Coupled Systems of Equations with Entire and Polynomial Functions

M. Gil ${ }^{\prime}$

Department of Mathematics, Ben Gurion University of the Negev P.0. Box 653, Beer-Sheva 84105, Israel.
(Communicated by M. Eshaghi Gordji)

Abstract

We consider the coupled system $F(x, y)=G(x, y)=0$, where

$$
F(x, y)=0 m_{1} A_{k}(y) x^{m_{1}-k} \text { and } G(x, y)=0 m_{2} B_{k}(y) x^{m_{2}-k}
$$

with entire functions $A_{k}(y), B_{k}(y)$. We derive a priory estimates for the sums of the roots of the considered system and for the counting function of roots.

Keywords: Coupled Systems, Entire and Polynomial functions, A Priory Estimates, Resultant. 2010 MSC: Primary 39B72; Secondary 13P15.

1. Introduction and Statements of the Main Result

Let us consider the system

$$
\begin{equation*}
F(x, y)=G(x, y)=0, \tag{1.1}
\end{equation*}
$$

where

$$
F(x, y)=\sum_{k=0}^{m_{1}} A_{k}(y) x^{m_{1}-k} \text { and } G(x, y)=\sum_{k=0}^{m_{2}} B_{k}(y) x^{m_{2}-k} \quad(x, y \in \mathbb{C})
$$

with the entire functions

$$
A_{k}(y)=\sum_{j=0}^{\infty} a_{k j} y^{j}, \quad B_{k}(y)=\sum_{j=0}^{\infty} b_{k j} y^{j}, k \geq 1 .
$$

[^0]Such systems arise in various applications. In particular, they describe stationary states of various systems of nonlinear differential equations [12] and functional-differential equations [8]. The basic methods for the investigations of systems of the type (1.1) are topological methods, in particular, the fixed point theorems [4, 10, 17. The other approach for the problem of computing zeros of analytic mappings (in other words, for solving systems of analytic equations) is the logarithmic residue based approach. A multidimensional logarithmic residue formula is available in the literature, cf. [2, (9]. That formula involves the integral of a differential form, which can be transformed into a sum of certain Riemann integrals. The zeros and their respective multiplicities can be computed from these integrals by solving a generalized eigenvalue problem that has the Hankel structure. Besides, in the case, when $A_{j}(z)$ and $B_{j}(z)$ are polynomials, the literature is very rich, cf. [5, 14] and references therein.

A few words about the numerical methods in the coupled systems theory. The classical numerical methods can be found in [15]; recently, the Newton method was considerably developed [3, 16]. Besides the essential role is played the Adomian polynomials [1]. Note that for the application of the Newton method, the differentiability is required. For the applications of the topological methods and Newton one, a priory estimates for the roots are often required, however, to the best of our knowledge, such estimates for (1.1) were not enough considered in the available literature.

A pair of complex numbers (y, x) is a solution of (1.1) if $F(x, y)=G(x, y)=0$. Besides x will be called an X-root coordinate (corresponding to y) and y a Y-root coordinate (corresponding to x). All the considered roots are counted with their multiplicities. In this paper we suggest the a priory estimates for the Y-coordinates of the roots of (1.1). Our approach is new and based on the recent results for matrix-valued functions.

For $m=m_{1}+m_{2}$ introduce the $m \times m$-matrices

$$
C_{j}=\left(\begin{array}{cccccccccc}
a_{0 j} & a_{1 j} & a_{2 j} & \ldots & a_{m_{1}-1, j} & a_{m_{1}, j} & 0 & 0 & \ldots & 0 \\
0 & a_{0 j} & a_{1 j} & \ldots & a_{m_{1}-2, j} & a_{m_{1}-1, j} & a_{m_{1}, j} & 0 & \ldots & 0 \\
. & . & . & \ldots & . & . & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & a_{0, j} & a_{1, j} & a_{2, j} & a_{3, j} & \ldots & a_{m_{1}, j} \\
b_{0 j} & b_{1 j} & b_{2 j} & \ldots & b_{m_{2}-1, j} & b_{m_{2}, j} & 0 & 0 & \ldots & 0 \\
0 & b_{0 j} & b_{1 j} & \ldots & b_{m_{2}-2, j} & b_{m_{2}-1, j} & b_{m_{2}, j} & 0 & \ldots & 0 \\
. & . & . & . & . & . & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & b_{0 j} & b_{1 j} & b_{2 j} & b_{3 j} & \ldots & b_{m_{2}, j}
\end{array}\right)
$$

$(\mathrm{j}=0,1, \ldots)$. It is supposed that C_{0} is invertible. Put $D_{j}=C_{0} C_{j}(j!)$, for a $\gamma \in(0,1]$, and assume that the series

$$
\begin{equation*}
\Theta_{0}:=\left[\sum_{k=1}^{\infty} D_{k} D_{k}^{*}\right]^{1 / 2} \text { converges. } \tag{1.2}
\end{equation*}
$$

Here and below the asterisk means the adjointness. So ${ }_{0}$ is an $m \times m$-matrix and under (1.2) by the Hólder inequality, it follows that the pencil

$$
H_{0}(y):=\sum_{k=1}^{\infty} \frac{y^{k}}{(k!)^{\gamma}} D_{k} \quad(y \in \mathbb{C})
$$

satisfies the inequality

$$
\left\|H_{0}(y)\right\| \leq c_{0} \sum_{k=1}^{\infty} \frac{|y|^{k}}{(k!)^{\gamma}} \leq c_{0}\left[\sum_{k=1}^{\infty} 2^{-p^{\prime} k}\right]^{1 / p^{\prime}}\left[\sum_{k=1}^{\infty} \frac{|2 y|^{k / \gamma}}{k!}\right]^{\gamma} \leq c_{1} e^{\gamma|2 y|^{1 / \gamma}}
$$

where $\gamma+1 / p^{\prime}=1,\|\cdot\|$ is the matrix spectral norm, that is the operator norm corresponding to the Euclidean norm of vectors,

$$
c_{0}=\sup _{k}\left\|D_{k}\right\|, c_{1}=c_{0}\left[02^{-k p^{\prime}}\right]^{1 / p^{\prime}} .
$$

So function H_{0} has order no more than $1 / \gamma$.
Put

$$
\omega_{k}= \begin{cases}\lambda_{k}\left(\Theta_{0}\right) & \text { for } k=1, \ldots, m, \\ 0 & \text { for } k=m+1, m+2, \ldots\end{cases}
$$

Here and below $\lambda_{k}(A)$ are the eigenvalues of a matrix A counted with their multiplicities and enumerated in the decreasing way: $\left|\lambda_{k+1}(A)\right| \leq\left|\lambda_{k}(A)\right|$. Now we are in a position to formulate our main result.

Theorem 1.1. For $a \gamma \in(0,1]$, let condition (1.2) hold. Then the Y-roots y_{k} of (1.1) counted with their multiplicities and enumerated in the nondecreasing way: $\left|\tilde{y}_{k}\right| \leq\left|\tilde{y}_{k+1}\right|(k=1,2, \ldots)$ satisfy the inequalities

$$
\sum_{1}^{j} \frac{1}{\left|\tilde{y}_{k}\right|}<\sum_{1}^{j}\left[\omega_{k}+\frac{m^{\gamma}}{(k+m)^{\gamma}}\right] \quad(j=1,2, \ldots) .
$$

This theorem is proved in the next section.
Note that by Lemma 2.11.3 [6],

$$
\left\|C_{0}\right\| \leq \frac{N_{2}^{m-1}\left(C_{0}\right)}{(m-1)^{(m-1) / 2}\left|\operatorname{det} C_{0}\right|}
$$

where

$$
N_{2}\left(C_{0}\right)=\sqrt{\text { Trace } C_{0} C_{0}^{*}}
$$

So $\left\|\Theta_{0}\right\| \leq \theta_{0}$, where

$$
\theta_{0}:=\frac{N_{2}^{m-1}\left(C_{0}\right)}{(m-1)^{(m-1) / 2}\left|\operatorname{det} C_{0}\right|}\left[\sum_{k=1}^{\infty}\left\|C_{j}\right\|^{2}\right]^{1 / 2} .
$$

Thus,

$$
\omega_{k} \leq \theta_{0} \text { for } k=1, \ldots, m \text { and } \omega_{k}=0 \text { for } k \geq m+1
$$

2. Proof of Theorem 1.1

Let $T_{k}, k=1,2, \ldots$ be $n \times n$-matrices. Consider the entire matrix pencil

$$
\begin{equation*}
H(\lambda):=\sum k=0^{\infty} \frac{\lambda^{k}}{(k!)^{\gamma}} T_{k} \quad\left(T_{0}=I_{n}, \in \mathbb{C}\right) \tag{2.1}
\end{equation*}
$$

where I_{n} is the unit $n \times n$-matrix. The characteristic values of H, that is the zeros of $\operatorname{det} H(z)$, with their multiplicities are enumerated in the nondecreasing way are denoted by $z_{k}(H)$. Suppose that

$$
\begin{equation*}
\Theta_{H}:=\left[\sum k=1^{\infty} T_{k} T_{k}^{*}\right]^{1 / 2} \text { converges . } \tag{2.2}
\end{equation*}
$$

Furthermore, put

$$
\hat{\omega}_{k}(H)=\lambda_{k}\left(\Theta_{H}\right) \text { for } k=1, \ldots, n \text { and } \hat{\omega}_{k}(H)=0 \text { for } k \geq n+1 .
$$

Let condition (2.2) hold. Then the characteristic values of the pencil H defined by (2.1) satisfy the inequalities

$$
\begin{equation*}
\sum_{k=1}^{j} \frac{1}{\left|z_{k}(H)\right|}<\sum_{k=1}^{j}\left[\hat{\omega}_{k}(H)+\frac{n^{\gamma}}{(k+n)^{\gamma}}\right] \quad(j=1,2, \ldots) . \tag{2.3}
\end{equation*}
$$

For the proof see [7, Theorem 12.2.1]. Furthermore, for $m=m_{1}+m_{2}$ introduce the $m \times m$ Sylvester matrix

$$
S(y)=\left(\begin{array}{cccccccccc}
A_{0} & A_{1} & A_{2} & \ldots & A_{m_{1}-1} & A_{m_{1}} & 0 & 0 & \ldots & 0 \\
0 & A_{0} & A_{1} & \ldots & A_{m_{1}-2} & A_{m_{1}-1} & A_{m_{1}} & 0 & \ldots & 0 \\
. & . & . & \ldots & \dot{4} & . & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & A_{0} & A_{1} & A_{2} & A_{3} & \ldots & A_{m_{1}} \\
B_{0} & B_{1} & B_{2} & \ldots & B_{m_{2}-1} & B_{m_{2}} & 0 & 0 & \ldots & 0 \\
0 & B_{0} & B_{1} & \ldots & B_{m_{2}-2} & B_{m_{2}-1} & B_{m_{2}} & 0 & \ldots & 0 \\
. & . & . & . & . & . & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & B_{0} & B_{1} & B_{2} & B_{3} & \ldots & B_{m_{2}}
\end{array}\right)
$$

with $A_{j}=A_{j}(y)$ and $B_{j}=B_{j}(y)$. So

$$
S(y)=\sum_{k=0}^{\infty} C_{j} y^{j}=C_{0} \sum_{k=0}^{\infty} D_{j} y^{j}=H_{0}(y)
$$

As it is well known [11], the Y-roots of (1.1) are the characteristic values of $S(y)$ that is the zeros of the resultant $\operatorname{det} S(y)$. Take into account that

$$
\operatorname{det} S(y)=\operatorname{det} C_{0} \operatorname{det} H_{0}(y) .
$$

Now the required result is due to (2.3).

3. The Counting Function for Roots

Put

$$
\chi_{k}=\omega_{k}+\frac{m^{\gamma}}{(k+m)^{\gamma}} \quad(k=1,2, \ldots) .
$$

The following result is due to the well-known Lemma 1.2.1 [7] and Theorem 1.1.
Corollary 3.1. Let $\phi(t)(0 \leq t<\infty)$ be a continuous convex scalar-valued function, such that $\phi(0)=0$. Then under condition (1.2), the inequalities

$$
\sum_{k=1}^{j} \phi\left(1\left|\tilde{y}_{k}\right|\right)<\sum_{k=1}^{j} \phi\left(\chi_{k}\right) \quad(j=1,2, \ldots)
$$

are valid. In particular, for any $r \geq 1$,

$$
\sum_{k=1}^{j} \frac{1}{\left|\tilde{y}_{k}\right|^{r}}<\sum_{k=1}^{j} \chi_{k}^{r}
$$

and thus

$$
\left[\sum_{k=1}^{j} \frac{1}{\left|\tilde{y}_{k}\right|^{r}}\right]^{1 / r}<\left[\sum_{k=1}^{j} \omega_{k}^{r}\right]^{1 / r}+m^{\gamma}\left[\sum_{k=1}^{j} \frac{1}{(k+m)^{r \gamma}}\right]^{1 / r}(j=1,2, \ldots)
$$

Furthermore, assume that

$$
\begin{equation*}
r \gamma>1, r \geq 1 . \tag{3.1}
\end{equation*}
$$

Then

$$
\zeta_{m}(\gamma r):=\sum_{k=1} \infty \frac{1}{(k+m)^{r \gamma}}<\infty
$$

Relation (3.1) with the notation

$$
N_{r}\left(\Theta_{0}\right)=\left[\sum_{k=1} m \lambda_{k}^{r}\left(\Theta_{0}\right)\right]^{1 / r}
$$

yields our next result:
Corollary 3.2. Let conditions (1.2) and (3.1) hold. Then

$$
\left(\sum_{k=1}^{\infty} \frac{1}{\left|\tilde{y}_{k}\right|^{r}}\right)^{1 / r}<N_{r}\left(\Theta_{0}\right)+m^{\gamma} \zeta_{m}^{1 / r}(\gamma r) .
$$

Since $\tilde{y}_{j} \leq \tilde{y}_{j+1}$, from (1.3), it follows that $\left|y_{j}\right|>\eta_{j}$ where

$$
\eta_{j}:=\frac{j}{\sum_{k=1}^{j}\left[\omega_{k}+\frac{m^{\gamma}}{(k+m)^{\gamma}}\right]} .
$$

We thus get our next result.
Corollary 3.3. Under the hypothesis of Theorem 1.1, system (1.1) has in $|z| \leq \eta_{j}$ no more than $j-1 Y$-root coordinates; in particular, in $|z| \leq \eta_{1}$ system (1.1) does have Y-root coordinates.

Let $\nu_{Y}(r)$ be the counting function of the Y-roots (1.1) in $|z| \leq r$. We thus get the inequality $\nu_{Y}(r) \leq j-1$ for any $r \leq \eta_{j}$.

References

[1] G. Adomian, A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications, 135 (1988) 501-544.
[2] I. A. Aizenberg and A. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Translations of Mathematical Monographs, AMS, Providence, R. I., vol. 58, 1983.
[3] E. Babolian, J. Biazar and A. R. Vahidi, Solution of a system of nonlinear equations by Adomian decomposition method, Applied Mathematics and Computation, 150 (2004) 847-854.
[4] L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, Chapman and Hall/CRC, Boca Raton and London, vol 9., 2005.
[5] I. Gel'fand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkháuser, Boston, 1994.
[6] M. I. Gil', Operator Functions and Localization of Spectra, Lecture Notes In Mathematics, Springer-Verlag, Berlin, vol. 1830, 2003.
[7] M. I. Gil', Localization and Perturbation of Zeros of Entire Functions, CRC Press, Taylor and Francis Group, New York, 2009.
[8] V. B. Kolmanovskii and A. D. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1992.
[9] P. Kravanja and M. Van Barel, Computing the Zeros of Analytic Functions, Springer, NY, 2000.
[10] K. C. Chang, Methods in Nonlinear Analysis, Springer, NY, 2005.
[11] G. Milovanović, D. Mitrinović, and T. Rassias, Topics in Polynomials: Extremal problems, Inequalities, Zeros, World Sci. Publ., 1994.
[12] R. Reissig, G. Sansone and R. Conti, Nonlinear Differential Equations of High Order, Noordhoff International Publishing, Leiden, 1974.
[13] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
[14] B. Sturmfels, Solving Systems of Polynomial Equations, Regional Conference Series in Mathematics, Amer. Math. Soc., R.I., no. 97, 2002.
[15] J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1982.
[16] S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Applied Mathematics Letters, 13 (8) (2000).
[17] E. Zeidler, Nonlinear Functional Analysis and its Applications, Fixed-Point Theorems, Springer-Verlag, New York, 1986.

[^0]: *Corresponding author
 Email address: gilmi@bezeqint.net (M. Gil')

