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Abstract

The purpose of this article is to introducing the notion of an A-meter, as an operator valued distance
mapping on a set X and investigating the theory of A-metric spaces, where A is a noncommutative
C∗-algebra. We demonstrate that each metric space may be seen as an A-metric space and that
every A-metric space (X, δ) can be regarded as a topological space (X, τδ).
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1. Introduction

Mirzavaziri [7] obtained some generalizations of usual metrics as real- valued mappings, which have
been given in the last century.His generalizations are in such away that the values of a metric can be
mappings.

Let A = C(Ω) be a commutative unital C∗-algebra, where Ω is a compact Hausdorff topological
space. A Hilbert A-module is a right A-module ξ equipped with an A-valued inner product. The
reader is referred to [7] for more information on Hilbert C∗-modules.

Mirzavaziri [7], construct the ordered positive cone with family of positive elements of commu-
tative unital C∗-algebra, C(Ω),and named it A+.Therefore, with the help of the usual definition of
metric and Hilbert C∗-modules, he find an attractive idea to define the notion of an A-valued C∗-
metric A on a set X as a mapping from X×X into the positive cone A+ for a C∗-algebra A, and his
notation is F -metric.He showed that A+ has the axiom of completeness and also the Archimedean
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property for non-empty bounded subsets of A,i.e. A+ is an ordered complete set. This is very impor-
tant for defining an induced topology by F -meter.Partial order is necessary ≤ for triangle inequality
of F . He represented several examples to introduce an induced topology by an A-meter.This topol-
ogy is defined by using elements of A+ as radius of open neighborhoods and R-extended topology,
with allowance sets. He prove that any metric space is F -metric space and the category of all metric
spaces is a proper subset of the category of all extended F -metric spaces. He proposed completion
of F -metric, and checked F -metrizability of topological spaces. As an application of the concept of
F -metrics, he proved that each normal topological space is F -metrizable.

In this article we want to introduce the concept of C∗-metric by using the positive elements of
a noncommutative unital C∗-algebra, that is, A = B(H), where H is a Hilbert space. We select
projections, because the family of them is a partial ordered, lattice and it is downwards and upwards
directed.The downwards directed property assists us to prove that the intersection of a finitely many
open neighborhoods, is again an open neighborhood. Now we can construct the open neighborhood
at a point x ∈ X with radius r ∈ A+. Not far from mind, each metric space is a C∗-metric space, for
every commutative or noncommutative C∗-algebra A. We show that A+ is ordered complete set, and
then develop the theory of C∗-metric spaces. We will propose a few examples,to define topologies
by using elements of A+ as radius of open neighborhoods and R-extended topology with allowance
sets,as some applications.

2. Preliminaries

In all of the following section A = B(H) is an unital noncommutative C∗-algebra.An element p in
A is called positive (denoted by 0 ≤ p or p ≥ 0) if {< px, x >: x ∈ H} is a subset of the nonnegative
real numbers R+. It is strictly positive (denoted by 0 ≺ p or p ≻ 0) if {< px, x >: x ∈ H} is a subset
of the positive real numbers R++. Note that p ≻ 0 is not equivalent to p > 0 (i.e., p ≥ 0 and p ̸= 0).
The set of all positive elements and the set of all strictly positive elements of A are denoted by A+

and A++, respectively. Obviously, p ∈ A+ is strictly positive if and only if it is invertible in A. (see
Proposition 3.2.12 of[10]). It can viewed as the C∗-Archimedean property.

Let P (H) ⊆ A+ be the set of all projections Pα : H −→ H with norm ∥.∥∞ defined by:

∥Pα∥∞ = sup{∥Pαx∥ : x ∈ H, ∥x∥ ≤ 1}
= sup{(< Pαx, x >)

1
2 : x ∈ H, ∥x∥ ≤ 1}

For noncommutative C∗-algebra, it is important to show that A++ is downwards directed,that is, if
S, T ∈ A++, then there is Q ∈ A++ such that Q ⪯ T and Q ⪯ S.

The set of closed subspaces can be partially ordered by inclusion,and it is complete lattice.Every
family {Yα} of closed subspaces in H possesses an infimum ∧ Yα and a supremum ∨Yα, which are,
respectively, the intersection of all Yα and the closure of the subspace generated by all Yα.Next
theorem,help us to define a partial order ≤ in the set of projections. As the next theorem shows,
these two orderings coincide, in summary:

P ≤ Q ⇐⇒ Ran(P ) ⊆ Ran(Q).

Theorem 2.1. [9]
Let S and T be in P (H). The following conditions are equivalent:
a)Ran(S)⊆ Ran (T), that is, S ≤ T .
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b) TS = S.
c) ST = S.
d) ∥Sx∥ ≤ ∥Tx∥ for all x ∈ H.
e)S ≤ T .

There is, of course, a correspondent in terms of projections: every family {Pα}α∈I of projec-
tions has an infimum ∧ Pα and a supremum ∨Pα, which are, respectively, the projection onto the
intersection of all Ran(Pα) and the projection onto the closure of the subspace generated by all
Ran(Pα).

The above discussion clarifies that the set of projections in B(H) has a lattice structure. In fact,
the set of projections forms a complete lattice and it is downwards directed and upwards directed.

The sum of two strictly positive elements of A+ is again strictly positive and if T ∈ A++, then
λT ∈ A++ for all λ ∈ A++ [7]. This shows that A++ is a cone. Let T, S ∈ A+. The notation T ◁ S
used for T (x) < S(x) for all x ∈ H with S(x) ̸= 0. The relation ◁ is transitive on A+, and T ◁ S
implies T +Q◁ S +Q for all real valued mapping Q with T +Q ∈ A+. Note that if S ∈ A++, then
T ◁ S is equivalent to T ≺ S.

Proposition 2.2. [7] A positive element p of A is invertible if and only if p ≥ λι for some λ ∈ R++.

Proposition 2.3. [7] A pointwise infimum of any number of elements in P (H) and a supremum of
finitely many elements will again define an element in P (H). Furthermore, P (H) is stable under
the addition and under the multiplication with positive real numbers. Finally, P (H) is closed under
uniform convergence.

Let A+ = P (H)+, be the set of all positive projection operators on H, and let A++ = P (H)++ be
the set of all strictly positive projection operators on H. Clearly every operator is continuous with
norm topology, will be continuous with weak operator topology.

Theorem 2.4. [7] Let B be a nonempty subset of A+. Then inf B exists in A+. In other words,
there is T0 ∈ A+ such that T0 ≤ T for each T ∈ B, and if S is any lower bounded for B, then S ≤ T0.

‘
Proof .For each T ∈ B and h ∈ H, we have Th ≥ 0. Thus the set {Th : T ∈ B} is a nonempty
bounded below subset of R+ and so its infimum exists. Let

T0h = inf{Th : T ∈ B}.

Then T0 ∈ B. Now let S be a lower bound for B. Hence Sh ≤ Th and so Sh is a lower bound for
the set {Th : T ∈ B}. Thus Sh ≤ T0h or equivalently S ≤ T0. □

The set of positive elements of A+ and A++ are ordered, Archimedean, bounded below, downwards
and upwards direct, and we use A as the notation of noncommutative C∗-algebras.

3. C∗-Metric

Similarity between the cone of positive elements of A and R++ and the notion of positive elements
drives thought into introduce the following notion.
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Definition 3.1. Let X be a set. A mapping δ : X×X −→ A+is called an A-metric, or an A-metric,
if for all x,y,z ∈ X the following conditions hold:

(i) δ(x,y)= 0 if and only if x=y;
(ii) δ(x,y)=δ(y,x);
(iii) δ(x,y)⊴ δ(x,z)+δ(z,y) (triangle inequality).
In this case, (X,δ) is called a C∗-metric space, or an A-metric space.

Example 3.2. Let T be a nonzero positive element of A. Then

δ(x, y) =

{
T if x ̸= y,

0 otherwise,

gives an A-metric δ on X, which is called the discrete A-metric on X constructed via T .

Example 3.3. Let X := B(H) and let δ(T, S) = | < (T − S)x, y > | define an A-metric on X.
Then

1- δ(T, T ) = | < (T − T )x, y > | ⊵ 0,
2- δ(T, S) = | < (T − S)x, y > | = | < (S − T )x, y > | = δ(S, T ).
For the triangle inequality, we have
3-

δ(T, S) = | < (T − S)x, y > | = | < (T − S ±Q)x, y > |
⊴ | < (T −Q)x, y > |+ | < (Q− S)x, y > |
= δ(T,Q) + δ(Q,S)

for all x, y ∈ H and T, S,Q ∈ X. Thus δ(T, S) ⊴ δ(T,Q) + δ(Q,S).

4. TOPOLOGY

Let (X, δ) be an A-metric space. We can define the ball N δ
r (x) centered at x ∈ X with radius r ∈ A++

by N δ
r (x) = {y ∈ X : δ(x, y) ◁ r}. Open sets and interior points of a subset of X are defined in the

usual manner[3]and [4]. Note that N δ
r (x) is an open set. If y ∈ N δ

r (x), then δ(x, y) ◁ r and for the
strictly positive element r0 = r − δ(x, y), we have N δ

r0
(x) ⊆ N δ

r (x). This shows that y is an interior
point of N δ

r (x).
The topology mentioned in the above theorem is called the topology onX induced by the A-metric

δ and is denoted by τδ.
We can consider a subset of A \ {0} as a set of radiuses of our open balls as follows.

Definition 4.1. Let (X, δ) be an A-metric space. Then R, a nonempty subset of A+ \{0}, is called
“allowance” with respect to δ if (a) it is downward directed, (b)λR ⊆ R for each λ ∈ R++,and
(c)δ(x, y) ◁ r for some r ∈ R implies the existence of an element r0R and λ ∈ R++ such that
r0 + δ(x, y) ◁ r ◁ λr0. The “R-extended topology” on X induced by δ, denoted by τRδ , is defined to
be the topology on X generated by the topological base {N δ

r (x)}r∈R,x∈X .

Third condition is required to show that open balls are indeed open. We can view a metric space as
an A-metric space,in the following theorem. We will show the balls in (X, d) by Nd and the balls in
(X, δ) by N δ

r .
The open subsets of an A-metric space form a topology and this will be shown in the following

theorem.
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Theorem 4.2. Let (X, δ) be an A-metric space. Then the family of all open subsets of X with
respect to δ forms a topology on X.

Proof . We need to show that for an arbitrary family {N δ
rγ (xγ) : γ ∈ Γ} of open balls, the set

U =
⋃

γ∈ΓN
δ
rγ (xγ) is open. If there is γ ∈ Γ such that x ∈ N δ

rγ (xγ). Then there is r0 such that

N δ
r0
(x) ⊆ N δ

rγ (xγ) ⊆ U . So x is an interior point of U .

We have to show that V =
⋂n

j=1 N
δ
rj
(xj). Let x ∈ V , too. Then x ∈ N δ

rj
(xj) and so there are

sj ∈ A++ such that N δ
sj
(x) ⊆ N δ

rj
(xj). Pick an r0 ∈ A++ such that r0 ◁ sj for all 1 ≤ j ≤ n.

(Note that A++ is a lattice and downward directed, consequently, and so r0 exists.) We then have
N δ

r0
(x) ⊆ V . □

Theorem 4.3. Suppose that (X, d) is a metric space and that 0 ̸= T ∈ A+. If

δT : X ×X −→ A+

is defined by δT (x, y) = d(x, y)T , then (X, δT ) is an A-metric space. Let R be an allowance set with
respect to δT .
(i) If R has the Archimedean property, then τRδT = τd.
(ii) If there is r in R such that λT ⋪ r for any λ ∈ R++, then τRδT is the discrete topology.

Proof .Put δ = δT , to prove the triangle inequality for δ. We recall that the set of a positive element
of A is a positive cone.
(i) We shall show that the family {N δ

λT (x)}λ∈R++,x∈X forms a topological base for τRδ . To see this,
let N δ

r (x) be an arbitrary open ball in τRδ and let y ∈ N δ
r (x). Since R is allowance, there is r0 ∈ R

such that r0 ◁ r − δ(x, y). By the Archimedean property of r0 ∈ R, there is λ0 ∈ R++ such that
λ0T ◁ r0. Now N δ

λ0T
(y) ⊆ N δ

r (x), since δ(x, z) ◁ δ(z, y) + δ(y, x) ◁ λ0T + δ(x, y) ◁ r0 + δ(x, y) ◁ r
for z ∈ N δ

λ0T
(y).

Let N δ
λT (x) be an arbitrary open ball in τRδ and let y ∈ N δ

λT (x). Let λ0 = λ − δ(x, y). Then
λ0 ∈ R++, since δ(x, y) ◁ λT implies that d(x, y)T ◁ λT and so λ − d(x, y) > 0. We assert that
Nd

λ0
(y) ⊆ N δ

λT (x). To see this, let z ∈ Nd
λ0
(y). We have d(z, y) < λ0 and so

δ(z, x) ◁ δ(z, y) + δ(y, x) = d(z, y)T + d(y, x)T

◁ λ0T + d(y, x)T

= (λ− d(x, y) + d(y, x))T

= λT.

This shows that y is an interior point of N δ
λT (x) with respect to d. Thus N δ

λT (x) ∈ τd. On the
other hand, if Nd

λ(x) is an arbitrary basis element of the topology τd and y ∈ Nd
λ(x), then for

λ0 = λ − d(x, y), we have N δ
λ0T

(y) ⊆ Nd
λ(x) and so Nd

λ(x) is open with respect to τRδ . Thus the
topology coincide.
(ii) If δ(x, y) ◁ r, then d(x, y)T ◁ r, and so d(x, y) = 0, which implies x = y. Hence N δ

r (x) = {x}
for each x ∈ X and the topology τRδ is then discrete.□

The following theorem states that if A has the Archimedean property, then an A-extended A-
metric space is nothing but a metric space.

Theorem 4.4. Let (X, δ) be an R-extended A-metric space. If we define d : X × X −→ R+ by
d(x, y) = ∥δ(x, y)∥, then (X, d) is a metric space. Furthermore, if R has the Archimedean property,
then τd = τRδ .
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Proof .For the triangle inequality, we have

d(x, y) = ∥δ(x, y)∥ ⊴ ∥δ(x, z) + δ(z, y)∥
⊴ |∥δ(x, z)∥+ ∥δ(z, y)∥
= d(x, z) + d(z, y),

since 0 ≤ T ≤ S implies that ∥T∥ ≤ ∥S∥ for T, S ∈ A.
Now suppose that R has the Archimedean property. Let N δ

r (x) be an arbitrary basis open set in
τRδ and let y ∈ N δ

r (x). Since R is allowance, there is T ◁ r − δ(x, y) in R and so there is λ0 ∈ R++

such that λ0ι ◁ T . We have Nd
λ0
(y) ⊆ N δ

r (x), since for z ∈ N δ
λ0
(y),

δ(z, x) ≤ δ(z, y) + δ(y, x)

≤ ∥δ(z, y)∥ι+ δ(x, y)

≤ d(z, y)ι+ δ(x, y)

◁ λ0ι+ δ(x, y)

◁ T + δ(x, y)

= r.

Thus N δ
r (x) ∈ τd.

Now let Nd
λ(x) be an arbitrary basis open set in τd and let y ∈ Nd

λ(x). Let r be a fixed element
of R and let r0 =

λ0r
∥r∥ , where λ0 =

1
2
(λ− d(x, y)). Then r0 ∈ R

⋂
A++ and N δ

r0
(x) ⊂ Nd

λ(x). To see

this, let z ∈ N δ
r0
(x). We have δ(z, y) ◁ r0, and since r0(x) ̸= 0 (x ∈ H), then δ(z, y)(x) < r0(x) for

all x ∈ H. Thus ∥δ(z, y)∥ ≤ ∥r0∥. Hence

d(z, x) ≤ d(z, y) + d(y, x)

≤ ∥d(z, y)∥+ d(x, y)

≤ ∥r0∥+ d(x, y)

= λ0 + d(x, y)

< λ.

This shows that y in an interior point of Nd
λ(x) with respect to τRδ and so Nd

λ(x) ∈ τRδ .□
According to the results obtained in this article and Mirzavaziri’s article, it is possible to define

the C∗-metric spaces with both commutative and noncommutative C∗-algebras.
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