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Abstract

An analysis is made to examine the viscous dissipation and thermal effects on magneto hydrodynamic
mixed convection stagnation point flow of Maxwell nanofluid passing over a stretching surface. The
governing partial differential equations are transformed into a system of ordinary differential equa-
tions by utilizing similarity transformations. An effective shooting technique of Newton is utilize
to solve the obtained ordinary differential equations. Furthermore, we compared our results with
the existing results for especial cases. which are in an excellent agreement. The effects of sundry
parameters on the velocity, temperature and concentration distributions are examined and presented
in the graphical form. These non-dimensional parameters are the velocity ratio parameter (A), Biot
number (Bi), Lewis number (Le), magnetic parameter (M), heat generation/absorption coefficients
(A∗, B∗), visco-elastic parameters (β), Prandtl number (Pr), Brownian motion parameter (Nb),
Eckert number (Ec), Radiation parameter (R) and local Grashof number (Gc; Gr).

Keywords: Maxwell Nanofluid, Viscous dissipation, Prandtl number, Velocity ratio parameter,
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1. Introduction

During the past few years, investigating the stagnation point flow of nanofluids has become more
popular among the researchers. Nanofluids are formed by the suspension of the nanoparticles in
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conventional base fluids. Examples of such fluids are water, oil or other liquids. The nanoparticles
conventionally made up of carbon nanotubes, carbides, oxides or metals, are used in the nanofluids.
Keen interest has been taken by many researchers in the nanofluids as compared to the other fluids
because of their significant role in industry, medical field and a number of other useful areas of
science and technology. Some prominent applications of these fluids are found in magnetic cell
separation, paper production, glass blowing, cooling the electronic devices by the cooling pad during
the excessive use, etc. Choi [1] introduced the idea of nanofluids for improving the heat transfer
potential of the conventional fluids. He experimentally concluded with an evidence that injection of
these particles helps in improving the fluid’s thermal conductivity. This conclusion opened the best
approach to utilize such fluids in mechanical engineering, chemical engineering, pharmaceuticals and
numerous different fields. Buongiorno [2], Kuznetsov and Nield [3] followed him and extended the
investigation. They worked on the effects of Brownion motion in convactive transport of nanofluids
and the investigation of natural convactive transport of nanofluids passing over a vertical surface in
a situation when nanoparticles are dynamically controlled at the boundary. Khan and Pop [4] used
this concept to evaluate the laminar boundary layer flow, nanoparticles fraction and heat transfer
for nanofluids passing over a stretching surface. Zheng et al. [5] explored the effects of radiation
on the flow and heat transfer of nanofluids past a stretched surface with temperature jump and
velocity slip in a porous media. Impact of radiation upon the heat and mass transfer of the fluids
is of remarkable consideration at high operating temperature. In the fluid of engineering, many
procedures are executed at high temperature. In such situations, the analysis of the radiation heat
transfer plays a key role for the selection of an appropriate equipment. Examples of such fields
are atomic and nuclear power plants, artificial satellites, the gas turbines, aircraft industry, missiles
manufacturing and wind-turbines etc. Takhar et al. [6] examined the impact of radiation on the
magnetohydrodynamic free convection spill for non-gray gas over a semi-infinite plumb surface. Ghaly
and Elbarbary [7] delineated the consequences of radiation on the free convection flow of a gas
under the MHD effect across a stretching surface with uniform free stream. Devi and Kayalvizhi
[8] delivered the analytical solution of MHD flow with radiation passing over a stretching sheet in a
porous medium. In industrial sector and modern technology, the non-Newtonian fluids play a vital
role.

Non-Newtonian fluids have some interesting applications as they are used in the manufacturing of
sports shoes, flexible military suits and viscous coupling. Rising inception of the non-Newtonian fluids
like emulsions, molten plastic pulp, petrol and many other chemicals has triggered an appreciable
interest in the study of the behavior of such fluids during motion. The mathematical solutions
of the models involving the non-Newtonian fluids, are quite interesting and physically applicable.
Makinde [9] investigated the buoyancy effect on magnetohydrodynamic stagnation point flow and
heat transfer of nanofluids passing over a convectively heated stretching/shrinking sheet. The MHD
flow characteristics of a viscoelastic fluid passing over a stretched surface, were studied by Andersson
[10]. Later, this work was extended by M. I. Char [11] by including an analysis of the mass transfer.
Second order incompressible fluid flows were examined by Marcovitz and Coleman [12]. Rajagopal
[13] investigated the unsteady and undirectional flow of a non-Newtonian fluid. Later, Rajagopal
and Gupta [14] presented an exact solution of a mathematical model describing the flow of non-
Newtonian fluid passing over a porous infinite plate. Siddique et al [15] employed the hodograph
trans- formation technique for the mathematical investigation of the flow of non-Newtonian fluid.
Some inverse solutions of the non-Newtonian fluid models were worked out by Siddiqui and Kaloni
[16]. Chandna and Nguyen [17] used the hodograph transformation technique to get the solution
of the non-Newtonian MHD transverse fluid flow problems. Non-Newtonian fluids flows with MHD
effects across the orthogonal steady plane were examined by Nguyen and Chandna [18]. The MHD
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fluid passing over a stretched sheet, through the porous media with the thermal radiation and the
thermal conductivity was examined by Cortell [19].

Bhatta et al. [20] observed the unsteady squeezing nanofluid flow based on water between two
disks held parallel to each other in the presence of slip impact. It was observed that an increase in
Lewis number decelerate the nano particle concentration. Farooq et al. [21] presented the melting
heat transfer effect in the squeezing flow of nanofluid over a Darcy porous medium. They analyzed
that the temperature distribution increases for the dominating values of thermophoresis parame-
ter. Gholinia et al. [22] analyzed the different physical impacts such as slip flow and magnetic
field on Eyring-Powell fluid along with the homogenous-heterogenous reactions due to rotating disk
and conclude that temperature profile is decreased with increasing Pr increased with increasing
Nt.G.Narender et al. [23] examined the heat transfer in the nanofluid flow along with the viscous
dissipation.

Our prime objective is, we provide the detailed review of Ibrahim and Haq [24]. The numerical
results in [24], were acquired by using bvp4c. We reproduce the same results by Adams -Bashforth
Moulton fourth order method and additionally by the shooting method. We have extended the flow
model of [24], scrutinize the viscous dissipation and thermal radiation effects on the MHD mixed
convection stagnation point flow of Maxwell nanofluid over a stretching surface.

2. Problem formulation

We consider the magnetohydrodynamic boundary layer flow of Maxwell nanofluid near the stag-
nation point over a stretching surface with mixed convection. The coordinates system has been
chosen in such a way that x−axis is in the direction of the stretching surface and y− axis is in the
direction normal to the surface.

Figure 1: Geometry for the flow under consideration.

Assume that there isn’t any flux of nanoparticles at surface. The impact of the thermophoresis
has been considered in the boundary conditions. At the surface, the velocity of stretching surface
is uw (x) = ax, where ”a” is some constant. The flow is directed to a transverse magnetic field B0

which is supposed to be applied in the direction of positive y−axis, perpendicular to the surface.
Extending the idea of Ibrahim and Haq. [24], the governing PDEs of the MHD mixed convection
stagnation point flow of Maxwell nanofluid along with the viscous dissipation, chemical reaction,
thermal radiation parameter and non-uniform internal heat source effects can be written as
Continuity equation
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Physical principal: Mass is conserved
∂u

∂x
+
∂v

∂y
= 0, (2.1)

Momentum equation
Physical principle: F = ma

u
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In equation (2.2). u is the velocity components along x direction and v represent velocity components
along the y directions respectively, p the fluid pressure, ρf the nanofluid density, ρp the density of
the particles, v the kinematic viscosity of the base fluid.
Energy equation
Physical principle: Energy is conserved
By using the boundary layer approximations, the boundary layer equation of energy for fluid tem-
perature T is
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Mass transfer equation

u
∂C

∂x
+v

∂C

∂y
=DB

(
∂C
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)2

+

(
DT

T∞

)
∂2T
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−K1 (C − C∞) , (2.4)

In above equations, T is the temperature of the nanofluids and the ambient temperature is T∞
respectively. C is nanoparticles concentration, C∞ shows the free stream concentration. Brownian
diffusion coefficient DB, DT denotes the thermophoretic diffusion coefficient.
Where, q′′′ represents the temperature and space dependent heat generation and

q′′′ =
Kuw (x)

x v
{A∗ (Tf − T∞) f ′ +B ∗ (T − T∞)}

where A∗ is space dependent and B∗ is temperature dependent heat generation. It is observed that
A∗ < 0 and B∗ < 0 mean heat absorption whereas in opposite case they communicate generation. In
equation (2.4), K1 (C − C∞) denotes the chemical reaction term, where K1 is the chemical reaction
parameter.
The associated boundary conditions for the above system of equations are,

u = uw = ax, v = 0, −k ∂T
∂y

= hf (Tf − T ) , DB
∂C
∂y

+ DT

T∞
∂T
∂y

= 0 at y = 0,

u→ U∞ = bx, v = 0, T → T∞, C → C∞ as y →∞

}
(2.5)

The radiative heat flux qr is given as

qr =
−4σ∗

3k∗
∂T 4

∂y
(2.6)

where σ∗ and k∗ stand for the Stefan-Boltzmann constant and coefficient of mean absorption, and
T 4 is the linear sum of temperature and it can expand with the help of Taylor series along with T∞

T 4 = T 4
∞ + 4T 3

∞ (T − T∞) + 6T 2
∞(T − T∞)2 + . . . (2.7)
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Ignoring the terms with higher order in (T − T∞), we get

T 4 = 4T 3
∞T − 3T 4

∞ (2.8)

substituting (2.8) into (2.6), we get

qr =
−16T 3

∞σ
∗

3k∗
∂T

∂y
(2.9)

3. Dimensionless form of the model

To convert the PDEs (2.1)-(2.4) along with the BCs (2.5) into the dimensionless form, we use the
similarity transformation [20]:

η = y

√
c

ν
, ψ =

√
cνxf (η) , θ (η) =

T − T∞
Tf − T∞

, φ (η) =
C − C∞
Cw − C∞

. (3.1)

In above, ψ(x, y) denotes stream function obeying

u =
ψ

∂y
, ν = − ψ

∂x
(3.2)

The equation of continuity (2.1) is satisfied identically. The governing equations (2.2)- (2.4) are
reduced into the following nonlinear ODEs:

f ′′′ + ff ′′ − f ′2 − A2 +M(A− f ′) + β
(
f 2f ′′′ − 2ff ′f ′′

)
+Grθ +Gcφ = 0, (3.3)(

1 +
4

3
R

)
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(
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2
)

+ A∗f ′ +B∗θ = 0, (3.4)

φ′′ + Le Pr f φ′ +
Nt

Nb
θ′′ − χ LePrφ = 0. (3.5)

The associated boundary conditions (2.5) get the form:

f (0) = 0, f ′ (0) = 1, θ′ (0) = −Bi [1− θ (0)] , Nbβ′ (0) +Nt′(0) = 0, at η = 0, (3.6)

f ′ (∞)→ A, θ(∞)→ 0, β(∞)→ 0 as η →∞ (3.7)

Different parameters used in the above equations have the following formulations:
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DB
,
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a
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K
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a
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,
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In this problem, the desired physical quantities are the local Nusselt number Nux and the skin-friction
coefficient Cf . These quantities are defined as

Cf =
tw
ρu2w

, Nux =
xqw

k((Tw − T∞)
(3.9)

Here, the wall heat flux qw and the wall shear stress tw are given as

tw = µ

(
∂u

∂y

)
y=0

, qw = −k
(
∂T

∂y

)
y=0

(3.10)
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With the help of above equations, we get

Cf
√
Rex = −f ′′ (0) ,

Nux√
Rex

= −θ′ (0) (3.11)

where Rx = ax2

ν
is the local Reynolds number.

4. Numerical results

In this Section, the scheme for the numerical solution of the system of three coupled ODEs (3.3)-
(3.5) with BCs (3.6)-(3.7) will be discussed. Because of its efficiency, the shooting technique has
been preferred to apply. First, the system of equations (3.3)-(3.5) will be transmuted into a system
of ODEs. We can write

f ′′′ =
1

1 + βf 2

[
−ff ′′ + f ′

2 − A2 −M(A− f ′) + 2βff ′f ′′ −Grθ −Gcφ
]

(4.1)

θ′′ =
−Pr(

1 + 4
3
R
) (fθ′ +Nbθ′β′ +Ntθ′

2
+ Ecf ′′

2
)
− A∗f ′ −B∗θ (4.2)

φ′′ = −Le Pr f φ′ − Nt

Nb
θ′′ + χ LePrφ = 0 (4.3)

By using the following notations

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ′ = y5, φ = y6, φ′ = y7 (4.4)

the above system of coupled nonlinear ODEs is converted into the following system of seven first
order equations:

y′1 = y2,

y′2 = y3,

y′3 =
1

1 + βy21

[
−y1y3 + y22 − A2 −M (A− y2) + 2βy1y2y3 −Gry4 −Gcy6

]
,

y′4 = y5,

y′5 =
−Pr

1 + 4
3
R

[
y1y5 +Nby1y7 +Nty25 + Ecy23

]
− A∗y2 −B∗y4

y′6 = y7,

y′7 = −Le Pr y1y7 −
Nt

Nb
y′5 + χPry6

The resulting form of the boundary conditions is

y1 (0) = 0, y2 (0) = 1, y5 (0) = Bi ( y4 (0)− 1) , y7 (0) = −Nt
Nb

y5 (0) ,

y2 → A, y4 → 0, y6 → 0 as η →∞

To execute the numerical procedure, the unbounded domain [0,∞) has been replaced by [0, ηmax]
for some suitable choice of ηmax. An asymptotic convergence of the numerical solution is observed
by increasing the value of ηmax. The above initial value problem will be solved by Adams-Bashforth-
Moulton Method of order four. The shooting method requires some initial guess for y3 (η), y4 (η)
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and y6 (η) at η = 0. The initial guess are updated by the Newton’s method until a solution of the
problem which approximately meets the given boundary conditions at the right end of the domain.

In order to validate the code adopted for the numerical solution of equations governing the natural
convective flow, the comparison of current results with some of the earlier published work on free
convection [24] are displayed in Table 1 and Table 2. Excellent agreement of current results with
those previously published results encourage us to use the present code. The physical parameters, the
local skin-friction coefficient Cf and the local Nusselt number Nux, are of great interest for engineers
and mathematicians. The skin-friction coefficient examines the viscous stress acting on the surface
of the body whereas the local Nusselt number Nux is the ratio between the convective heat transfer
and the conductive heat transfer at the surface of the body.

Table 1: Numerical results of −f ′′(0) and −θ′′(0) for different values of A, M, β, χ, Le and Bi with Gr = Gc =
0.1, P r = 1.0, Nb = Nt = 0.3, A∗ = 0.4, B∗ = 0.7

A M β χ Le Bi −f ′′(0) −θ′′(0)
[24] Present Results [24] Present Results

0.1 0.1 0.6 0.6 0.2 0.2 1.243941 1.243942000 0.325186 0.325186000
0.2 1.189946 1.189947000 0.591051 0.591053700
0.3 1.242064 1.242061000 1.484108 1.484087000

0.5 1.084907 1.084908000 0.395633 0.395631100
1.0 1.243941 1.243942000 0.325186 0.325185600
1.5 1.390760 1.390761000 0.288612 0.288611700

0.4 1.277225 1.277225000 0.304179 0.304180400
0.6 1.243941 1.243942000 0.325186 0.325185700
0.8 1.211603 1.211604000 0.351818 0.351817700

0.0 1.227885 1.227886000 0.331895 0.331895900
0.6 1.243941 1.243942000 0.325186 0.325185600
0.9 1.247504 1.247505000 0.323943 0.323943900

0.2 1.243941 1.243942000 0.325186 0.325185600
0.6 1.254848 1.254848000 0.321263 0.321263200
1.0 1.258224 1.258224000 0.321617 0.321617400

0.1 1.240617 1.240617000 0.165669 0.165670200
0.2 1.243941 1.243942000 0.325186 0.325185600
0.3 1.247096 1.247097000 0.478489 0.478490400

Table 1 and 2 include the numerical values of Cf and Nux denoted by −f ′′(0) and −θ′′(0) re-
spectively, for different physical parameters. It is observed that increasing the values of the magnetic
parameter, thermal Grashof number, Brownian motion parameter, space dependent heat genera-
tion/absorption coefficient, chemical reaction parameter, Lewis number, Biot number, enhances the
local skin-friction coefficient. Furthermore, the skin friction coefficient decreases by enlarging the
values of viscoelastic parameter, solutal Grashof number, thermophoresis parameter, time dependent
heat generation/absorption coefficient, whereas it shows a mixed behavior by increasing the velocity
ratio parameter and Prandtl number. The Nusselt number shows an increasing behavior for the
velocity ratio parameter, the viscoelastic parameter, the solutal Grashof number, the thermophore-
sis parameter, the space dependent heat generation/absorption coefficient and the Biot number. It
shows a decreasing behavior for the magnetic parameter, the thermal Grashof number, the Brown-
ian motion parameter, the time dependent heat generation/absorption coefficient and the chemical
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Table 2: Numerical results of −f ′′(0) and −θ′′(0) for different values of Gr, Gc, Pr, Nb, Nt, A∗ and B∗ with
A = 0.1,M = 1.0, β = χ = 0.6, Le = Bi = 0.2.

Gr Gc Pr Nb Nt A∗ B∗ −f ′′(0) −θ′′(0)
[24] Present Results [24] Present Results

0.1 0.1 1.0 0.3 0.3 0.4 0.7 1.243941 1.243942000 0.325186 0.325185600
0.0 1.179313 1.179314000 0.405135 0.405134600
0.1 1.243941 1.243942000 0.325186 0.325185600
0.2 1.278005 1.278006000 0.284902 0.284902800

0.1 1.243941 1.243942000 0.325186 0.325185600
0.2 1.224684 1.224685000 0.342247 0.342247700
0.3 1.201199 1.201200000 0.361681 0.361682400

1.0 1.243941 1.243942000 0.325186 0.325185600
3.0 1.185067 1.185067000 0.075197 0.075197930
5.0 1.197508 1.197509000 0.131813 0.131813700

0.3 1.243941 1.243942000 0.325186 0.325185600
0.5 1.250604 1.250605000 0.318870 0.318870000
0.7 1.253289 1.253290000 0.316238 0.316238600

0.0 1.255546 1.255547000 0.297469 0.297469700
0.1 1.252189 1.252191000 0.305726 0.305726200
0.3 1.243941 1.243942000 0.325186 0.325185700

0.1 1.222541 1.222542000 0.232237 0.232237200
0.2 1.230012 1.230013000 0.264929 0.264929900
0.4 1.243941 1.243942000 0.325186 0.325186100

0.7 1.243941 1.243942000 0.325186 0.325186100
0.8 1.232713 1.232714000 0.271875 0.271875800
0.9 1.225808 1.225810000 0.237573 0.237573900

reaction parameter. It is also noticed that the Nusselt number shows a mixed behavior for Prandtl
number and Lewis number.

5. Graphical results

The objective is to inspect governing parameters on the velocity, temperature and concentration
distribution in this Section.

5.1. Velocity ratio parameter

Figure 2 designates that by increasing the value of A (A > 1), the thickness of hydrodynamic
boundary layer increases, and it decreases by decreasing the value of A (A < 1). Physically, when the
free stream velocity is more than the stretching velocity, the ratio between the free stream velocity
and the stretching velocity is greater than 1, consequently, it decline the retarding force and increase
the flow velocity. The impact of velocity ratio on the temperature θ (η) has been highlighted by
Figure 3. As the value of the velocity ratio is increased, the temperature of the surface decreases at the
surface and furthermore, the thickness of thermal boundary layer declines. Figure 4 demonstrates the
concentration profile φ (η) under the influence of the velocity ratio parameter. It has the decreasing
effects on the concentration profile near the wall. It increases a little bit away from the wall and a
little further away from the wall it starts decreasing again.
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5.2. Magnetic Parameter

Figure 5 depicts the impact of M on the dimensionless velocity f
′
. Here, by increasing the value of

M , velocity profile gets declines. Figure 6 describes the impact of M on the temperature profile. It
is shown in Figure 5.6 that by increasing the value of the magnetic parameter, temperature profile
θ (η) gets increase. The impact of the magnetic parameter on the dimensionless concentration, is
presented in Figure 7. The concentration profile is found to increase when the magnetic parameter
increases near the surface. It decreases a bit away from the surface and interestingly, it again starts
increasing a bit further away from the surface.

5.3. Prandtl number

The temperature profile decreases with increasing Prandtl number as depicted in Figure 8. The effect
of the variation in the Pr on the concentration profile, is observed in Figure 9. It is notified from
the figure, as the value of Prandtl number rises, the nanoparticles scattered out toward the outward,
consequently, the nanoparticles concentration at the surface decreases.

5.4. Brownian motion parameter

The impact of Brownian motion parameter is witness in Figure 10 that concentration profile increases
by increasing the Nb. Consequently, the Brownian force increases the nanoparticle concentration at
the surface. Thus, the concentration profile increases on the surface, but it is found to decrease a bit
away from the surface.

5.5. Thermophoresis Parameter

Through Figure 11, it can be noticed that by enlarging the thermophoresis parameter, thickness of
boundary layer also increases, which causes an increase in the velocity profile f ′. Figure 12 includes
the graphs of the temperature distribution in thermal boundary layer for various value of the Nt.
It is noticed that if the thermophoesis increases, causing an increase in Nt. Figure 13 describes the
influence of the Nt on the concentration profile. Therefore, when the influence of the thermophoretic
force is enlarged, the concentration profile on the surface declines, which is the opposite in nature to
that of the case of the Brownian motion but a bit away from the wall it starts increasing.

5.6. Lewis number

Similar effects are shown for the temperature profile in Figure 14. The impact of Le on the concen-
tration profile is seen in Figure 15. Increasing the Lewis number, the concentration profile near the
surface increases but a bit away from the surface it starts decreasing by enhancing the influence of
the Lewis number Le.

5.7. Biot number

Figure 16 show the influence of convective heating, also known as the Biot number Bi, on the
temperature distribution respectively. Physically, convective heating Bi can be calculated by dividing
the convaction at the surface to the conduction on the surface of a body. As an impact of the
increasing the Bi, the temperature on the surface increase, which results thickening of the thermal
boundary layer, whereas the Biot number causes a decrease in the concentration profile φ, which is
indeed reflected in Figure 17.
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5.8. Viscoelastic parameter

It is noticed in Figure 18 that as the viscoelastic parameter increases, which causes an increase in
the velocity profile. Figure 19 depicts exactly the opposite effect of viscoelastic parameter on the
temperature profile. The impact of the viscoelastic parameter β on the dimensionless concentration
is presented in Figure 20. The concentration profile is found to decrease when the viscoelastic
parameter increases near the surface. It increases a bit away from the wall and interestingly, it again
starts decreasing a bit further away from the surface.

5.9. Space dependent heat generation/absorption coefficient

Figure 21 delineates the effect of the A∗ on the temperature. The temperature profile is increased by
increasing the value of the space dependent heat generation/absorption coefficient A∗. Effect of the
space dependent heat generation/absorption coefficient on the concentration is shown in Figure 22.
Initially, concentration profile increases by increasing the space dependent heat generation/absorption
coefficient, it starts decreasing a bit away from the surface. Finally, it again increases a bit further
away from the surface.

5.10. Temperature dependent heat generation/absorption coefficient

Figure 23 indicates the impact of the temperature dependent heat generation/absorption B∗ on
the temperature profile. This figure describes that by increasing the temperature dependent heat
generation/absorption B∗, temperature profile increases. It is seen from Figure 24 that by increasing
the value of the temperature dependent heat generation/absorption, the concentration profile shows
an interesting behavior. Initially, near the wall it increases, then decreases a bit away from the wall
and again it starts increasing a bit further away from the wall.

5.11. Chemical reaction parameter

Effect of on the concentration is included in Figure 25. The concentration distribution increases with
the increasing values of but a bit away from the surface it starts decreasing.

5.12. Solutal Grashof number

The effect of the solutal Grashof number on the velocity profile is presented in Figure 26. Increasing
the solutal Grashof number Gc, the velocity profile is observed to increase. Also observed that by
increasing the solutal Grashof number, initially, the concentration profile decreases near the surface.
It increases a bit away from the surface and then again it starts decreasing a bit further away from
the surface.

5.13. Thermal Grashof number

The effect of the Gr on the velocity profile is shown in Figure 27. It is noticed that the thermal
Grashof number contributes to increase the velocity profile if all other parameters that appear in
the velocity field are kept constant. Figure 28 designates that by increasing the value of the thermal
Grashof number, the temperature profile decreases. In Figure 29, the concentration profile shows an
interesting behavior for different values of the thermal Grashof number. Figure delineates that by
increasing the thermal Grashof number, initially, the concentration profile decreases near the wall.
It increases a bit away from the wall and then again it starts decreasing a bit further away from the
wall.
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5.14. Eckert number

Figure 30 shows that by increasing the Eckert number, the velocity profile increases. Boundary layer
decreases. In Figure 31, it indicates that increasing the value of Eckert number Ec has the enhancing
effect on temperature profile. The physical reason behind it is that an increment in the dissipation
enhances the thermal conductivity of the fluid which causes an enhancement in the thermal boundary
layer and increases the thermal boundary layer thickness in the flow field. It is noticed from Figure
5.43 that concentration profiles first decrease near the sheet surface and situation is completely
reversed in the other part of the boundary layer flow.

5.15. Radiation parameter

Figure 32 and 33 shows the effect of thermal radiation on temperature and concentration profile
respectively. Figure 34 shows the influence of R on the temperature profile. From this graph, by
increasing R, the temperature profile is enhanced. Thus, the boundary layer thickness is increased,
and also observed by increasing R concentration profile is decreasing.

Figure 2: Dimensionless Velocity vs A when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, β = 0.2, A∗ =
0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 3: Dimensionless Temperature vs A when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1
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Figure 4: Dimensionless Concentration vs A when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 5: Dimensionless Velocity vs M when A = 0.2, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, β = 0.2, A∗ =
0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 6: Dimensionless temperature vs M when A = 0.2, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 7: Dimensionless Concentration vs A when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1
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Figure 8: Dimensionless temperature vs Pr when A = 0.2, M = 2.5, Nb = Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 9: Dimensionless concentration vs Pr when A = 0.2, M = 2.5, Nb = Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 10: Dimensionless concentration vs Nb when A = 0.2, M = 2.5, P r = 2, Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 11: Dimensionless Velocity vs Nt when A = 0.2, M = 2.5, P r = 2, Nb = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1
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Figure 12: Dimensionless temperature vs Nt when A = 0.2, M = 2.5, P r = 2, Nb = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 13: Dimensionless concentration vs Nt when A = 0.2, M = 2.5, P r = 2, Nb = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 14: Dimensionless temperature vs Le when A = 0.2, M = 2.5, Nb = Nt = 0.5, P r = 2, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 15: Dimensionless concentration vs Le when A = 0.2, M = 2.5, Nb = Nt = 0.5, P r = 2, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1
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Figure 16: Dimensionless temperature vs Bi when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, A = 0.2, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 17: Dimensionless Concentration vs A when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, β =
0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 18: Dimensionless Velocity vs β when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r = 2, A∗ =
0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 19: Dimensionless temperature vs β when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1
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Figure 20: Dimensionless concentation vs β when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 21: Dimensionless temperature vs A∗ when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, β = 0.2, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 22: Dimensionless concentration vs A∗ when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, β = 0.2, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 23: Dimensionless temperature vs B∗ when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, β = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1
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Figure 24: Dimensionless concentration vs B∗ when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, β = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 25: Dimensionless concentration vs χ when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 26: Dimensionless Velocity vs Gc when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, Gr = 0.1, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 27: Dimensionless Velocity vs Gr when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, χ = 0.5, Gc = 0.1, Ec = 0.2 and R = 0.1
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Figure 28: Dimensionless temperature vs Gr when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, χ = 0.5, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 29: Dimensionless Concentration vs Gr when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, χ = 0.5, Gc = 0.1, Ec = 0.2 and R = 0.1

Figure 30: Dimensionless Velocity vs Ec when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, χ = 0.5, Gc = 0.1, Gr = 0.1 and R = 0.1

Figure 31: Dimensionless Temperature vs Ec when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, χ = 0.5, Gc = 0.1, Gr = 0.1 and R = 0.1
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Figure 32: Dimensionless Concentration vs Ec when M = 2.5, P r = 2, Nb = Nt = 0.5, Le = 5, Bi = 5, P r =
2, A∗ = 0.1, B∗ = 0.2, β = 0.2, χ = 0.5, Gc = 0.1, Gr = 0.1 and R = 0.1

Figure 33: Dimensionless Temperature vs R when A = 0.2, M = 2.5, P r = 2, Nt = Nb = 0.5, Le = 5, Bi =
5, β = 0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, and Ec = 0.2

Figure 34: Dimensionless concentration vs R when A = 0.2, M = 2.5, P r = 2, Nt = Nb = 0.5, Le = 5, Bi =
5, β = 0.2, A∗ = 0.1, B∗ = 0.2, χ = 0.5, Gr = 0.1, Gc = 0.1, and Ec = 0.2

6. Conclusion

After a thorough investigation, we have reached the following concluding observation.

1. The velocity profile increases by increasing A but the temperature and concentration profiles
decrease by increasing A.

2. The magnetic parameter M has the same increasing influence on the temperature and the
concentration field but opposite on the velocity field.

3. The velocity field f ′ and the temperature field θ increase by increasing the value of Nt and Bi,
but concentration field φ decreases for both the parameters.

4. The Lewis number Le has an increasing effect on the velocity field f ′ temperature field θ and
concentration field φ.

5. The viscoelastic parameter β has an increasing effect on the velocity profile but decreasing on
the temperature and concentration profiles.
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6. The space dependent heat generation/absorption coefficient A∗ and the temperature dependent
heat generation/absorption coefficient B∗ have an increasing effect on the velocity field f ′,
temperature field θ and concentration field φ.

7. The temperature and concentration fields increase by enlarging the chemical reaction parameter
but the velocity field decreases.

8. The velocity f ′ and the concentration field φ increase by enhancing the solutal Grashof number
Gc and thermal Grashof number Gr but it causes a decrease in the temperature field.

9. Temperature field θ(η) increases with an increase in thermal radiation R whereas it is observed
that concentration decreasing.
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