Right Γ-n-derivations in prime Γ-near-rings

Hiba A. Ahmed a,*

a University of Baghdad, Department of mathematics College of science, Iraq.

(Communicated by Madjid Eshaghi Gordji)

Abstract

The main purpose of this paper is to study and investigate some results of right Γ-n-derivation on prime Γ-near-ring G which force G to be a commutative ring.

Keywords: Prime Γ-near-ring, Γ-n-derivation

1. Introduction

Throughout this paper, a Γ-near ring is a triple $(G,+,\Gamma)$, where (i) $(G,+)$ is a (not necessarily abelian) group; (ii) Γ is a non-empty set of binary operations on G such that for each $\gamma \in \Gamma$, $(G,+,\gamma)$ is a left near-ring (iii) $s\gamma(r\mu c) = (s\gamma r)\mu c$, for all $s,r,c \in G$ and $\gamma,\mu \in \Gamma$ [5, 7, 8]. And G will denote a zero–symmetric left Γ-near ring with multiplicative center $Z(G)$. For a Γ-near-ring G, the set $G_0 = \{s \in G : 0ps = 0, \forall p \in \Gamma\}$ is called zero symmetric part of G. If $G = G_0$, then G is called zero symmetric [8, 9]. A Γ-near-ring G is said to be prime Γ-near-ring if $s\Gamma Gr = 0$ implies $s = 0$ or $r = 0$, for every $s,r \in G$ and it said to be semiprime if $s\Gamma Gs = 0$ implies $s = 0$ for every $s \in G$ [7, 8]. The other commutators are; $[s,r]_\rho = s\rho r – r\rho s$ and $(s,r) = s + r – r$s r denote the additive-group commutator [1, 2]. Γ-near-ring G is called commutative if $(G,+)$ is abelian [2, 3].

An additive mapping $h : G \times G \times \cdots \times G \longrightarrow G$ is said to be Γ-n-derivation if the relations

\[
h(x_1, x_2, \ldots, x_n) = h(x_1, x_2, \ldots, x_n)\gamma x_n' + \sum_{\eta = 1}^{n} x_\eta \gamma h(x_1, x_2, \ldots, x_n')
\]

\[
h(x_1, x_2, \ldots, x_n) = h(x_1, x_2, \ldots, x_n)\gamma x_2' + \sum_{\eta = 2}^{n} x_\eta \gamma h(x_1, x_2, \ldots, x_n')
\]

\[
\vdots
\]

\[
h(x_1, x_2, \ldots, x_n) = h(x_1, x_2, \ldots, x_n)\gamma x_n' + \sum_{\eta = n}^{1} x_\eta \gamma h(x_1, x_2, \ldots, x_n')
\]

Hold for all $x_1, x_2, x_3, \ldots, x_n, x_n' \in G$.

*Corresponding Author: Hiba A. Ahmed

Email address: hiba.ahmed@sc.uobaghdad.edu.iq (Hiba A. Ahmed a,*)

Received: March 2021 Accepted: June 2021
An n-additive mapping $h : \underbrace{G \times G \times \cdots \times G}_{n\text{-times}} \to G$ is said to be right Γ-n-derivation if the relations

\[
h(x_1 x_1', x_2, \ldots, x_n) = h(x_1, x_2, \ldots, x_n) \gamma x_1' + h(x_1, x_2, \ldots, x_n) \gamma x_1
\]

\[
h(x_1, x_2 x_2', \ldots, x_n) = h(x_1, x_2, \ldots, x_n) \gamma x_2' + h(x_1, x_2, \ldots, x_n) \gamma x_2
\]

\[\vdots\]

\[
h(x_1, x_2, \ldots, x_n \gamma x_n') = h(x_1, x_2, \ldots, x_n) \gamma x_n' + h(x_1, x_2, \ldots, x_n) \gamma x_n
\]

Hold for all $x_1, x_1', x_2, x_2', x_n, x_n' \in G$ and $\gamma \in \Gamma$.

In this work, we defined the concept Γ-n-derivation and right Γ-n-derivation. Also we investigate the commutativity of addition and multiplication of Γ-near-rings satisfying certain identities involving Γ-$[1, 2, 3, 4, 5]$ on commutativity of prime Γ-near-ring on which admits suitably constrained right Γ-n-derivations. The purpose of this paper is to study and generalize some results of $\underline{1} \underline{2} \underline{3} \underline{4} \underline{5}$ on commutativity of prime Γ-near-ring on which admits suitably constrained right Γ-n-derivations.

2. Preliminary results

We begin with the following lemmas which are essential for developing the proofs of our main results.

Lemma 2.1. Let G be a prime Γ-near-ring. There exists an element u of $Z(G)$ such that $u + u \in Z(G)$, then $(G, +)$ is abelian.

Lemma 2.2. Let G be a Γ-near-ring admitting right Γ-n-derivation h, then for every $s_1, s_1', \ldots, s_n, r \in G$ and $\gamma, \beta \in \Gamma$,

\[
\{h(s_1, s_2, \ldots, s_n) \gamma s_1' + h(s_1, s_2, \ldots, s_n) \gamma s_1\} \beta r = h(s_1, s_2, \ldots, s_n) \gamma s_1' \beta r + h(s_1, s_2, \ldots, s_n) \gamma s_1 \beta r
\]

Proof. Assume that

\[
h((s_1 \gamma s_1') \beta r, s_2, \ldots, s_n) = h(s_1 \gamma s_1, s_2, \ldots, s_n) \beta r + h(r, s_2, \ldots, s_n) \beta (s_1 \gamma s_1')
\]

\[
= (h(s_1, s_2, \ldots, s_n) \gamma s_1' + h(s_1, s_2, \ldots, s_n) \gamma s_1) \beta r + h(r, s_2, \ldots, s_n) \beta (s_1 \gamma s_1').
\]

Also

\[
h(s_1 \gamma (s_1' \beta r), s_2, \ldots, s_n) = h(s_1, s_2, \ldots, s_n) \gamma s_1' \beta r + h(s_1' \beta r, s_2, \ldots, s_n) \gamma s_1
\]

\[
= h(s_1, s_2, \ldots, s_n) \gamma s_1' \beta r + h(s_1', s_2, \ldots, s_n) \beta r \gamma s_1 + h(r, s_2, \ldots, s_n) \beta (s_1 \gamma s_1')
\]

Combining the above two relations, we get

\[
(h(s_1, s_2, \ldots, s_n) \gamma s_1' + h(s_1, s_2, \ldots, s_n) \gamma s_1) \beta r = h(s_1, s_2, \ldots, s_n) \gamma s_1' \beta r + h(s_1, s_2, \ldots, s_n) \gamma s_1 \beta r
\]

\[\square\]

Lemma 2.3. Let G be a prime Γ-near-ring admitting a nonzero right Γ-n-derivation h of G and $a \in G$. If $h(G, G', \ldots, G') \gamma a = \{0\}$, then $a = 0$.

Proof. Suppose that $h(x_1, x_2, \ldots, x_n) \gamma a = 0$, for all $x_1, x_2, \ldots, x_n \in G$ and $\gamma \in \Gamma$.

Putting $x_1 \beta s$ instead of x_1 where $s \in G$ and $\beta \in \Gamma$ in pervious equation we get $h(x_1 \beta s, x_2, \ldots, x_n) \gamma a = 0$. So we get $h(s, x_2, \ldots, x_n) \Gamma G a = \{0\}$. Since $h \neq 0$ and G is a prime Γ-near-ring, we conclude that $a = 0$. \[\square\]

Lemma 2.4. Let G be a prime Γ-near-ring and let h be a nonzero right Γ-derivation of G and $a \in G$. If $h(G) \gamma a = \{0\}$, then $a = 0$.

3. Main results

Theorem 3.1. Let G be a prime Γ-near-ring and h be a nonzero right Γ-derivation of G. If $h(G, G, \ldots, G) \subseteq Z$ and h is a nonzero right Γ-derivation, there exist nonzero elements $x_1, x_2, \ldots, x_n \in G$, such that \((x_1, x_2, \ldots, x_n) \in Z \setminus \{0\} \). We have \((x_1 + x_2, x_2, \ldots, x_n) = (x_1, x_2, \ldots, x_n) + h(x_1, x_2, \ldots, x_n) \in Z \). By Lemma 2.1 we obtain that $(G, +)$ is abelian.

By hypothesis we get \(h(y_1, y_2, \ldots, y_n) \gamma y = y \gamma h(y_1, y_2, \ldots, y_n) \), for all $y, y_1, y_2, \ldots, y_n \in G$ and $\gamma \in \Gamma$. Now replacing y_1 by $y_1 \beta s$ where $s \in G$ in previous equation, we get

\[
(h(y_1, y_2, \ldots, y_n) \beta s + h(s, y_2, \ldots, y_n) \beta y_1) \gamma y = y \gamma (h(y_1, y_2, \ldots, y_n) \beta s + h(s, y_2, \ldots, y_n) \beta y_1)
\]

(1)

By definition of h we get \(h(y_1, y_2, \ldots, y_n) \beta y_1 = h(y_1, y_2, \ldots, y_n) \beta y_1 + h(y_1, y_2, \ldots, y_n) \beta y_1 \) (2).

Thus \(h(y_1, y_2, \ldots, y_n) = h(y_1, y_2, \ldots, y_n) \beta y_1 + h(y_1, y_2, \ldots, y_n) \beta y_1 \) (3).

Since $(G, +)$ is abelian, from equation (2) and (3) we conclude that

\[h(y_1, y_2, \ldots, y_n) = h(y_1, y_2, \ldots, y_n) \beta y_1, \beta y_2, \ldots, y_n \]

for all $y_1, y_2, \ldots, y_n \in G$ and $\beta \in \Gamma$.

So we get $h(y_1, y_1', y_2, \ldots, y_n) = 0$ for all $y_1, y_1', y_2, \ldots, y_n \in G$ and $\beta \in \Gamma$.

Replacing y_1 by $y_1 \gamma y_1$ in previous equation and using it again, we get $h(y_1, y_2, \ldots, y_n) \gamma G \Gamma[y_1, y_1'] = \{0\}$ for all $y_1, y_1', y_2, \ldots, y_n \in G$.

Primeness of G implies that for each $y_1 \in G$. either $h(y_1, y_2, \ldots, y_n) = 0$ for all $y_2, \ldots, y_n \in G$ or $y_1 \in Z$. If $h(y_1, y_2, \ldots, y_n) = 0$, then equation (1) takes the form $h(y_1, y_2, \ldots, y_n) \gamma G \Gamma[y_1, y_1'] = \{0\}$.

Since $h \neq 0$, primeness of G implies that $y_1 \in Z$. Hence we find that $G = Z$, we conclude that G is a commutative ring.

Corollary 3.2. Let G be a prime Γ-near-ring and h be a nonzero right Γ-derivation of G. If $h(G) \subseteq Z$, then G is a commutative ring.

Theorem 3.3. Let G be a prime Γ-near-ring then G admit no nonzero right Γ-derivation h such that \(x_1 \gamma h(y_1, y_2, \ldots, y_n) = h(x_1, x_2, \ldots, x_n) \gamma y_1 \), for all $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in G$ and $\gamma \in \Gamma$, then $h = 0$.

Proof. Assume that there is a nonzero right Γ-derivation h of G such that \(x_1 \gamma h(y_1, y_2, \ldots, y_n) = h(x_1, x_2, \ldots, x_n) \gamma y_1 \), for all $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in G$ and $\gamma \in \Gamma$. (4).

Substituting $y_1 \beta z_1$ for y_1, where $z_1 \in G$ in equation (4), we get

\[x_1 \gamma h(y_1, y_2, \ldots, y_n) = h(x_1, x_2, \ldots, x_n) \gamma y_1 \beta z_1. \]

Thus, \(x_1 \gamma h(y_1, y_2, \ldots, y_n) \beta z_1 + x_1 \gamma h(z_1, y_2, \ldots, y_n) \beta y_1 = h(x_1, x_2, \ldots, x_n) \gamma y_1 \beta z_1. \)

Using equation (4) in previous equation we get \(x_1 \gamma h(z_1, y_2, \ldots, y_n) \beta y_1 = 0. \)

By primeness of G implies that $h(z_1, y_2, \ldots, y_n) \beta y_1 = 0$. Now replacing y_1 by $y_1 \gamma h(z_1, y_2, \ldots, y_n)$ in previous equation we get $h(z_1, y_2, \ldots, y_n) \gamma G \Gamma h(z_1, y_2, \ldots, y_n) = \{0\}$. Since G is prime Γ-near-ring implies that $h = 0$. □

Corollary 3.4. Let G be a prime Γ-near-ring and h be a right Γ-derivation such that $x \gamma h(y) = h(x) \gamma y$ for all $x, y \in G$ and $\gamma \in \Gamma$, then $h = 0$.

Theorem 3.5. Let G be a prime Γ-near-ring admitting a nonzero right Γ-derivation h on G. If \(h([x, y], x_2, \ldots, x_n) = 0 \) for all $x, y, x_2, \ldots, x_n \in G$ and $\gamma \in \Gamma$ then G is a commutative ring.

Proof. By hypothesis, we have $h([x, y], x_2, \ldots, x_n) = 0$ for all $x, y, x_2, \ldots, x_n \in G$ and $\gamma \in \Gamma$. Replace y by $x \beta y$ in previous equation and using it again we get $h([x, x_2, \ldots, x_n] \beta [x, y], \gamma) = 0$. Replacing y by $y \beta z$ in previous equation, we get $h(x, x_2, \ldots, x_n) \mu [x, z] = 0$ Hence we get
Theorem 3.7. Let \(x, y \in G \), primeness of \(G \) yields either \(x \in Z \) or \(h(x, x_2, \ldots, x_n) = 0 \) for all \(x_2, \ldots, x_n \). (5)

If first case holds then

\[
h(x\gamma t, x_2, \ldots, x_n) = h(t\gamma x, x_2, \ldots, x_n), \quad \forall t, x_2, \ldots, x_n \in G \text{ and } \gamma \in \Gamma.
\]

Its mean \(h(x, x_2, \ldots, x_n) \in Z \). And second case implies \(h(x, x_2, \ldots, x_n) = 0 \) that is \(h(x, x_2, \ldots, x_n) = 0 \) for all \(x, x_2, \ldots, x_n \in G \). That is \(h(G, G, \ldots, G) \subseteq Z \).

Hence we get \(h(x, x_2, \ldots, x_n) \in Z \) for all \(x, x_2, \ldots, x_n \in G \). That is \(h(G, G, \ldots, G) \subseteq Z \).

□

Corollary 3.6. Let \(G \) be a prime \(\Gamma \)-near-ring admitting a right \(\Gamma \)-derivations \(h \), If \(h([x, y]_\Gamma) = 0 \) for all \(x, y \in G \), then \(G \) is a commutative ring.

Theorem 3.7. Let \(G \) be a prime \(\Gamma \)-near-ring and \(h \) be a nonzero right \(\Gamma \)-derivation on \(G \) such that \(h((x \circ y)_\gamma, x_2, \ldots, x_n) = 0 \) for all \(x, y, x_2, \ldots, x_n \in G \) and \(\gamma \in \Gamma \) then \(G \) is a commutative ring.

Proof. Assume that \(h((x \circ y)_\gamma, x_2, \ldots, x_n) = 0 \) for all \(x, y, x_2, \ldots, x_n \in G \) and \(\gamma \in \Gamma \).

Replace \(y \) by \(x\beta y \) in equation (6) we get \(h((x \circ (x\beta y))_\gamma, x_2, \ldots, x_n) = 0 \) Which implies that \(h(x, x_2, \ldots, x_n)\beta(x \circ y)_\gamma = h((x \circ y)_\gamma, x_2, \ldots, x_n)\beta x = 0 \).

Using equation (6) in the preceding equation we get \(h(x, x_2, \ldots, x_n)\beta(x \circ y)_\gamma = 0 \).

Replacing \(y \) by \(x\gamma y \), where \(z \in G \), we get \(h(x, x_2, \ldots, x_n)\beta x\gamma y = -h(x, x_2, \ldots, x_n)\beta x\gamma yz \).

Now substituting the values from equation (7) in the preceding relation we get

\[
h(x, x_2, \ldots, x_n)\beta(y\gamma z) = -h(x, x_2, \ldots, x_n)\beta y\gamma yz \gamma
\]

Hence we get \(h(x, x_2, \ldots, x_n)\Gamma GT[x, z]_\gamma = \{0\} \). Since \(G \) is a prime \(\Gamma \)-near-ring we get either \(x \in Z \) or \(h(x, x_2, \ldots, x_n) = 0 \) for all \(x_2, \ldots, x_n \in G \), for each fixed \(x \in G \).

Which is identical with the equation (5) in Theorem 3.5. Now arguing in the same way in the Theorem 3.5. We conclude that \(G \) is a commutative ring. □

Corollary 3.8. Let \(G \) be a prime \(\Gamma \)-near-ring and let \(h \) be a nonzero right \(\Gamma \)-derivation on \(G \) such that \(h((x \circ y)_\gamma) = 0 \) for all \(x, y \in G \) and \(\gamma \in \Gamma \) then \(G \) is a commutative ring.

Theorem 3.9. Let \(G \) be a prime \(\Gamma \)-near-ring admitting a right \(\Gamma \)-derivation \(h \) of \(G \). If \([h(x, x_2, \ldots, x_n), y]_\gamma \in Z \) for all \(x, y, x_2, \ldots, x_n \in G \) and \(\gamma \in \Gamma \) and \(c\beta x\gamma y = c\beta x\gamma y \) for all \(c, x, y \in G \) and \(\gamma, \beta \in \Gamma \), then \(G \) is a commutative ring.

Proof. Assume that \([h(x, x_2, \ldots, x_n), y]_\gamma \in Z \) for all \(x, y, x_2, \ldots, x_n \in G \) and \(\gamma \in \Gamma \).

Therefore, \([h(x, x_2, \ldots, x_n), y]_\gamma, t]_\beta = 0 \) for all \(x, y, t, x_2, \ldots, x_n \in G \) and \(\gamma, \beta \in \Gamma \).

Replacing \(y \) by \(h(x, x_2, \ldots, x_n)\mu y \) in equation (9) , we get

\[
[h(x, x_2, \ldots, x_n)\mu [h(x, x_2, \ldots, x_n), y]_\gamma, t]_\beta = 0
\]

In view of equation (8), equation (10) assures that

\[
[h(x, x_2, \ldots, x_n), y]_\gamma \Gamma GT[h(x, x_2, \ldots, x_n), t]_\beta = \{0\}
\]

Primeness of \(G \) implies that \([h(x, x_2, \ldots, x_n), y]_\gamma = 0 \) for all \(x, y, x_2, \ldots, x_n \in G \).

Hence \(h(G, G, \ldots, G) \subseteq Z \). And application of Theorem 3.1 assures that \(G \) is a commutative ring.

□

Corollary 3.10. Let \(G \) be a prime \(\Gamma \)-near-ring and let \(h \) be a right \(\Gamma \)-derivation of \(G \). If \([h(x), y]_\gamma \in Z \) for all \(x, y \in G \), then \(G \) is a commutative ring.

Theorem 3.11. Let \(G \) be a prime \(\Gamma \)-near-ring, \(h_1 \) and \(h_2 \) be any two nonzero right \(\Gamma \)-derivations. If \([h_1(G, G, \ldots, G), h_2(G, G, \ldots, G)]_\gamma = \{0\} \) then \((G, +) \) is abelian.

Proof. Assume that \([h_1(G, G, \ldots, G), h_2(G, G, \ldots, G)]_\gamma = \{0\} \).

If both \(z \) and \(z + z \) commute element wise with \(h_2(G, G, \ldots, G) \), then
From equation (11) and (12) the previous equation can be reduced to
\[z\gamma h_2(x_1, x_2, \ldots, x_n) = h_2(x_1, x_2, \ldots, x_n)\gamma z \quad (11) \]
And \((z + z)\gamma h_2(x_1, x_2, \ldots, x_n) = h_2(x_1, x_2, \ldots, x_n)\gamma(z + z) \quad (12)\).
Substituting \(x_1 + x_1\) instead of \(x_1\) in equation (12), we get
\[(z + z)\gamma h_2(x_1 + x'_1, x_2, \ldots, x_n) = h_2(x_1 + x'_1, x_2, \ldots, x_n)\gamma(z + z) \]
From equation (11) and (12) the previous equation can be reduced to
\[z\gamma h_2(x_1 + x'_1 - x_1 - x'_1, x_2, \ldots, x_n) = 0. \quad (i.e.) \]
Putting \(z = h_1(y_1, y_2, \ldots, y_n)\), we get \(h_1(y_1, y_2, \ldots, y_n)\gamma h_2((x_1, x'_1), x_2, \ldots, x_n) = 0\).
By Lemma 2.3 we conclude that \(h_2((x_1, x'_1), x_2, \ldots, x_n) = 0 \quad (13)\).
Since we know that for each \(w \in G\),
\[w\gamma(x_1, x'_1) = w\gamma(x_1 + x'_1 - x_1 - x'_1) = w\gamma x_1 + w\gamma x'_1 - w\gamma x_1 - w\gamma x'_1 = (w\gamma x_1, w\gamma x'_1) \]
Which is again an additive commutator. Putting \(w\gamma(x_1, x'_1)\) instead of \((x_1, x'_1)\) in equation (13) we get \(h_2(w\gamma(x_1, x'_1), x_2, \ldots, x_n) = 0\), for all \(w, x_1, x'_1, x_2, \ldots, x_n \in G\) and \(\gamma \in \Gamma\). i.e.;
\[h_2(w, x_2, \ldots, x_n)\gamma(x_1, x'_1) + h_2((x_1, x'_1), x_2, \ldots, x_n)\gamma w = 0 \]
Using equation (13) in previous equation yields \(h_2(w, x_2, \ldots, x_n)\gamma(x_1, x'_1) = 0\).
Using Lemma 2.3 we conclude that \((x_1, x'_1) = 0\). Hence \((G, +)\) is abelian.

Corollary 3.12. Let \(G\) be a prime \(\Gamma\)-near-ring and \(h_1, h_2\) be any two nonzero right \(\Gamma\)-derivations. If \([h_1(G), h_2(G)]_{\gamma} = \{0\}\) then \((G, +)\) is abelian.

Theorem 3.13. Let \(G\) be a prime \(\Gamma\)-near-ring and \(h_1\) and \(h_2\) be any two nonzero right \(\Gamma\)-derivations. If \(h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y_1, y_2, \ldots, y_n) + h_2(x_1, x_2, \ldots, x_n)\gamma h_1(y_1, y_2, \ldots, y_n) = 0\) for all \(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in G\) and \(\gamma \in \Gamma\), then \((G, +)\) is abelian.

Proof. By our hypothesis we have
\[h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y_1, y_2, \ldots, y_n) + h_2(x_1, x_2, \ldots, x_n)\gamma h_1(y_1, y_2, \ldots, y_n) = 0 \quad (14) \]
Substituting \(y_1 + y'_1\) instead of \(y_1\) in equation (14) we get
\[h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y_1 + y'_1, y_2, \ldots, y_n) + h_2(x_1, x_2, \ldots, x_n)\gamma h_1(y_1 + y'_1, y_2, \ldots, y_n) = 0 \]
for all \(x_1, x_2, \ldots, x_n, y_1, y_1 + y'_1, y_2, \ldots, y_n \in G\) and \(\gamma \in \Gamma\).
Therefore
\[h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y_1, y_2, \ldots, y_n) + h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y'_1, y_2, \ldots, y_n) + h_2(x_1, x_2, \ldots, x_n)\gamma h_1(y_1, y_2, \ldots, y_n) + h_2(x_1, x_2, \ldots, x_n)\gamma h_1(y'_1, y_2, \ldots, y_n) = 0 \]
Using equation (14) again in preceding equation, we get
\[h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y_1, y_2, \ldots, y_n) + h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y'_1, y_2, \ldots, y_n) + h_1(x_1, x_2, \ldots, x_n)\gamma h_2(-y_1, y_2, \ldots, y_n) + h_1(x_1, x_2, \ldots, x_n)\gamma h_2(-y'_1, y_2, \ldots, y_n) = 0 \]
Which means that \(h_1(x_1, x_2, \ldots, x_n)\gamma h_2((y_1, y'_1), y_2, \ldots, y_n) = 0\).
By Lemma 2.3 we obtain \(h_2((y_1, y'_1), y_2, \ldots, y_n) = 0\), for all \(y_1, y'_1, y_2, \ldots, y_n \in G\) and \(\gamma \in \Gamma\). Now putting \(w\gamma(y_1, y'_1)\) instead of \((y_1, y'_1)\), where \(w \in G\) in previous equation and using it again, we get \(h_2(w, y_2, \ldots, y_n)\gamma(y_1, y'_1) = 0\), for all \(w, y_1, y'_1, y_2, \ldots, y_n \in G\) and \(\gamma \in \Gamma\). Using Lemma 2.3 as used in the Theorem 3.11 we conclude that \((G, +)\) is abelian.

Corollary 3.14. Let \(G\) be a prime \(\Gamma\)-near-ring and \(h_1, h_2\) be any two nonzero right \(\Gamma\)-derivations. If \(h_1(x)\gamma h_2(y) + h_2(x)\gamma h_1(y) = 0\), for all \(x, y \in G\), then \((G, +)\) is abelian.
References