Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 1991-1996
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2020.20839.2205

C^{*}-metric spaces

M. Mowlavia ${ }^{\text {a }}$, M. Mirzavazirib,*, M.R. Mardanbeigia ${ }^{\text {a }}$
${ }^{\text {a Department of Mathematics, Faculty of Science, Science and Research Branch Islamic Azad University, Tehran, Iran }}$
${ }^{b}$ Department of Pure Mathematics, Faculty of Science, University of Ferdowsi of Mashhad, P.O.Box 1159-91775,
Mashhad, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

The purpose of this article is to introducing the notion of an \mathfrak{A}-meter, as an operator valued distance mapping on a set X and investigating the theory of \mathfrak{A}-metric spaces, where \mathfrak{A} is a noncommutative C^{*}-algebra. We demonstrate that each metric space may be seen as an \mathfrak{A}-metric space and that every \mathfrak{A}-metric space (X, δ) can be regarded as a topological space $\left(X, \tau_{\delta}\right)$.

Keywords: C^{*}-algebra, C^{*}-metric space,allowance set,downward/upward direct, positive elements. 2010 MSC: 54E35,54E70,54A40,46A03,30L05.

1. Introduction

Mirzavaziri [7] obtained some generalizations of usual metrics as real- valued mappings, which have been given in the last century.His generalizations are in such away that the values of a metric can be mappings.

Let $\mathfrak{A}=C(\Omega)$ be a commutative unital C^{*}-algebra, where Ω is a compact Hausdorff topological space. A Hilbert \mathfrak{A}-module is a right \mathfrak{A}-module ξ equipped with an \mathfrak{A}-valued inner product. The reader is referred to [7] for more information on Hilbert C^{*}-modules.

Mirzavaziri [7, construct the ordered positive cone with family of positive elements of commutative unital C^{*}-algebra, $\mathcal{C}(\Omega)$,and named it \mathfrak{A}^{+}. Therefore, with the help of the usual definition of metric and Hilbert C^{*}-modules, he find an attractive idea to define the notion of an \mathcal{A}-valued C^{*} metric \mathfrak{A} on a set X as a mapping from $X \times X$ into the positive cone \mathfrak{A}^{+}for a C^{*}-algebra \mathfrak{A}, and his notation is \mathcal{F}-metric.He showed that \mathfrak{A}^{+}has the axiom of completeness and also the Archimedean

[^0]property for non-empty bounded subsets of \mathfrak{A},i.e. \mathfrak{A}^{+}is an ordered complete set. This is very important for defining an induced topology by \mathcal{F}-meter.Partial order is necessary \leq for triangle inequality of \mathcal{F}. He represented several examples to introduce an induced topology by an \mathfrak{A}-meter. This topology is defined by using elements of \mathfrak{A}^{+}as radius of open neighborhoods and \mathcal{R}-extended topology, with allowance sets. He prove that any metric space is \mathcal{F}-metric space and the category of all metric spaces is a proper subset of the category of all extended \mathcal{F}-metric spaces. He proposed completion of \mathcal{F}-metric, and checked \mathcal{F}-metrizability of topological spaces. As an application of the concept of \mathcal{F}-metrics, he proved that each normal topological space is \mathcal{F}-metrizable.

In this article we want to introduce the concept of C^{*}-metric by using the positive elements of a noncommutative unital C^{*}-algebra, that is, $\mathfrak{A}=B(\mathcal{H})$, where \mathcal{H} is a Hilbert space. We select projections, because the family of them is a partial ordered, lattice and it is downwards and upwards directed.The downwards directed property assists us to prove that the intersection of a finitely many open neighborhoods, is again an open neighborhood. Now we can construct the open neighborhood at a point $x \in X$ with radius $r \in \mathfrak{A}^{+}$. Not far from mind, each metric space is a C^{*}-metric space, for every commutative or noncommutative C^{*}-algebra \mathfrak{A}. We show that \mathfrak{A}^{+}is ordered complete set, and then develop the theory of C^{*}-metric spaces. We will propose a few examples,to define topologies by using elements of \mathfrak{A}^{+}as radius of open neighborhoods and \mathcal{R}-extended topology with allowance sets,as some applications.

2. Preliminaries

In all of the following section $\mathfrak{A}=B(\mathcal{H})$ is an unital noncommutative C^{*}-algebra. An element p in \mathfrak{A} is called positive (denoted by $0 \leq p$ or $p \geq 0$) if $\{\langle p x, x\rangle: x \in \mathcal{H}\}$ is a subset of the nonnegative real numbers \mathbb{R}^{+}. It is strictly positive (denoted by $0 \prec p$ or $p \succ 0$) if $\{\langle p x, x\rangle: x \in \mathcal{H}\}$ is a subset of the positive real numbers \mathbb{R}^{++}. Note that $p \succ 0$ is not equivalent to $p>0$ (i.e., $p \geq 0$ and $p \neq 0$). The set of all positive elements and the set of all strictly positive elements of \mathfrak{A} are denoted by \mathfrak{A}^{+} and \mathfrak{A}^{++}, respectively. Obviously, $p \in \mathfrak{A}^{+}$is strictly positive if and only if it is invertible in \mathfrak{A}. (see Proposition 3.2.12 of [10]). It can viewed as the C^{*}-Archimedean property.

Let $P(\mathcal{H}) \subseteq \mathfrak{A}^{+}$be the set of all projections $P_{\alpha}: \mathcal{H} \longrightarrow \mathcal{H}$ with norm $\|.\|_{\infty}$ defined by:

$$
\begin{aligned}
\left\|P_{\alpha}\right\|_{\infty} & =\sup \left\{\left\|P_{\alpha} x\right\|: x \in \mathcal{H},\|x\| \leq 1\right\} \\
& =\sup \left\{\left(<P_{\alpha} x, x>\right)^{\frac{1}{2}}: x \in \mathcal{H},\|x\| \leq 1\right\}
\end{aligned}
$$

For noncommutative C^{*}-algebra, it is important to show that \mathfrak{A}^{++}is downwards directed,that is, if $S, T \in \mathfrak{A}^{++}$, then there is $Q \in \mathfrak{A}^{++}$such that $Q \preceq T$ and $Q \preceq S$.

The set of closed subspaces can be partially ordered by inclusion, and it is complete lattice.Every family $\left\{Y_{\alpha}\right\}$ of closed subspaces in \mathcal{H} possesses an infimum $\wedge Y_{\alpha}$ and a supremum $\vee Y_{\alpha}$, which are, respectively, the intersection of all Y_{α} and the closure of the subspace generated by all Y_{α}.Next theorem,help us to define a partial order \leq in the set of projections. As the next theorem shows, these two orderings coincide, in summary:

$$
P \leq Q \Longleftrightarrow \operatorname{Ran}(P) \subseteq \operatorname{Ran}(Q) .
$$

Theorem 2.1. [9]
Let S and T be in $P(\mathcal{H})$. The following conditions are equivalent:
a)Ran $(S) \subseteq \operatorname{Ran}(T)$, that is, $S \leq T$.
b) $T S=S$.
c) $S T=S$.
d) $\|S x\| \leq\|T x\|$ for all $x \in \mathcal{H}$.
e) $S \leq T$.

There is, of course, a correspondent in terms of projections: every family $\left\{P_{\alpha}\right\}_{\alpha \in I}$ of projections has an infimum $\wedge P_{\alpha}$ and a supremum $\vee P_{\alpha}$, which are, respectively, the projection onto the intersection of all $\operatorname{Ran}\left(P_{\alpha}\right)$ and the projection onto the closure of the subspace generated by all $\operatorname{Ran}\left(P_{\alpha}\right)$.

The above discussion clarifies that the set of projections in $B(\mathcal{H})$ has a lattice structure. In fact, the set of projections forms a complete lattice and it is downwards directed and upwards directed.

The sum of two strictly positive elements of \mathfrak{A}^{+}is again strictly positive and if $T \in \mathfrak{A}^{++}$, then $\lambda T \in \mathfrak{A}^{++}$for all $\lambda \in \mathfrak{A}^{++}$[7]. This shows that \mathfrak{A}^{++}is a cone. Let $T, S \in \mathfrak{A}^{+}$. The notation $T \triangleleft S$ used for $T(x)<S(x)$ for all $x \in \mathcal{H}$ with $S(x) \neq 0$. The relation \triangleleft is transitive on \mathfrak{A}^{+}, and $T \triangleleft S$ implies $T+Q \triangleleft S+Q$ for all real valued mapping Q with $T+Q \in \mathfrak{A}^{+}$. Note that if $S \in \mathfrak{A}^{++}$, then $T \triangleleft S$ is equivalent to $T \prec S$.

Proposition 2.2. [7] A positive element p of \mathfrak{A} is invertible if and only if $p \geq \lambda \iota$ for some $\lambda \in \mathbb{R}^{++}$.
Proposition 2.3. [7] A pointwise infimum of any number of elements in $P(\mathcal{H})$ and a supremum of finitely many elements will again define an element in $P(\mathcal{H})$. Furthermore, $P(\mathcal{H})$ is stable under the addition and under the multiplication with positive real numbers. Finally, $P(\mathcal{H})$ is closed under uniform convergence.

Let $\mathfrak{A}^{+}=P(\mathcal{H})^{+}$, be the set of all positive projection operators on \mathcal{H}, and let $\mathfrak{A}^{++}=P(\mathcal{H})^{++}$be the set of all strictly positive projection operators on \mathcal{H}. Clearly every operator is continuous with norm topology, will be continuous with weak operator topology.

Theorem 2.4. [7] Let \mathcal{B} be a nonempty subset of \mathfrak{A}^{+}. Then $\inf \mathcal{B}$ exists in \mathfrak{A}^{+}. In other words, there is $T_{0} \in \mathfrak{A}^{+}$such that $T_{0} \leq T$ for each $T \in \mathcal{B}$, and if S is any lower bounded for \mathcal{B}, then $S \leq T_{0}$.

Proof .For each $T \in \mathcal{B}$ and $h \in \mathcal{H}$, we have $T h \geq 0$. Thus the set $\{T h: T \in \mathcal{B}\}$ is a nonempty bounded below subset of \mathbb{R}^{+}and so its infimum exists. Let

$$
T_{0} h=\inf \{T h: T \in \mathcal{B}\}
$$

Then $T_{0} \in \mathcal{B}$. Now let S be a lower bound for \mathcal{B}. Hence $S h \leq T h$ and so $S h$ is a lower bound for the set $\{T h: T \in \mathcal{B}\}$. Thus $S h \leq T_{0} h$ or equivalently $S \leq T_{0}$.

The set of positive elements of \mathfrak{A}^{+}and \mathfrak{A}^{++}are ordered, Archimedean, bounded below, downwards and upwards direct, and we use \mathfrak{A} as the notation of noncommutative C^{*}-algebras.

3. C^{*}-Metric

Similarity between the cone of positive elements of \mathfrak{A} and \mathbb{R}^{++}and the notion of positive elements drives thought into introduce the following notion.

Definition 3.1. Let X be a set. A mapping $\delta: X \times X \longrightarrow \mathfrak{A}^{+}$is called an \mathfrak{A}-metric, or an \mathfrak{A}-metric, if for all $x, y, z \in X$ the following conditions hold:
(i) $\delta(x, y)=0$ if and only if $x=y$;
(ii) $\delta(x, y)=\delta(y, x)$;
(iii) $\delta(x, y) \unlhd \delta(x, z)+\delta(z, y)$ (triangle inequality).

In this case, (X, δ) is called a C^{*}-metric space, or an \mathfrak{A}-metric space.
Example 3.2. Let T be a nonzero positive element of \mathfrak{A}. Then

$$
\delta(x, y)= \begin{cases}T & \text { if } x \neq y \\ 0 & \text { otherwise }\end{cases}
$$

gives an \mathfrak{A}-metric δ on X, which is called the discrete \mathfrak{A}-metric on X constructed via T.
Example 3.3. Let $X:=B(\mathcal{H})$ and let $\delta(T, S)=|\langle(T-S) x, y\rangle|$ define an \mathfrak{A}-metric on X. Then

1- $\delta(T, T)=|<(T-T) x, y>| \unrhd 0$,
2- $\delta(T, S)=|<(T-S) x, y>|=|<(S-T) x, y>|=\delta(S, T)$.
For the triangle inequality, we have
3-

$$
\begin{aligned}
\delta(T, S) & =|<(T-S) x, y>|=|<(T-S \pm Q) x, y>| \\
& \unlhd|<(T-Q) x, y>|+|<(Q-S) x, y>| \\
& =\delta(T, Q)+\delta(Q, S)
\end{aligned}
$$

for all $x, y \in \mathcal{H}$ and $T, S, Q \in X$. Thus $\delta(T, S) \unlhd \delta(T, Q)+\delta(Q, S)$.

4. TOPOLOGY

Let (X, δ) be an \mathfrak{A}-metric space. We can define the ball $N_{r}^{\delta}(x)$ centered at $x \in X$ with radius $r \in \mathfrak{A}^{++}$ by $N_{r}^{\delta}(x)=\{y \in X: \delta(x, y) \triangleleft r\}$. Open sets and interior points of a subset of X are defined in the usual manner [3] and [4]. Note that $N_{r}^{\delta}(x)$ is an open set. If $y \in N_{r}^{\delta}(x)$, then $\delta(x, y) \triangleleft r$ and for the strictly positive element $r_{0}=r-\delta(x, y)$, we have $N_{r_{0}}^{\delta}(x) \subseteq N_{r}^{\delta}(x)$. This shows that y is an interior point of $N_{r}^{\delta}(x)$.

The topology mentioned in the above theorem is called the topology on X induced by the \mathfrak{A}-metric δ and is denoted by τ_{δ}.

We can consider a subset of $\mathfrak{A} \backslash\{0\}$ as a set of radiuses of our open balls as follows.
Definition 4.1. Let (X, δ) be an \mathfrak{A}-metric space. Then \mathcal{R}, a nonempty subset of $\mathfrak{A}^{+} \backslash\{0\}$, is called "allowance" with respect to δ if (a) it is downward directed, (b) $\lambda \mathcal{R} \subseteq \mathcal{R}$ for each $\lambda \in \mathbb{R}^{++}$, and (c) $\delta(x, y) \triangleleft r$ for some $r \in \mathcal{R}$ implies the existence of an element $r_{0} \mathcal{R}$ and $\lambda \in \mathcal{R}^{++}$such that $r_{0}+\delta(x, y) \triangleleft r \triangleleft \lambda r_{0}$. The " \mathcal{R}-extended topology" on X induced by δ, denoted by $\tau_{\delta}^{\mathcal{R}}$, is defined to be the topology on X generated by the topological base $\left\{N_{r}^{\delta}(x)\right\}_{r \in \mathcal{R}, x \in X}$.

Third condition is required to show that open balls are indeed open. We can view a metric space as an \mathfrak{A}-metric space, in the following theorem. We will show the balls in (X, d) by N^{d} and the balls in (X, δ) by N_{r}^{δ}.

The open subsets of an \mathfrak{A}-metric space form a topology and this will be shown in the following theorem.

Theorem 4.2. Let (X, δ) be an \mathfrak{A}-metric space. Then the family of all open subsets of X with respect to δ forms a topology on X.

Proof . We need to show that for an arbitrary family $\left\{N_{r_{\gamma}}^{\delta}\left(x_{\gamma}\right): \gamma \in \Gamma\right\}$ of open balls, the set $U=\bigcup_{\gamma \in \Gamma} N_{r_{\gamma}}^{\delta}\left(x_{\gamma}\right)$ is open. If there is $\gamma \in \Gamma$ such that $x \in N_{r_{\gamma}}^{\delta}\left(x_{\gamma}\right)$. Then there is r_{0} such that $N_{r_{0}}^{\delta}(x) \subseteq N_{r_{\gamma}}^{\delta}\left(x_{\gamma}\right) \subseteq U$. So x is an interior point of U.

We have to show that $V=\bigcap_{j=1}^{n} N_{r_{j}}^{\delta}\left(x_{j}\right)$. Let $x \in V$, too. Then $x \in N_{r_{j}}^{\delta}\left(x_{j}\right)$ and so there are $s_{j} \in \mathfrak{A}^{++}$such that $N_{s_{j}}^{\delta}(x) \subseteq N_{r_{j}}^{\delta}\left(x_{j}\right)$. Pick an $r_{0} \in \mathfrak{A}^{++}$such that $r_{0} \triangleleft s_{j}$ for all $1 \leq j \leq n$. (Note that \mathfrak{A}^{++}is a lattice and downward directed, consequently, and so r_{0} exists.) We then have $N_{r_{0}}^{\delta}(x) \subseteq V$.

Theorem 4.3. Suppose that (X, d) is a metric space and that $0 \neq T \in \mathfrak{A}^{+}$. If

$$
\delta_{T}: X \times X \longrightarrow \mathfrak{A}^{+}
$$

is defined by $\delta_{T}(x, y)=d(x, y) T$, then $\left(X, \delta_{T}\right)$ is an \mathfrak{A}-metric space. Let \mathcal{R} be an allowance set with respect to δ_{T}.
(i) If \mathcal{R} has the Archimedean property, then $\tau_{\delta_{T}}^{\mathcal{R}}=\tau_{d}$.
(ii) If there is r in \mathcal{R} such that $\lambda T \nrightarrow r$ for any $\lambda \in \mathbb{R}^{++}$, then $\tau_{\delta_{T}}^{\mathcal{R}}$ is the discrete topology.

Proof .Put $\delta=\delta_{T}$, to prove the triangle inequality for δ. We recall that the set of a positive element of \mathfrak{A} is a positive cone.
(i) We shall show that the family $\left\{N_{\lambda T}^{\delta}(x)\right\}_{\lambda \in \mathbb{R}^{++}, x \in X}$ forms a topological base for $\tau_{\delta}^{\mathcal{R}}$. To see this, let $N_{r}^{\delta}(x)$ be an arbitrary open ball in $\tau_{\delta}^{\mathcal{R}}$ and let $y \in N_{r}^{\delta}(x)$. Since \mathcal{R} is allowance, there is $r_{0} \in \mathcal{R}$ such that $r_{0} \triangleleft r-\delta(x, y)$. By the Archimedean property of $r_{0} \in \mathcal{R}$, there is $\lambda_{0} \in \mathcal{R}^{++}$such that $\lambda_{0} T \triangleleft r_{0}$. Now $N_{\lambda_{0} T}^{\delta}(y) \subseteq N_{r}^{\delta}(x)$, since $\delta(x, z) \triangleleft \delta(z, y)+\delta(y, x) \triangleleft \lambda_{0} T+\delta(x, y) \triangleleft r_{0}+\delta(x, y) \triangleleft r$ for $z \in N_{\lambda_{0} T}^{\delta}(y)$.

Let $N_{\lambda T}^{\delta}(x)$ be an arbitrary open ball in $\tau_{\delta}^{\mathcal{R}}$ and let $y \in N_{\lambda T}^{\delta}(x)$. Let $\lambda_{0}=\lambda-\delta(x, y)$. Then $\lambda_{0} \in \mathbb{R}^{++}$, since $\delta(x, y) \triangleleft \lambda T$ implies that $d(x, y) T \triangleleft \lambda T$ and so $\lambda-d(x, y)>0$. We assert that $N_{\lambda_{0}}^{d}(y) \subseteq N_{\lambda T}^{\delta}(x)$. To see this, let $z \in N_{\lambda_{0}}^{d}(y)$. We have $d(z, y)<\lambda_{0}$ and so

$$
\begin{aligned}
\delta(z, x) & \triangleleft \delta(z, y)+\delta(y, x)=d(z, y) T+d(y, x) T \\
& \triangleleft \lambda_{0} T+d(y, x) T \\
& =(\lambda-d(x, y)+d(y, x)) T \\
& =\lambda T .
\end{aligned}
$$

This shows that y is an interior point of $N_{\lambda T}^{\delta}(x)$ with respect to d. Thus $N_{\lambda T}^{\delta}(x) \in \tau_{d}$. On the other hand, if $N_{\lambda}^{d}(x)$ is an arbitrary basis element of the topology τ_{d} and $y \in N_{\lambda}^{d}(x)$, then for $\lambda_{0}=\lambda-d(x, y)$, we have $N_{\lambda_{0} T}^{\delta}(y) \subseteq N_{\lambda}^{d}(x)$ and so $N_{\lambda}^{d}(x)$ is open with respect to $\tau_{\delta}^{\mathcal{R}}$. Thus the topology coincide.
(ii) If $\delta(x, y) \triangleleft r$, then $d(x, y) T \triangleleft r$, and so $d(x, y)=0$, which implies $x=y$. Hence $N_{r}^{\delta}(x)=\{x\}$ for each $x \in X$ and the topology $\tau_{\delta}^{\mathcal{R}}$ is then discrete.

The following theorem states that if \mathfrak{A} has the Archimedean property, then an \mathfrak{A}-extended \mathfrak{A} metric space is nothing but a metric space.

Theorem 4.4. Let (X, δ) be an \mathcal{R}-extended \mathfrak{A}-metric space. If we define $d: X \times X \longrightarrow \mathbb{R}^{+}$by $d(x, y)=\|\delta(x, y)\|$, then (X, d) is a metric space. Furthermore, if \mathcal{R} has the Archimedean property, then $\tau_{d}=\tau_{\delta}^{\mathcal{R}}$.

Proof .For the triangle inequality, we have

$$
\begin{aligned}
d(x, y)=\|\delta(x, y)\| & \unlhd\|\delta(x, z)+\delta(z, y)\| \\
& \unlhd \mid\|\delta(x, z)\|+\|\delta(z, y)\| \\
& =d(x, z)+d(z, y),
\end{aligned}
$$

since $0 \leq T \leq S$ implies that $\|T\| \leq\|S\|$ for $T, S \in \mathfrak{A}$.
Now suppose that \mathcal{R} has the Archimedean property. Let $N_{r}^{\delta}(x)$ be an arbitrary basis open set in $\tau_{\delta}^{\mathcal{R}}$ and let $y \in N_{r}^{\delta}(x)$. Since \mathcal{R} is allowance, there is $T \triangleleft r-\delta(x, y)$ in \mathcal{R} and so there is $\lambda_{0} \in \mathbb{R}^{++}$ such that $\lambda_{0} \iota \triangleleft T$. We have $N_{\lambda_{0}}^{d}(y) \subseteq N_{r}^{\delta}(x)$, since for $z \in N_{\lambda_{0}}^{\delta}(y)$,

$$
\begin{aligned}
\delta(z, x) & \leq \delta(z, y)+\delta(y, x) \\
& \leq\|\delta(z, y)\| \iota+\delta(x, y) \\
& \leq d(z, y) \iota+\delta(x, y) \\
& \triangleleft \lambda_{0} \iota+\delta(x, y) \\
& \triangleleft T+\delta(x, y) \\
& =r .
\end{aligned}
$$

Thus $N_{r}^{\delta}(x) \in \tau_{d}$.
Now let $N_{\lambda}^{d}(x)$ be an arbitrary basis open set in τ_{d} and let $y \in N_{\lambda}^{d}(x)$. Let r be a fixed element of \mathcal{R} and let $r_{0}=\frac{\lambda_{0} r}{\|r\|}$, where $\lambda_{0}=\frac{1}{2}(\lambda-d(x, y))$. Then $r_{0} \in \mathcal{R} \bigcap \mathfrak{A}^{++}$and $N_{r_{0}}^{\delta}(x) \subset N_{\lambda}^{d}(x)$. To see this, let $z \in N_{r_{0}}^{\delta}(x)$. We have $\delta(z, y) \triangleleft r_{0}$, and since $r_{0}(x) \neq 0(x \in \mathcal{H})$, then $\delta(z, y)(x)<r_{0}(x)$ for all $x \in \mathcal{H}$. Thus $\|\delta(z, y)\| \leq\left\|r_{0}\right\|$. Hence

$$
\begin{aligned}
d(z, x) & \leq d(z, y)+d(y, x) \\
& \leq\|d(z, y)\|+d(x, y) \\
& \leq\left\|r_{0}\right\|+d(x, y) \\
& =\lambda_{0}+d(x, y) \\
& <\lambda
\end{aligned}
$$

This shows that y in an interior point of $N_{\lambda}^{d}(x)$ with respect to $\tau_{\delta}^{\mathcal{R}}$ and so $N_{\lambda}^{d}(x) \in \tau_{\delta}^{\mathcal{R}}$.
According to the results obtained in this article and Mirzavaziri's article, it is possible to define the C^{*}-metric spaces with both commutative and noncommutative C^{*}-algebras.

References

[1] J. Dixmier, C^{*}-Algebras, Translated from the French by Francis Jellett, North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
[2] G. Dolinar and J. Marovt,Star partial order on B(H), Linear Algebra Appl. 434(1) (2011) 319-326.
[3] K. Janich, Topology, Springer-Verlag, 1984.
[4] J.L. Kelley, General Topology, Van Nostrand Company, Inc., Toronto-New York-London, 1955.
[5] K. Menger, Probabilistic theories of relations, Proc. Nat. Acad. Sci. USA. 37 (1951) 178-180.
[6] K. Menger,Probabilistic geometry, Proc. Nat. Acad. Sci. USA. 37 (1951) 226-229.
[7] M. Mirzavaziri, Function valued metric space, Surv. Math. Appl. 5 (2010) 321-332.
[8] M.S. Moslehian, On full Hilbert C^{*}-modules, Bull. Malays. Math. Sci. Soc. 24 (2001) 45-47.
[9] G.J. Murph, C^{*}-Algebras and Operator Theory, Academic Press, Inc., Boston, MA, 1990.
[10] G.K. Pedersen, Analysis Now, Springer Verlag, 1988.
[11] B. Schweizer and A. Sklar, Probabilistic metric space, North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York, (1983).

[^0]: *Corresponding author
 Email addresses: Mahdi.Mowlavi@gmail.com (M. Mowlavi), mirzavaziri@gmail.com (M. Mirzavaziri), mmardanbeigi@yahoo.com (M.R. Mardanbeigi)

