) = 0 with starting point w0

wn+1 = wn −
[
I +

1

2
£f (wn)Λf (wn)

]
f ′′(wn)

−1f ′(wn), n ≥ 0.

where

Λf (wn) =

[
I +

∑
m≥2

2Sm£f (wn)
m−1

]
, Sm ∈ R+, m ≥ 2.

and £f (wn) is defined by

£f (wn) = f ′′(wn)
−1f ′′′(wn)f

′′(wn)
−1f ′(wn), wn ∈ W1.

is well defined. Also, {wn} is contained in Bᾱ(w0) = {w ∈ Rn : ∥w − w0∥w0 < ᾱ} and converges
to σ which is the zero of f ′(w) = 0. The limit σ of the sequence {wn} is the unique zero of f in
Bᾱ∗ [w0] = {w ∈ Rn : ∥w − w0∥w0 ≤ ᾱ∗}, where ᾱ and ᾱ∗ given as

ᾱ =
1 + β −

√
(1 + β)2 − 4(1 + µ)β

2(1 + µ)
and ᾱ∗ =

1 + β +
√

(1 + β)2 − 4(1 + µ)β

2(1 + µ)
(3.28)

respectively.

Theorem 3.9. With the assumption of Theorem 3.8, we get the following a priori and a posteriori
error estimate:

(i) For all n ≥ 0, we have the following a priori estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥σ − wn+1∥
ᾱ− αn

)3

.

Thus, the sequence {wn} generated by MNL (1.3) converges cubic as follows

∥σ − wn+1∥ ≤
(3ᾱ− 4α + 1)µ+

(∑
m≥2

(
1
2

)m−2

Sm

)
(1− ᾱ)µ

4(ᾱ− α)(1− ᾱ)2[(1− ᾱ)2 − µ(ᾱ2 − 2ᾱ)]
∥σ − wn∥3.

(ii) For all n ≥ 0, we have the following a posteriori error estimate:

∥σ − wn+1∥ ≤ (ᾱ− αn+1)

(
∥wn+1 − wn∥
αn+1 − αn

)3

.

4. Conclusion

In this study, the semilocal convergence of MNL method for finding zero of nonlinear operator in
B-space is presented using majorizing function. A convergence theorem is established to present a
new error estimate based on the twice directional derivative of the majorizing function and dropped
the assumption of existence of second root of the majorizing function, still guaranteeing cubic conver-
gence. Three important special convergence analysis based on the Kantorovich-type and Smale-type
and Nesterov-Nemirovskii assumption under Lipschitz, γ and optimizing condition respectively are
also given. Finally, we considered three numerical examples to show efficiency of our study.
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