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Abstract

We consider the coupled system F (x, y) = G(x, y) = 0, where

F (x, y) = 0m1Ak(y)xm1−k and G(x, y) = 0m2Bk(y)xm2−k

with entire functions Ak(y), Bk(y). We derive a priory estimates for the sums of the roots of the
considered system and for the counting function of roots.
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1. Introduction and Statements of the Main Result

Let us consider the system

F (x, y) = G(x, y) = 0, (1.1)

where

F (x, y) =

m1∑
k=0

Ak(y)xm1−k and G(x, y) =

m2∑
k=0

Bk(y)xm2−k (x, y ∈ C)

with the entire functions

Ak(y) =
∞∑
j=0

akjy
j, Bk(y) =

∞∑
j=0

bkjy
j , k ≥ 1.
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Such systems arise in various applications. In particular, they describe stationary states of various
systems of nonlinear differential equations [12] and functional-differential equations [8]. The basic
methods for the investigations of systems of the type (1.1) are topological methods, in particular, the
fixed point theorems [4, 10, 17]. The other approach for the problem of computing zeros of analytic
mappings (in other words, for solving systems of analytic equations) is the logarithmic residue based
approach. A multidimensional logarithmic residue formula is available in the literature, cf. [2, 9].
That formula involves the integral of a differential form, which can be transformed into a sum of
certain Riemann integrals. The zeros and their respective multiplicities can be computed from these
integrals by solving a generalized eigenvalue problem that has the Hankel structure. Besides, in the
case, when Aj(z) and Bj(z) are polynomials, the literature is very rich, cf. [5, 14] and references
therein.

A few words about the numerical methods in the coupled systems theory. The classical numerical
methods can be found in [15]; recently, the Newton method was considerably developed [3, 16].
Besides the essential role is played the Adomian polynomials [1]. Note that for the application of
the Newton method, the differentiability is required. For the applications of the topological methods
and Newton one, a priory estimates for the roots are often required, however, to the best of our
knowledge, such estimates for (1.1) were not enough considered in the available literature.

A pair of complex numbers (y, x) is a solution of (1.1) if F (x, y) = G(x, y) = 0. Besides x will be
called an X-root coordinate (corresponding to y) and y a Y -root coordinate (corresponding to x).
All the considered roots are counted with their multiplicities. In this paper we suggest the a priory
estimates for the Y -coordinates of the roots of (1.1). Our approach is new and based on the recent
results for matrix-valued functions.

For m = m1 +m2 introduce the m×m-matrices

Cj =



a0j a1j a2j . . . am1−1,j am1,j 0 0 . . . 0
0 a0j a1j . . . am1−2,j am1−1,j am1,j 0 . . . 0
. . . . . . . . . . . . . .
0 0 0 . . . a0,j a1,j a2,j a3,j . . . am1,j

b0j b1j b2j . . . bm2−1,j bm2,j 0 0 . . . 0
0 b0j b1j . . . bm2−2,j bm2−1,j bm2,j 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . b0j b1j b2j b3j . . . bm2,j


(j=0, 1, ... ). It is supposed that C0 is invertible. Put Dj = C0Cj(j!), for a γ ∈ (0, 1], and assume
that the series

Θ0 :=

[
∞∑
k=1

DkD
∗
k

]1/2
converges. (1.2)

Here and below the asterisk means the adjointness. So 0 is an m×m-matrix and under (1.2) by the
Hólder inequality, it follows that the pencil

H0(y) :=
∞∑
k=1

yk

(k!)γ
Dk (y ∈ C)

satisfies the inequality

‖H0(y)‖ ≤ c0

∞∑
k=1

|y|k

(k!)γ
≤ c0

[
∞∑
k=1

2−p
′k

]1/p′ [ ∞∑
k=1

|2y|k/γ

k!

]γ
≤ c1e

γ|2y|1/γ ,
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where γ + 1/p′ = 1, ‖.‖ is the matrix spectral norm, that is the operator norm corresponding to the
Euclidean norm of vectors,

c0 = sup
k
‖Dk‖, c1 = c0

[
02−kp

′
]1/p′

.

So function H0 has order no more than 1/γ.
Put

ωk =

{
λk(Θ0) for k = 1, ...,m,
0 for k = m+ 1,m+ 2, ...

Here and below λk(A) are the eigenvalues of a matrix A counted with their multiplicities and enu-
merated in the decreasing way: |λk+1(A)| ≤ |λk(A)|. Now we are in a position to formulate our main
result.

Theorem 1.1. For a γ ∈ (0, 1], let condition (1.2) hold. Then the Y -roots yk of (1.1) counted with
their multiplicities and enumerated in the nondecreasing way: |ỹk| ≤ |ỹk+1| (k = 1, 2, ...) satisfy the
inequalities

j∑
1

1

|ỹk|
<

j∑
1

[
ωk +

mγ

(k +m)γ

]
(j = 1, 2, ...).

This theorem is proved in the next section.
Note that by Lemma 2.11.3 [6],

‖C0‖ ≤
Nm−1

2 (C0)

(m− 1)(m−1)/2 |det C0|
,

where

N2(C0) =
√
Trace C0C∗0 .

So ‖Θ0‖ ≤ θ0, where

θ0 :=
Nm−1

2 (C0)

(m− 1)(m−1)/2 |det C0|

[
∞∑
k=1

‖Cj‖2
]1/2

.

Thus,

ωk ≤ θ0 for k = 1, ...,m and ωk = 0 for k ≥ m+ 1.

2. Proof of Theorem 1.1

Let Tk, k = 1, 2, ... be n× n-matrices. Consider the entire matrix pencil

H(λ) :=
∑

k = 0∞
λk

(k!)γ
Tk (T0 = In,∈ C), (2.1)

where In is the unit n×n-matrix. The characteristic values of H, that is the zeros of det H(z), with
their multiplicities are enumerated in the nondecreasing way are denoted by zk(H). Suppose that

ΘH :=
[∑

k = 1∞TkT
∗
k

]1/2
converges . (2.2)
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Furthermore, put

ω̂k(H) = λk(ΘH) for k = 1, ..., n and ω̂k(H) = 0 for k ≥ n+ 1.

Let condition (2.2) hold. Then the characteristic values of the pencil H defined by (2.1) satisfy the
inequalities

j∑
k=1

1

|zk(H)|
<

j∑
k=1

[
ω̂k(H) +

nγ

(k + n)γ

]
(j = 1, 2, ...). (2.3)

For the proof see [7, Theorem 12.2.1]. Furthermore, for m = m1 +m2 introduce the m×m Sylvester
matrix

S(y) =



A0 A1 A2 . . . Am1−1 Am1 0 0 . . . 0
0 A0 A1 . . . Am1−2 Am1−1 Am1 0 . . . 0
. . . . . . . . . . . . . .
0 0 0 . . . A0 A1 A2 A3 . . . Am1

B0 B1 B2 . . . Bm2−1 Bm2 0 0 . . . 0
0 B0 B1 . . . Bm2−2 Bm2−1 Bm2 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . B0 B1 B2 B3 . . . Bm2


with Aj = Aj(y) and Bj = Bj(y). So

S(y) =
∞∑
k=0

Cjy
j = C0

∞∑
k=0

Djy
j = H0(y).

As it is well known [11], the Y -roots of (1.1) are the characteristic values of S(y) that is the zeros of
the resultant det S(y). Take into account that

det S(y) = det C0 det H0(y).

Now the required result is due to (2.3).

3. The Counting Function for Roots

Put

χk = ωk +
mγ

(k +m)γ
(k = 1, 2, ...).

The following result is due to the well-known Lemma 1.2.1 [7] and Theorem 1.1.

Corollary 3.1. Let φ(t) (0 ≤ t < ∞) be a continuous convex scalar-valued function, such that
φ(0) = 0. Then under condition (1.2), the inequalities

j∑
k=1

φ (1|ỹk|) <
j∑

k=1

φ(χk) (j = 1, 2, ...)

are valid. In particular, for any r ≥ 1,

j∑
k=1

1

|ỹk|r
<

j∑
k=1

χrk
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and thus[
j∑

k=1

1

|ỹk|r

]1/r
<

[
j∑

k=1

ωrk

]1/r
+mγ

[
j∑

k=1

1

(k +m)rγ

]1/r
(j = 1, 2, ...).

Furthermore, assume that

rγ > 1, r ≥ 1. (3.1)

Then

ζm(γr) :=
∑
k=1

∞ 1

(k +m)rγ
<∞.

Relation (3.1) with the notation

Nr(Θ0) = [
∑
k=1

mλrk(Θ0)]
1/r

yields our next result:

Corollary 3.2. Let conditions (1.2) and (3.1) hold. Then

(
∞∑
k=1

1

|ỹk|r
)1/r < Nr(Θ0) +mγζ1/rm (γr).

Since ỹj ≤ ỹj+1, from (1.3), it follows that |yj| > ηj where

ηj :=
j∑j

k=1[ωk + mγ

(k+m)γ
]
.

We thus get our next result.

Corollary 3.3. Under the hypothesis of Theorem 1.1, system (1.1) has in |z| ≤ ηj no more than
j − 1 Y -root coordinates; in particular, in |z| ≤ η1 system (1.1) does have Y -root coordinates.

Let νY (r) be the counting function of the Y -roots (1.1) in |z| ≤ r. We thus get the inequality
νY (r) ≤ j − 1 for any r ≤ ηj.
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