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Abstract

The analytical solutions for an important generalized Nonlinear evolution equations NLEEs dynam-
ical partial differential equations (DPDEs) that involve independent variables represented by the (2
+ 1)-dimensional breaking soliton equation, the (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff
(CBS) equation, and the (2 +1)-dimensional Bogoyavlenskii’s breaking soliton equation (BE), and
some new exact propagating solutions to a generalized (3+1)-dimensional KP equation with variable
coefficients are constructed by using a new algorithm of the first integral method (NAFIM) and
determined some analytical solutions by appointing special values of the parameters. In addition to
that, we showed a new variety and unique travelling wave solutions by graphical illustration with
symbolic computations.

Keywords: First integral method, Nonlinear evolution equations, Solitary waves solutions,
Graphical representation, Symbolic computation

1. Introduction

The present research highlights, the effects of the numerical and analytical solutions to the NLEEs
which have become of great importance due to the important role that solutions of these equations
play in our sciences life. NLEEs describe complex phenomena which arise in the field of nonlinear sci-
ences such as NLEEs describe complex phenomena which originated in the field of nonlinear sciences,
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the most important of them are mathematical physics, elastic media, nonlinear optics, chaos theory,
viscoelasticity, engineering, and so on [4, 6, 8, 16, 26, 28]. The necessary of solitons is because of their
presence in a variety of nonlinear differential equations depict many nonlinear phenomena, Industry
, nonlinear optics, telecommunication, solid-state physics ,and condensed matter [30, 33]. Nonlinear
phenomena are inspected in many applications such as plasma physics, hydrodynamics, biological
phenomena, meteorology, quantum mechanics, oceans, etc [36]. Now it is well established that the
studies of NLEEs are thriving, by mathematicians and physicists, because these equations depict
and discuss the real countenance in a set an of science, engineering and technology fields. Physicists
usually discuss the behaviour of the equations for the physical systems, while Mathematicians have
been developed new methods for solving these equations as the modified simple equation method
[19], the (G

′
/G)-expansion method [11], homotopy perturbation method [31], tanh–coth method[14],

first integral method [1, 12, 21], and so on [5, 29].
The formula of the generalized (2 + 1)-dimensional dynamical partial differential equation [13,

23, 24] is
uxt + auxuxy + buxxuy + uxxxy = 0 (1.1)

Where a and b are permeates. Newly, There are different cases of Eq. (1.1) were investigated in
[2, 25].

We’ll get the (2 + 1)-dim CBS equation if chosen a = 4 and b = 2 in Eq. (1.1)

uxt + 4uxuxy + 2uxxuy + uxxxy = 0 (1.2)

We’ll get the (2 +1)-dimensional Bogoyavlenskii’s breaking soliton equation if chosen a = 4
and b = 4 in Eq. (1.1)

uxt + 4uxuxy + 4uxxuy + uxxxy = (1.3)

We’ll get the (2 +1)-dimensional breaking soliton equation if chosen a = −4 and b = −2 in Eq.
(1.1)

uxt − 4uxuxy − 2uxxuy + uxxxy = (1.4)

We have another application, the (3+1)-dimensional generalized KP equation in the form

uxt + uyt + uxxxy + 3(uxuy)x − uzz = 0 (1.5)

This equation was investigated in [17, 18].
This paper consists of first section Preliminaries and Basic Definitions First integral method, a new

algorithm of first integral method (AFIM) formula was introduced in second section. Section three
includes two parts, first obtained some new and general traveling wave solutions for different types
of the generalized (2+1)-dimensional NLEE. In second part some new exact propagating solutions
to a generalized (3+1)-dimensional KP equation was constricted by this method. Section four is the
graphical representation for all solutions were obtained presented in different figures. Results and
discussions for these solutions introduced in five section. Last section represent conclusions.

2. Basic Concepts of FIM

The NPDEs of general formula as

w(f, fx, ft, fxx, fxt, · · · ) (2.1)

Conceder u(x, y, z, t) a solution of (2.1), by applying to the wave transforms:

u(x, y, z, t) = f(ζ), ζ = x+ y + z − ct (2.2)
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The eq. (2.1) transforms to ODE we get:

w
(
f, f

′
, f
′′
, · · ·

)
, (2.3)

A new independent variable:
x(ζ) = f(ζ), y(ζ) = f

′
(ζ), (2.4)

the system of ODE

x
′
(ζ) = y(ζ)

y
′
(ζ) = F (x(ζ), y(ζ))

(2.5)

with the qualitative theory of differential equation [37], will obtained an integral of eq. (2.5). Thus
we will get a general solution to the eq. (2.5) directly. On the whole, finding the first integration
is not easy. So, will applying the Division theorem to choice first integral for eq. (2.5), The exact
solution of eq.(2.1) gained by solving eq. (2.5), Now let us rendering the important theorem in this
method.

Theorem 2.1 (The Division Theorem). [10] Assume two polynomials Φ(x, y) and Ψ(x, y) of in-
dependent variables x and y in complex space C[x, y] and Φ(x, y) is irreducible in C[x, y]. If Ψ(x, y)
vanishes at all zero points of Φ(x, y), then there exists a polynomial β(X, Y ) in C[x, y] such that
Ψ(X, Y ) = Φ(X, Y )β(X, Y ).

3. New Algorithm of the First Integral Method (NAFIM)

By applying the FIM to the form

u
′′
(ζ)− T

(
u(ζ, u

′
(ζ))

)
u
′
(ζ)−R (u(ζ)) = 0 (3.1)

Then T
(
u, u

′)
= 0 and R(u) are polynomials with real coefficients.

Now choose T
(
u, u

′)
= 0, and R (u) = Au2 +Bu, so eq. (3.1) change, and becomes

u
′′
(ζ)− Au2(ζ)−Bu(ζ) = 0 (3.2)

Using eq. (2.4) and eq. (2.5), then eq. (3.2) becomes a system of ODEs

X
′
(ζ) = Y (ζ)

Y
′
(ζ) = AX2(ζ) +BX(ζ)

(3.3)

Now, applying the Division theorem to eq. (3.3), there are nontrivial solutions and
q(X, Y ) =

∑M
i=0 ai(X)Y i, which is an irreducible polynomial in C[X, Y ], thus

q[X(ζ), Y (ζ)] =
M∑
i=0

ai(X(ζ))Y i(ζ) = 0 (3.4)

ai (X) ; {i = 0, 1, 2, . . . ,M}are polynomials and aM (X) 6= 0. By depending on the Division
Theorem we will get a polynomial as g(X) + h (X)Y in a complex domain C [X, Y ] where
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dq

dζ
=

dq

dX
.
dX

dζ
+
dq

dY
.
dY

dζ
=
(
g(X)X + h(X)Y

) M∑
i=0

ai(X)Y i (3.5)

We start by sopping M = 1 in eq. (3.5) gives

1∑
i=0

a
′

i (X)Y i+1 +
1∑
i=0

iai (X)Y i−1 (AX2 + BX
)

= ( g(X) + h(X)Y )

(
1∑
i=0

ai (X)Y i

)
(3.6)

Equating the coefficients Y i (i = 2, 1, 0) we have;

a
′

1 (X) = a1 (X)h (X) (3.7a)

a
′

0 (X) = a1 (X) g (X) + a0 (X)h (X) (3.7b)

a1 (X)
(
AX2 + BX

)
= a0 (X) g (X) (3.7c)

from eq. (3.7a), we conclude that a1 (X) is a constant, we take a1 (X) = 1, and h(X) = 0. And
balancing the degrees of g(X), a1 (X) anda0 (X), we deduce that degree g(X) = 1 only, then
chosen g(X) = A0X + B0, then we find a0 (X) from eq. (3.7b)

a0 (X) =
A0X

2

2
+ B0X + C0, (3.8)

Where C0 is an arbitrary integration constant. Then we get a system of nonlinear algebraic
equations by substituting a1 (X) , a0 (X) and g (X) in eq. (3.7c) and taking all the coefficients of
powers X to be zero, when solve this system we have

{A = 0, B = 0, A0 = 0, B0 = 0, C0 = C0},
{A = 0, B = B2

0 , A0 = 0, B0 = B0, C0 = 0},

by the first set we get the travail solution, so neglected and we take only the second set of solutions
and substituting in eq. (3.5) we obtain

Y (ζ) = ±
√
BX (ζ) , (3.9)

respectively. Combining eq. (3.9) with eq. (2.5), we have

X1 (ζ) = C1e
√
B, X2 (ζ) = C1e

−
√
Bζ

Y1 (ζ) =
C1

(
1
2
C1Ae

2
√
Bζ +Be

√
Bζ
)

√
B

+ C2, (3.10a)

Y2 (ζ) = −1

2

C2
1Ae

−2
√
Bζ

√
B

− C1

√
Be−

√
Bζ + C2 (3.10b)

Now when M = 2 in eq. (3.5), and q (X, Y ) = 0 this implies dq
dζ

= 0,

2∑
i=0

a
′

i (X)Y i+1 +
2∑
i=0

iai (X)Y i−1 (AX2 + BX
)

= ( g(x) + h(X)Y )

(
2∑
i=0

ai (X)Y i

)
(3.11)
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We will obtain a system of ODEs when equating the coefficients of Y i (i = 3, 2, 1, 0) for eq. (3.11),

a
′

2 (X) = a2 (X)h (X) (3.12a)

a
′

1 (X) = a2 (X) g (X) + a1 (X)h (X) (3.12b)

a
′

0 (X) + 2a2 (X)
(
AX2 + BX

)
= a1 (X) g (X) + a0 (X)h (X) (3.12c)

a1 (X)
(
AX2 + BX

)
= a0 (X) g (X) (3.12d)

from eq. (3.12a), we conclude that a2 (X) is a constant, h(X) = 0. we set a2 (X) = 1, By
taking a2 (X) = 1, for simplicity, and balancing the degrees of g(X), a1 (X) and a0(X), we deduce
the degree g (X) = 1 only, a summing that g(X) = A0X + B0 then we collect the a1 (X), and
a0 (X)from eq. (23b) & eq. (3.12c)

a1 (X) =
1

2
A0X

2 +B0X + C0, where C0 is a constant integration. (3.13a)

a0 (X) =
1

8
A0X

4 +
1

2
A0B0X

3 +
1

2
B2

0X
2 +

1

2
A0C0X

2 +B0C0X −
2

3
AX3 −BX2 +D0 (3.13b)

by choosing a constant integration D0 to be zero and combining equation eq. (3.13a) & eq. (3.13b)
with eq. (3.12d), when chosen all the coefficients of powers X to be zero, we obtained a system of
nonlinear algebraic equations, and solve it we obtian

{A = 0, B =
1

4
B

2

0
, A0 = 0, B0 = B0, C0 = 0} (3.14a)

{A = A, B = B, A0 = 0, B0 = 0, C0 = 0}, (3.14b)

{A = 0, B = 0, A0 = 0, B0 = 0, C0 = C0} (3.14c)

from (3.14a) we get solutions same as case M=1. While using eq. (3.14b)(24b) in eq. (3.5), we
obtain:

Y1 =
1

3

√
6AX + 9B X, Y2 = −1

3

√
6AX + 9B X (3.15)

Respectively, combining equation eq. (3.11) with eq. (2.4)

X1 (ζ) = X2 (ζ) =
3

2

B

(
tanh

(
1
2
ζ
√
B + 1

2
C1

√
B
)2
− 1

)
A

, (3.16)

then

Y (ζ) =
3

2

B
3
2 sinh

(
1
2

√
B + 1

2
C1

√
B
)

A cosh
(

1
2

√
B + 1

2
C1

√
B
)3 + C2, (3.17)

when using eq. (3.14c) in eq. (3.5), and then eq. (2.5) we obtain:

X (ζ) = − C0 + C1 (3.18)

Y (ζ) =
1

3
A3C2

0 − A 2C1C0 −
(

1

2

)
B2C0 + AC2

1 +BC1 + C2. (3.19)

Equations (3.10a), (3.10b), (3.17) and (3.19) represent the general solutions for differential equations
of the form eq. (2.2).
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4. Application the generalized (2 + 1)-dimensional dynamical partial differential equa-
tion

From introduction of our paper the formula of the generalized (2 + 1)-dimensional dynamical
partial differential equation is

uxt + auxuxy + buxxuy + uxxxy = 0

By eq. (2.2) we get
− cf ′′ + (a+ b)f

′′
f
′
+ f

′′′′
= 0, (4.1)

integrate eq. (4.1) we have

− cf ′ + (a+ b)

2

(
f
′
)2

+ f
′′′

= 0, (4.2)

to reduce the order of the derivation, suppose that X (ζ) = f
′
and Y (ζ) = f

′′
, then eq. (4.2) becomes

− cX +
(a+ b)

2
X2 +X

′′
= 0, (4.3)

by comparing with eq. (3.3) and according to concept of the first integral method we get

X
′
(ζ) = Y (ζ), (4.4)

Y
′
(ζ) = cX ()− (a+ b)

2
X2 () (4.5)

Then we get A = − (a+b)
2

and B = c.
From eq. (3.10a) and eq. (3.10b) when M = 1, we get

Y1 (ζ) =
C1

(
− (a+b)

4
C1e

2
√
c + ce

√
c
)

√
c

+ C2, (4.6a)

Y2 (ζ) =
(a+ b)

4

C2
1e
−2
√
c

√
c
− C1

√
ce−

√
c + C2, (4.6b)

Then to get the solution of eq. (4.2) must be integrating equations (4.6a) and (4.6b), so it’s become

f1 (ζ) =
1

2

C1

(
− (a+b)

4
C1e2

√
c

√
c

+ 2
√
ce
√
c
)

√
c

+ C2 + C3, (4.7a)

f2 (ζ) =
− (a+ b)

8

C2
1e
−2
√
c

c
− C1e

−
√
c + C2 + C3 (4.7b)

Also from eq. (3.17) and eq. (3.19) when M = 2 we get

Y3 (ζ) = − 3

(a+ b)

c
3
2 sinh

(
1
2

√
c + 1

2
C1

√
c
)

cosh
(
1
2

√
c + 1

2
C1

√
c
)3 + C2 , (4.8)

Y4 (ζ) = −(a+ b)

6
ζ3C2

0 +
(a+ b)

2
ζ2C1C0 −

(
1

2

)
cζ2C0 −

(a+ b)

2
C2

1ζ + cC1ζ + C2, (4.9)

integrating equations (4.8) and (4.9), we have

f3 (ζ) =
3

(a+ b)

c

cosh
(
1
2

√
c + 1

2
C1

√
c
)3 + C2 + C3, (4.10)

f4 (ζ) = −(a+ b)

24

4

C2
0 +

(a+ b)

6
3C1C0 −

(
1

6

)
c3C0 −

(a+ b)

4
C2

1ζ
2 +

c

2
C2

1 + C2 + C3, (4.11)
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5. The (2 + 1)-dimensional (CBS) equation

The CBS equation was introduced by two scientists Bogoyavlenskii and Schiff. Where, Bogoy-
avlenskii utilized the modified Lax formalism, while, the scientist Schiff used a different method to
obtain CBS equation, by curtailments the self-dual Yang–Mills equation [10, 27, 15] The formula of
(CBS) equation can be written be as

uxt + 4uxuxy + 2uxxuy + uxxxy = 0

Then a = 4 and b = 2, leads to A = −3 and B = c , and by equations (4.7a), (4.7b), (4.10) and
(4.11), the analytical solutions of (CBS) equation become

u1 (x, y, t) =
1

2

C1

(
−3

2
C1e2

√
c(x+y−ct)
√
c

+ 2
√
ce
√
c(x+y−ct)

)
√
c

+ C2 (x+ y − ct) + C3, (5.1)

u2 (x, y, t) =
−3

4

C2
1e
−2
√
c(x+y−ct)

c
− C1e

−
√
c(x+y−ct) + C2 (x+ y − ct) + C3, (5.2)

u3 (x, y, t) =
1

2

c

cosh
(√

c
2

(x+ y − ct) + 1
2
C1

√
c
)3 + C2(x+ y − ct) + C3, (5.3)

u4 (x, y, t) = −1

4
(x+ y − ct)4C2

0 +

(
C1C0 −

(
cC0

6

))
(x+ y − ct)3 +

(
c

2
C1 −

3

2
C2

1

)
?

(x+ y − ct)2 + C2(x+ y − ct) + C3, (5.4)

6. The (2 +1)-dimensional Bogoyavlenskii’s breaking Soliton equation

This equation was investigated by Bogoyavenskii, which specializes in studying the wave Riemann
scattered along the x-axis with a wave on the y-axis [15]. With formula of equation as

uxt + 4uxuxy + 4uxxuy + uxxxy = 0

Then a = 4 and b = 4. Then parameters A, B of this equation becomeA = − (a+b)
2

= −8
2

=
−4 and B = c , and according to equations (4.7a), (4.7b), (4.10) and (4.11) we have the exact
solutions as

u1 (x, y, t) =
1

2

C1

(
− C1e2

√
c(x+y−ct)
√
c

+ 2
√
ce
√
c(x+y−ct)

)
√
c

+ C2 (x+ y − ct) + C3, (6.1)

u2 (x, y, t) = −C
2
1e
−2
√
c(x+y−ct)

c
− C1e

−
√
c(x+y−ct) + C2 (x+ y − ct) + C3, (6.2)

u3 (x, y, t) =
3

8

c

cosh
(√

c
2

(x+ y − ct) + 1
2
C1

√
c
)3 + C2 (x+ y − ct) + C3, (6.3)

u4 (x, y, t) = −1

3
(x+ y − ct)4C2

0 +

(
4C1C0

3
–

(
cC0

6

))
(x+ y − ct)3 +

( c
2
C1 − 2C2

1

)
?

(x+ y − ct)2 + C2(x+ y − ct) + C3, (6.4)
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7. The (2 + 1)-dimensional breaking Soliton equation

We’ll obtain this equation if chosen a = −4 and b = −2 in Eq. (1.1):

uxt − 4uxuxy − 2uxxuy + uxxxy = 0

Then we get A = 3 and B = c , and by equations (4.7a), (4.7b), (4.11) and (5.1), the analytical
solutions given as

u1 (x, y, t) =
1

2

C1

(
3
2
C1e2

√
c(x+y−ct)
√
c

+ 2
√
ce
√
c(x+y−ct)

)
√
c

+ C2(x+ y − ct) + C3, (7.1)

u2 (x, y, t) =
3

4

C2
1e
−2
√
c(x+y−ct)

c
− C1e

−
√
c(x+y−ct) + C2 (x+ y − ct) + C3, (7.2)

u3 (x, y, t) =
1

2

c

cosh
(√

c
2

(x+ y − ct) + 1
2
C1

√
c
)3 + C2(x+ y − ct) + C3, (7.3)

u4 (x, y, t) =
1

4
(x+ y − ct)4C2

0 +

(
C1C0 −

(
cC0

6

))
(x+ y − ct)3 +

(
c

2
C1 −

3

2
C2

1

)
?

(x+ y − ct)2 + C2(x+ y − ct) + C3, (7.4)

8. The generalized (3+1)-dimensional KP equation

The (3+1)-dimensional KP equation is integrable and discusses the evolution of shallow-water
waves when viscosity and the surface tension are less [32].

uxt + uyt + uxxxy + 3(uxuy)x − uzz = 0

By eq. (2.2), we get

−cf ′′ − cf ′′ + f
′′′′

+ 3

((
f
′
)2)′

− f ′′ = 0, (8.1)

− (2c+ 1) f
′′

+ 3

((
f
′
)2)′

+ f
′′′′

= 0, (8.2)

Integrate eq. (8.2) we have

− (2c+ 1) f
′
+ 3

(
f
′
)2

+ f
′′′

= 0, (8.3)

To reduce the order of the derivation, suppose that X (ζ) = f
′

and Y () = f
′′
then eq. (8.3) becomes

− (2c+ 1)X + 3X2 +X
′′

= 0, (8.4)

by comparing with eq. (3.3) and according to concept of the first integral method we get

X
′
(ζ) = Y (ζ),

Y
′
(ζ) = (2c+ 1)X (ζ)− 3X2 (ζ) ,

(8.5)
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then we get A = −3 and B = (2c+ 1) with integrating equations (3.10a), (3.10b), (3.17) and
(3.19), we have the exact solutions of eq. (1.5) as form

u1 (x, y, z, t) =
1

2

C1

(
−3

2
C1e2

√
2c+1(x+y+z−ct)
√
2c+1

+ 2
√

2c+ 1e
√
2c+1(x+y+z−ct)

)
√

2c+ 1
+ C2 (x+ y + z − ct) + C3,

(8.6)

u2 (x, y, z, t) =
−3

4

C2
1e
−2
√
2c+1(x+y+z−ct)

2c+ 1
− C1e

−
√
2c+1(x+y+z−ct) + C2 (x+ y + z − ct) + C3, (8.7)

u3 (x, y, z, t) =
1

2

2c+ 1

cosh
(
1
2

(x+ y + z − ct)
√

2c+ 1 + 1
2
C1

√
2c+ 1

)3 + C2 (x+ y + z − ct) + C3,

(8.8)

u4 (x, y, z, t) = −1

4
(x+ y + z − ct)4C2

0 +

(
C1C0 −

(
C0

6

)
(2c+ 1)

)
(x+ y + z − ct)3

+

(
(2c+ 1)

2
C1 −

3

2
C2

1

)
(x+ y + z − ct)2 + C2(x+ y + z − ct) + C3, (8.9)

9. Graphical representation

The aims of this part are to give the illustrations of our new solutions in different dimensions,
the physical descriptive we given more completely about the illustrations of eq. (1.2), eq. (1.3), eq.
(1.4) and eq. (1.5) by using Maple.
Figure 1 Includes two figures 1.1 and 1.2 of the Plots for the solitary wave solutions
u1( x, y, t), u2( x, y, t), u3( x, y, t), and u4( x, y, t) of eq. (1.2) with m = 1 and m = 2 respec-
tively when A = −4, B = c = 0.05, C0 = 1, C1 = 1, C2 = 1, C3 = 1, t = 0.01, where
(F12 − a1) , (F12 − b1) , (F22 − a2) and (F22 − b2) are the plotting of three dimensions with dif-
ferent sides, (F12 − c1) and (F22 − c2) are the contour plotted with same values. In figure 1.1,
(F11 − d1) and (F11 − f1) is the complex plotting with the values B = c = −2 and y = 0.01.
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Figure 2 represents with two figures 2.1 and 2.2 of the Plots for u1 ( x, y, t) , u2 ( x, y, t) , u3 ( x, y, t) ,
and u4( x, y, t) of eq. (1.3) with m = 1 and m = 2 respectively when A = −4, B = c = 0.05, C0 =
1, C1 = 1, C2 = 1, C3 = 1, t = 0.01, where (F12 − a1) , (F12 − b1) , (F22 − a2) and (F22 − b2) are the
plotting of three dimensions with different sides, (F12 − c1) and (F22 − c2) are the contour plotted
with same values, but in figure 1.1, (F12 − d1) and (F12 − f1) are the complex plotting with the
values y = 0.01 and B = c = −1,−1.05 respectively.
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Figure 3 includes figures 3.1 and 3.2 of the Plots for u1 ( x, y, t) , u2 ( x, y, t) , u3 ( x, y, t) , and u4( x, y, t)
of eq. (4) with m=1 and m=2 respectively when A = 3, B = c = 0.05, C0 = 1, C1 = 1, C2 =
1, C3 = 1, t = 0.01, where (F13 − a1) , (F13 − b1) , (F23 − a2) and (F23 − b2) are the plotting
of three dimensions with different sides, (F12 − c1) and (F22 − c2) are the contour plotted with
same values, but in figure 1.1, (F13 − d1) and (F13 − f1) are the complex plotting with the val-
ues y = 0.01 and B = c = −2 and y = 0.01. respectively.
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Figure 4 represent with two figures 4.1 and 4.2 of the Plots for u1 ( x, y, z, t) , u2 ( x, y, z, t) , u3 ( x, y, z, t) ,
and u4 ( x, y, z, t) of eq. (1.5) with m = 1 and m = 2 respectively when A = −4, B = 2c + 1, c =
0.05, C0 = 1, C1 = 1, C2 = 1, C3 = 1, t = 0.01, where (F14 − a1) , (F14 − b1) , (F24 − a2) and (F24 − b2)
are the plotting of three dimensions with different sides, (F14 − c1) and (F24 − c2) are the contour
plotted with same values, but in figure 1.1, (F14 − d1) and (F14 − f1) are the complex plotting with
the values y = 0.01 and B = c = −1,−1.05 respectively.
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10. Result and discussion

In this section, we compare the similarity and differences new families of solutions which are was
gained using our recently suggest technique with the help of contemporary software (Maple) and
comparing with different Mathematical methods:

� First: In [3, 34] there are some solutions were obtained for the equation (1.1) by using different
methods, but in this paper, a different and new solutions in hyperbolic functions form were
obtained.

� Secondly: In [35, 9] there are some solutions were obtained for the equation (1.4) by using
different methods, but in this paper the results are new and variant. However, the results
are new and variant when the frames are same. These solutions and application of waves are
modern and different from the existing solutions. This method is a powerful tool for obtaining
a new and modern exact solutions of NEEs.
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� Thirdly: in [22, 20] the exact solutions are discussed of equation (1.5) by using different
methods, but in this paper the results are new and variant.

However, the results of these solutions and application of waves are modern and different from the
existing solutions. This method is a direct tool for get new and modern exact solutions of nonlinear
equations.

11. Conclusion

In this text, we obtained new and different solution of a (2 + 1)-dimensional generalized (NLEEs)
including independent variables, and some new propagating solutions to a generalized (3+1)-dimensional
KP equation with variable coefficients using solutions by (NAFIM). The gained solution it is impor-
tant for explain the nonlinear phenomena in physics. The summary, that newly method is successful
and direct can be used in many nonlinear phenomena in physics.
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