Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 1991-1996 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2020.20839.2205



# $C^*$ -metric spaces

M. Mowlavi<sup>a</sup>, M. Mirzavaziri<sup>b,\*</sup>, M.R. Mardanbeigi<sup>a</sup>

<sup>a</sup>Department of Mathematics, Faculty of Science, Science and Research Branch Islamic Azad University, Tehran, Iran <sup>b</sup>Department of Pure Mathematics, Faculty of Science, University of Ferdowsi of Mashhad, P.O.Box 1159-91775, Mashhad, Iran

(Communicated by Madjid Eshaghi Gordji)

#### Abstract

The purpose of this article is to introducing the notion of an  $\mathfrak{A}$ -meter, as an operator valued distance mapping on a set X and investigating the theory of  $\mathfrak{A}$ -metric spaces, where  $\mathfrak{A}$  is a noncommutative  $C^*$ -algebra. We demonstrate that each metric space may be seen as an  $\mathfrak{A}$ -metric space and that every  $\mathfrak{A}$ -metric space  $(X, \delta)$  can be regarded as a topological space  $(X, \tau_{\delta})$ .

*Keywords:*  $C^*$ -algebra,  $C^*$ -metric space, allowance set, downward/upward direct, positive elements. 2010 MSC: 54E35, 54E70, 54A40, 46A03, 30L05.

### 1. Introduction

Mirzavaziri [7] obtained some generalizations of usual metrics as real-valued mappings, which have been given in the last century. His generalizations are in such away that the values of a metric can be mappings.

Let  $\mathfrak{A} = C(\Omega)$  be a commutative unital  $C^*$ -algebra, where  $\Omega$  is a compact Hausdorff topological space. A Hilbert  $\mathfrak{A}$ -module is a right  $\mathfrak{A}$ -module  $\xi$  equipped with an  $\mathfrak{A}$ -valued inner product. The reader is referred to [7] for more information on Hilbert  $C^*$ -modules.

Mirzavaziri [7], construct the ordered positive cone with family of positive elements of commutative unital  $C^*$ -algebra,  $\mathcal{C}(\Omega)$ , and named it  $\mathfrak{A}^+$ . Therefore, with the help of the usual definition of metric and Hilbert  $C^*$ -modules, he find an attractive idea to define the notion of an  $\mathcal{A}$ -valued  $C^*$ metric  $\mathfrak{A}$  on a set X as a mapping from  $X \times X$  into the positive cone  $\mathfrak{A}^+$  for a  $C^*$ -algebra  $\mathfrak{A}$ , and his notation is  $\mathcal{F}$ -metric. He showed that  $\mathfrak{A}^+$  has the axiom of completeness and also the Archimedean

<sup>\*</sup>Corresponding author

*Email addresses:* Mahdi.Mowlavi@gmail.com (M. Mowlavi), mirzavaziri@gmail.com (M. Mirzavaziri), mmardanbeigi@yahoo.com (M.R. Mardanbeigi)

property for non-empty bounded subsets of  $\mathfrak{A}$ , i.e.  $\mathfrak{A}^+$  is an ordered complete set. This is very important for defining an induced topology by  $\mathcal{F}$ -meter. Partial order is necessary  $\leq$  for triangle inequality of  $\mathcal{F}$ . He represented several examples to introduce an induced topology by an  $\mathfrak{A}$ -meter. This topology is defined by using elements of  $\mathfrak{A}^+$  as radius of open neighborhoods and  $\mathcal{R}$ -extended topology, with allowance sets. He prove that any metric space is  $\mathcal{F}$ -metric space and the category of all metric spaces is a proper subset of the category of all extended  $\mathcal{F}$ -metric spaces. He proposed completion of  $\mathcal{F}$ -metric, and checked  $\mathcal{F}$ -metrizability of topological spaces. As an application of the concept of  $\mathcal{F}$ -metrics, he proved that each normal topological space is  $\mathcal{F}$ -metrizable.

In this article we want to introduce the concept of  $C^*$ -metric by using the positive elements of a noncommutative unital  $C^*$ -algebra, that is,  $\mathfrak{A} = B(\mathcal{H})$ , where  $\mathcal{H}$  is a Hilbert space. We select projections, because the family of them is a partial ordered, lattice and it is downwards and upwards directed. The downwards directed property assists us to prove that the intersection of a finitely many open neighborhoods, is again an open neighborhood. Now we can construct the open neighborhood at a point  $x \in X$  with radius  $r \in \mathfrak{A}^+$ . Not far from mind, each metric space is a  $C^*$ -metric space, for every commutative or noncommutative  $C^*$ -algebra  $\mathfrak{A}$ . We show that  $\mathfrak{A}^+$  is ordered complete set, and then develop the theory of  $C^*$ -metric spaces. We will propose a few examples, to define topologies by using elements of  $\mathfrak{A}^+$  as radius of open neighborhoods and  $\mathcal{R}$ -extended topology with allowance sets, as some applications.

#### 2. Preliminaries

In all of the following section  $\mathfrak{A} = B(\mathcal{H})$  is an unital noncommutative  $C^*$ -algebra. An element p in  $\mathfrak{A}$  is called positive (denoted by  $0 \leq p$  or  $p \geq 0$ ) if  $\{\langle px, x \rangle : x \in \mathcal{H}\}$  is a subset of the nonnegative real numbers  $\mathbb{R}^+$ . It is strictly positive (denoted by  $0 \prec p$  or  $p \succ 0$ ) if  $\{\langle px, x \rangle : x \in \mathcal{H}\}$  is a subset of the positive real numbers  $\mathbb{R}^{++}$ . Note that  $p \succ 0$  is not equivalent to p > 0 (i.e.,  $p \geq 0$  and  $p \neq 0$ ). The set of all positive elements and the set of all strictly positive elements of  $\mathfrak{A}$  are denoted by  $\mathfrak{A}^+$  and  $\mathfrak{A}^{++}$ , respectively. Obviously,  $p \in \mathfrak{A}^+$  is strictly positive if and only if it is invertible in  $\mathfrak{A}$ . (see Proposition 3.2.12 of[10]). It can viewed as the  $C^*$ -Archimedean property.

Let  $P(\mathcal{H}) \subseteq \mathfrak{A}^+$  be the set of all projections  $P_\alpha : \mathcal{H} \longrightarrow \mathcal{H}$  with norm  $\|.\|_\infty$  defined by:

$$||P_{\alpha}||_{\infty} = \sup\{||P_{\alpha}x|| : x \in \mathcal{H}, ||x|| \le 1\}$$
$$= \sup\{(\langle P_{\alpha}x, x \rangle)^{\frac{1}{2}} : x \in \mathcal{H}, ||x|| \le 1\}$$

For noncommutative  $C^*$ -algebra, it is important to show that  $\mathfrak{A}^{++}$  is downwards directed, that is, if  $S, T \in \mathfrak{A}^{++}$ , then there is  $Q \in \mathfrak{A}^{++}$  such that  $Q \preceq T$  and  $Q \preceq S$ .

The set of closed subspaces can be partially ordered by inclusion, and it is complete lattice. Every family  $\{Y_{\alpha}\}$  of closed subspaces in  $\mathcal{H}$  possesses an infimum  $\wedge Y_{\alpha}$  and a supremum  $\vee Y_{\alpha}$ , which are, respectively, the intersection of all  $Y_{\alpha}$  and the closure of the subspace generated by all  $Y_{\alpha}$ . Next theorem, help us to define a partial order  $\leq$  in the set of projections. As the next theorem shows, these two orderings coincide, in summary:

$$P \le Q \iff Ran(P) \subseteq Ran(Q).$$

Theorem 2.1. [9]

Let S and T be in  $P(\mathcal{H})$ . The following conditions are equivalent: a) $Ran(S) \subseteq Ran(T)$ , that is,  $S \leq T$ . b) TS = S. c) ST = S. d)  $||Sx|| \le ||Tx||$  for all  $x \in \mathcal{H}$ . e) $S \le T$ .

There is, of course, a correspondent in terms of projections: every family  $\{P_{\alpha}\}_{\alpha \in I}$  of projections has an infimum  $\wedge P_{\alpha}$  and a supremum  $\vee P_{\alpha}$ , which are, respectively, the projection onto the intersection of all  $Ran(P_{\alpha})$  and the projection onto the closure of the subspace generated by all  $Ran(P_{\alpha})$ .

The above discussion clarifies that the set of projections in  $B(\mathcal{H})$  has a lattice structure. In fact, the set of projections forms a complete lattice and it is downwards directed and upwards directed.

The sum of two strictly positive elements of  $\mathfrak{A}^+$  is again strictly positive and if  $T \in \mathfrak{A}^{++}$ , then  $\lambda T \in \mathfrak{A}^{++}$  for all  $\lambda \in \mathfrak{A}^{++}$  [7]. This shows that  $\mathfrak{A}^{++}$  is a cone. Let  $T, S \in \mathfrak{A}^+$ . The notation  $T \triangleleft S$  used for T(x) < S(x) for all  $x \in \mathcal{H}$  with  $S(x) \neq 0$ . The relation  $\lhd$  is transitive on  $\mathfrak{A}^+$ , and  $T \triangleleft S$  implies  $T + Q \triangleleft S + Q$  for all real valued mapping Q with  $T + Q \in \mathfrak{A}^+$ . Note that if  $S \in \mathfrak{A}^{++}$ , then  $T \triangleleft S$  is equivalent to  $T \prec S$ .

**Proposition 2.2.** [7] A positive element p of  $\mathfrak{A}$  is invertible if and only if  $p \geq \lambda \iota$  for some  $\lambda \in \mathbb{R}^{++}$ .

**Proposition 2.3.** [7] A pointwise infimum of any number of elements in  $P(\mathcal{H})$  and a supremum of finitely many elements will again define an element in  $P(\mathcal{H})$ . Furthermore,  $P(\mathcal{H})$  is stable under the addition and under the multiplication with positive real numbers. Finally,  $P(\mathcal{H})$  is closed under uniform convergence.

Let  $\mathfrak{A}^+ = P(\mathcal{H})^+$ , be the set of all positive projection operators on  $\mathcal{H}$ , and let  $\mathfrak{A}^{++} = P(\mathcal{H})^{++}$  be the set of all strictly positive projection operators on  $\mathcal{H}$ . Clearly every operator is continuous with norm topology, will be continuous with weak operator topology.

**Theorem 2.4.** [7] Let  $\mathcal{B}$  be a nonempty subset of  $\mathfrak{A}^+$ . Then  $\inf \mathcal{B}$  exists in  $\mathfrak{A}^+$ . In other words, there is  $T_0 \in \mathfrak{A}^+$  such that  $T_0 \leq T$  for each  $T \in \mathcal{B}$ , and if S is any lower bounded for  $\mathcal{B}$ , then  $S \leq T_0$ .

**Proof**. For each  $T \in \mathcal{B}$  and  $h \in \mathcal{H}$ , we have  $Th \ge 0$ . Thus the set  $\{Th : T \in \mathcal{B}\}$  is a nonempty bounded below subset of  $\mathbb{R}^+$  and so its infimum exists. Let

$$T_0h = \inf\{Th : T \in \mathcal{B}\}.$$

Then  $T_0 \in \mathcal{B}$ . Now let S be a lower bound for  $\mathcal{B}$ . Hence  $Sh \leq Th$  and so Sh is a lower bound for the set  $\{Th : T \in \mathcal{B}\}$ . Thus  $Sh \leq T_0h$  or equivalently  $S \leq T_0$ .  $\Box$ 

The set of positive elements of  $\mathfrak{A}^+$  and  $\mathfrak{A}^{++}$  are ordered, Archimedean, bounded below, downwards and upwards direct, and we use  $\mathfrak{A}$  as the notation of noncommutative  $C^*$ -algebras.

#### 3. $C^*$ -Metric

Similarity between the cone of positive elements of  $\mathfrak{A}$  and  $\mathbb{R}^{++}$  and the notion of positive elements drives thought into introduce the following notion.

**Definition 3.1.** Let X be a set. A mapping  $\delta : X \times X \longrightarrow \mathfrak{A}^+$  is called an  $\mathfrak{A}$ -metric, or an  $\mathfrak{A}$ -metric, if for all  $x, y, z \in X$  the following conditions hold:

(i)  $\delta(x,y) = 0$  if and only if x = y; (ii)  $\delta(x,y) = \delta(y,x)$ ; (iii)  $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$  (triangle inequality). In this case,  $(X,\delta)$  is called a C<sup>\*</sup>-metric space, or an  $\mathfrak{A}$ -metric space.

**Example 3.2.** Let T be a nonzero positive element of  $\mathfrak{A}$ . Then

$$\delta(x,y) = \begin{cases} T & \text{if } x \neq y, \\ 0 & \text{otherwise,} \end{cases}$$

gives an  $\mathfrak{A}$ -metric  $\delta$  on X, which is called the discrete  $\mathfrak{A}$ -metric on X constructed via T.

**Example 3.3.** Let  $X := B(\mathcal{H})$  and let  $\delta(T, S) = | \langle (T - S)x, y \rangle |$  define an  $\mathfrak{A}$ -metric on X. Then

 $\begin{array}{l} 1 - \delta(T,T) = | < (T-T)x, y > | \ge 0, \\ 2 - \delta(T,S) = | < (T-S)x, y > | = | < (S-T)x, y > | = \delta(S,T). \\ For the triangle inequality, we have \\ 3 - \end{array}$ 

$$\delta(T,S) = | < (T-S)x, y > | = | < (T-S \pm Q)x, y > |$$
  
$$\leq | < (T-Q)x, y > | + | < (Q-S)x, y > |$$
  
$$= \delta(T,Q) + \delta(Q,S)$$

for all  $x, y \in \mathcal{H}$  and  $T, S, Q \in X$ . Thus  $\delta(T, S) \leq \delta(T, Q) + \delta(Q, S)$ .

## 4. TOPOLOGY

Let  $(X, \delta)$  be an  $\mathfrak{A}$ -metric space. We can define the ball  $N_r^{\delta}(x)$  centered at  $x \in X$  with radius  $r \in \mathfrak{A}^{++}$  by  $N_r^{\delta}(x) = \{y \in X : \delta(x, y) \triangleleft r\}$ . Open sets and interior points of a subset of X are defined in the usual manner[3] and [4]. Note that  $N_r^{\delta}(x)$  is an open set. If  $y \in N_r^{\delta}(x)$ , then  $\delta(x, y) \triangleleft r$  and for the strictly positive element  $r_0 = r - \delta(x, y)$ , we have  $N_{r_0}^{\delta}(x) \subseteq N_r^{\delta}(x)$ . This shows that y is an interior point of  $N_r^{\delta}(x)$ .

The topology mentioned in the above theorem is called the topology on X induced by the  $\mathfrak{A}$ -metric  $\delta$  and is denoted by  $\tau_{\delta}$ .

We can consider a subset of  $\mathfrak{A} \setminus \{0\}$  as a set of radiuses of our open balls as follows.

**Definition 4.1.** Let  $(X, \delta)$  be an  $\mathfrak{A}$ -metric space. Then  $\mathcal{R}$ , a nonempty subset of  $\mathfrak{A}^+ \setminus \{0\}$ , is called "allowance" with respect to  $\delta$  if (a) it is downward directed, (b) $\lambda \mathcal{R} \subseteq \mathcal{R}$  for each  $\lambda \in \mathbb{R}^{++}$ , and  $(c)\delta(x,y) \triangleleft r$  for some  $r \in \mathcal{R}$  implies the existence of an element  $r_0\mathcal{R}$  and  $\lambda \in \mathcal{R}^{++}$  such that  $r_0 + \delta(x,y) \triangleleft r \triangleleft \lambda r_0$ . The " $\mathcal{R}$ -extended topology" on X induced by  $\delta$ , denoted by  $\tau_{\delta}^{\mathcal{R}}$ , is defined to be the topology on X generated by the topological base  $\{N_r^{\delta}(x)\}_{r\in\mathcal{R},x\in X}$ .

Third condition is required to show that open balls are indeed open. We can view a metric space as an  $\mathfrak{A}$ -metric space, in the following theorem. We will show the balls in (X, d) by  $N^d$  and the balls in  $(X, \delta)$  by  $N_r^{\delta}$ .

The open subsets of an  $\mathfrak{A}$ -metric space form a topology and this will be shown in the following theorem.

**Theorem 4.2.** Let  $(X, \delta)$  be an  $\mathfrak{A}$ -metric space. Then the family of all open subsets of X with respect to  $\delta$  forms a topology on X.

**Proof**. We need to show that for an arbitrary family  $\{N_{r_{\gamma}}^{\delta}(x_{\gamma}) : \gamma \in \Gamma\}$  of open balls, the set  $U = \bigcup_{\gamma \in \Gamma} N_{r_{\gamma}}^{\delta}(x_{\gamma})$  is open. If there is  $\gamma \in \Gamma$  such that  $x \in N_{r_{\gamma}}^{\delta}(x_{\gamma})$ . Then there is  $r_0$  such that  $N_{r_0}^{\delta}(x) \subseteq N_{r_{\gamma}}^{\delta}(x_{\gamma}) \subseteq U$ . So x is an interior point of U.

We have to show that  $V = \bigcap_{j=1}^{n} N_{r_j}^{\delta}(x_j)$ . Let  $x \in V$ , too. Then  $x \in N_{r_j}^{\delta}(x_j)$  and so there are  $s_j \in \mathfrak{A}^{++}$  such that  $N_{s_j}^{\delta}(x) \subseteq N_{r_j}^{\delta}(x_j)$ . Pick an  $r_0 \in \mathfrak{A}^{++}$  such that  $r_0 \triangleleft s_j$  for all  $1 \leq j \leq n$ . (Note that  $\mathfrak{A}^{++}$  is a lattice and downward directed, consequently, and so  $r_0$  exists.) We then have  $N_{r_0}^{\delta}(x) \subseteq V.$ 

**Theorem 4.3.** Suppose that (X, d) is a metric space and that  $0 \neq T \in \mathfrak{A}^+$ . If

 $\delta_T: X \times X \longrightarrow \mathfrak{A}^+$ 

is defined by  $\delta_T(x,y) = d(x,y)T$ , then  $(X,\delta_T)$  is an  $\mathfrak{A}$ -metric space. Let  $\mathcal{R}$  be an allowance set with respect to  $\delta_T$ .

(i) If  $\mathcal{R}$  has the Archimedean property, then  $\tau_{\delta_T}^{\mathcal{R}} = \tau_d$ . (ii) If there is r in  $\mathcal{R}$  such that  $\lambda T \not \lhd r$  for any  $\lambda \in \mathbb{R}^{++}$ , then  $\tau_{\delta_T}^{\mathcal{R}}$  is the discrete topology.

**Proof**. Put  $\delta = \delta_T$ , to prove the triangle inequality for  $\delta$ . We recall that the set of a positive element of  $\mathfrak{A}$  is a positive cone.

(i) We shall show that the family  $\{N_{\lambda T}^{\delta}(x)\}_{\lambda \in \mathbb{R}^{++}, x \in X}$  forms a topological base for  $\tau_{\delta}^{\mathcal{R}}$ . To see this, let  $N_r^{\delta}(x)$  be an arbitrary open ball in  $\tau_{\delta}^{\mathcal{R}}$  and let  $y \in N_r^{\delta}(x)$ . Since  $\mathcal{R}$  is allowance, there is  $r_0 \in \mathcal{R}$ such that  $r_0 \triangleleft r - \delta(x, y)$ . By the Archimedean property of  $r_0 \in \mathcal{R}$ , there is  $\lambda_0 \in \mathcal{R}^{++}$  such that  $\lambda_0 T \triangleleft r_0$ . Now  $N_{\lambda_0 T}^{\delta}(y) \subseteq N_r^{\delta}(x)$ , since  $\delta(x, z) \triangleleft \delta(z, y) + \delta(y, x) \triangleleft \lambda_0 T + \delta(x, y) \triangleleft r_0 + \delta(x, y) \triangleleft r$ for  $z \in N^{\delta}_{\lambda_0 T}(y)$ .

Let  $N_{\lambda T}^{\delta}(x)$  be an arbitrary open ball in  $\tau_{\delta}^{\mathcal{R}}$  and let  $y \in N_{\lambda T}^{\delta}(x)$ . Let  $\lambda_0 = \lambda - \delta(x, y)$ . Then  $\lambda_0 \in \mathbb{R}^{++}$ , since  $\delta(x,y) \triangleleft \lambda T$  implies that  $d(x,y)T \triangleleft \lambda T$  and so  $\lambda - d(x,y) > 0$ . We assert that  $N_{\lambda_0}^d(y) \subseteq N_{\lambda T}^\delta(x)$ . To see this, let  $z \in N_{\lambda_0}^d(y)$ . We have  $d(z,y) < \lambda_0$  and so

$$\delta(z, x) \lhd \delta(z, y) + \delta(y, x) = d(z, y)T + d(y, x)T$$
$$\lhd \lambda_0 T + d(y, x)T$$
$$= (\lambda - d(x, y) + d(y, x))T$$
$$= \lambda T.$$

This shows that y is an interior point of  $N_{\lambda T}^{\delta}(x)$  with respect to d. Thus  $N_{\lambda T}^{\delta}(x) \in \tau_d$ . On the other hand, if  $N^d_{\lambda}(x)$  is an arbitrary basis element of the topology  $\tau_d$  and  $y \in N^d_{\lambda}(x)$ , then for  $\lambda_0 = \lambda - d(x, y)$ , we have  $N_{\lambda_0 T}^{\delta}(y) \subseteq N_{\lambda}^d(x)$  and so  $N_{\lambda}^d(x)$  is open with respect to  $\tau_{\delta}^{\mathcal{R}}$ . Thus the topology coincide.

(ii) If  $\delta(x,y) \triangleleft r$ , then  $d(x,y)T \triangleleft r$ , and so d(x,y) = 0, which implies x = y. Hence  $N_r^{\delta}(x) = \{x\}$ for each  $x \in X$  and the topology  $\tau_{\delta}^{\mathcal{R}}$  is then discrete.

The following theorem states that if  $\mathfrak{A}$  has the Archimedean property, then an  $\mathfrak{A}$ -extended  $\mathfrak{A}$ metric space is nothing but a metric space.

**Theorem 4.4.** Let  $(X, \delta)$  be an  $\mathcal{R}$ -extended  $\mathfrak{A}$ -metric space. If we define  $d: X \times X \longrightarrow \mathbb{R}^+$  by  $d(x,y) = \|\delta(x,y)\|$ , then (X,d) is a metric space. Furthermore, if  $\mathcal{R}$  has the Archimedean property, then  $\tau_d = \tau_{\delta}^{\mathcal{R}}$ .

**Proof**. For the triangle inequality, we have

$$d(x, y) = \|\delta(x, y)\| \leq \|\delta(x, z) + \delta(z, y)\|$$
$$\leq \|\delta(x, z)\| + \|\delta(z, y)\|$$
$$= d(x, z) + d(z, y),$$

since  $0 \le T \le S$  implies that  $||T|| \le ||S||$  for  $T, S \in \mathfrak{A}$ .

Now suppose that  $\mathcal{R}$  has the Archimedean property. Let  $N_r^{\delta}(x)$  be an arbitrary basis open set in  $\tau_{\delta}^{\mathcal{R}}$  and let  $y \in N_r^{\delta}(x)$ . Since  $\mathcal{R}$  is allowance, there is  $T \triangleleft r - \delta(x, y)$  in  $\mathcal{R}$  and so there is  $\lambda_0 \in \mathbb{R}^{++}$  such that  $\lambda_0 \iota \triangleleft T$ . We have  $N_{\lambda_0}^d(y) \subseteq N_r^{\delta}(x)$ , since for  $z \in N_{\lambda_0}^{\delta}(y)$ ,

$$\delta(z, x) \leq \delta(z, y) + \delta(y, x)$$

$$\leq \|\delta(z, y)\|\iota + \delta(x, y)$$

$$\leq d(z, y)\iota + \delta(x, y)$$

$$\lhd \lambda_0 \iota + \delta(x, y)$$

$$\lhd T + \delta(x, y)$$

$$= r.$$

Thus  $N_r^{\delta}(x) \in \tau_d$ .

Now let  $N_{\lambda}^{d}(x)$  be an arbitrary basis open set in  $\tau_{d}$  and let  $y \in N_{\lambda}^{d}(x)$ . Let r be a fixed element of  $\mathcal{R}$  and let  $r_{0} = \frac{\lambda_{0}r}{\|r\|}$ , where  $\lambda_{0} = \frac{1}{2}(\lambda - d(x, y))$ . Then  $r_{0} \in \mathcal{R} \bigcap \mathfrak{A}^{++}$  and  $N_{r_{0}}^{\delta}(x) \subset N_{\lambda}^{d}(x)$ . To see this, let  $z \in N_{r_{0}}^{\delta}(x)$ . We have  $\delta(z, y) \triangleleft r_{0}$ , and since  $r_{0}(x) \neq 0$   $(x \in \mathcal{H})$ , then  $\delta(z, y)(x) < r_{0}(x)$  for all  $x \in \mathcal{H}$ . Thus  $\|\delta(z, y)\| \leq \|r_{0}\|$ . Hence

$$d(z, x) \leq d(z, y) + d(y, x)$$
  

$$\leq ||d(z, y)|| + d(x, y)$$
  

$$\leq ||r_0|| + d(x, y)$$
  

$$= \lambda_0 + d(x, y)$$
  

$$\leq \lambda.$$

This shows that y in an interior point of  $N^d_{\lambda}(x)$  with respect to  $\tau^{\mathcal{R}}_{\delta}$  and so  $N^d_{\lambda}(x) \in \tau^{\mathcal{R}}_{\delta}$ .

According to the results obtained in this article and Mirzavaziri's article, it is possible to define the  $C^*$ -metric spaces with both commutative and noncommutative  $C^*$ -algebras.

#### References

- J. Dixmier, C\*-Algebras, Translated from the French by Francis Jellett, North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
- [2] G. Dolinar and J. Marovt, Star partial order on  $B(\mathcal{H})$ , Linear Algebra Appl. 434(1) (2011) 319–326.
- [3] K. Janich, Topology, Springer-Verlag, 1984.
- [4] J.L. Kelley, General Topology, Van Nostrand Company, Inc., Toronto-New York-London, 1955.
- [5] K. Menger, Probabilistic theories of relations, Proc. Nat. Acad. Sci. USA. 37 (1951) 178–180.
- [6] K. Menger, Probabilistic geometry, Proc. Nat. Acad. Sci. USA. 37 (1951) 226-229.
- [7] M. Mirzavaziri, Function valued metric space, Surv. Math. Appl. 5 (2010) 321–332.
- [8] M.S. Moslehian, On full Hilbert C\*-modules, Bull. Malays. Math. Sci. Soc. 24 (2001) 45-47.
- [9] G.J. Murph, C\*-Algebras and Operator Theory, Academic Press, Inc., Boston, MA, 1990.
- [10] G.K. Pedersen, Analysis Now, Springer Verlag, 1988.
- [11] B. Schweizer and A. Sklar, Probabilistic metric space, North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York, (1983).