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Abstract

In this paper, we give a family of rational maps whose Julia sets are quasicircles also we the boundaries
of I0 , I∞ are quasicircles , we have the family of complex rational maps are given by

Qα(Z) = 2α1−n Zn − zn (z2n − αn+1)

z2n − α3n−1
, (0.1)

where n ≥ 2 and α ∈ C\{0}, but α2n−2 ̸= 1, α1−n ̸= 1.
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1. Introduction

In general the rational maps have dynamics more complex than that of polynomials because
each polynomial has a totally invariant superattracting focused at ∞. See [12, 13]. However, if
we study dynamics behaviors of polynomials When studying the behavior of the rational maps
close to the polynomials through the concept of perturbation. McMullen is the first who used the
singular perturbation on Zn(see [11]) he study the family of rational maps Fd(Z) = Zp+ d/Z l where
p ≥ 2, l ≥ 1 and d ∈ C\{0}, this map called the McMullen maps. The McMullen map has been
studied by several authors. The authors in [3], we give The Escape Trichotomy Theorem for Fd by
the orbits of the free critical points. After that through several people, they found a generalization
of McMullen maps see [3, 6, 7, 14]. Fu and Yang [8], They studied the following maps

hλ(Z) =
zd

(
z2d − αd+1

)
z2d − α3d−1

,

where d ≥ 2 and λ ∈ C\{0}, such that λ2n−2 ̸= 1. They got several things, including Julia sets is
cantor circles or quasicircles or Sierpinski carpet according to the iterate of the free critical points.
See [8, 9, 15].
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2. Background and the Main Result

For each a rational map R with degree d ≥ 2 on C∞ = C ∪ {∞}. Let Rk be the k − th iteration
of R, where k ∈ N. We define the Julia set as the closure of the set of all repelling periodic points.
Also, The Julia set of R is the set of points at which the family of iterates {Rk : k ∈ N} fails to be
a normal family in the sense of Montel, denoted by J(R). However, C∞\J(R) is the Fatou set of
R F (R). We call any connected component of the Fatou set is Fatou component. Now we study

Qα(Z) = 2α1−n Zn − zn (z2n − αn+1)

z2n − α3n−1
,

where n ≥ 2 and α ∈ C\{0}, but α2n−2 ̸= 1, α1−n ̸= 1. If n = 1, α = 0 or α2n−2 = 1, α1−n = 1, Qα

degenerates to the polynomial qn(z) = −z−n or zn, then the map Qα perturbed in the polynomial
qn. Qα have superattracting periodic orbits of 0 and ∞. The immediate basin of attraction of 0
and ∞ denoted by I0 and I∞ respectively. Since the degree of any rational maps is the maximal of
degrees of Numerator and denominator , thus in (0.1) the degree of Qα is 3n . By Corollary 2.7.2. in
[1], any rational maps have the critical points (2d− 2), then the map Qα has (6n− 2) critical points
(counted with multiplicity).
We offer the main result as follows :

Theorem 2.1. Assume that the orbit of one free critical point pα of Qα is attracted by ∞ (resp. 0),
and pα ∈ Iα (resp. I0), then J(Qα) is a quasicircle. (see Figure 1)

Figure 1:

Theorem 2.2. The boundary of I0 and The boundary of I∞ are quasicircles if the one of the free
critical orbits of Qα is attracted by either 0 or ∞.

3. Preliminaries

In this section, we give the symmetric dynamical behaviors and the symmetric distribution of
critical points for .

Lemma 3.1. For each ω ∈ C such that satisfying ω2n = 1. Therefore Ql
α(ω z) = ωnl

(z) Ql
α(z) for

l ≥ 1.
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Proof . Suppose that

Qα(z) = 2α1−n zn − zn (z2n − αn+1)

z2n − α3n−1
,

and calculation by use ω2n = 1, we have

Qα(ω z) = ωn

(
2α1−n zn − zn (z2n − αn+1)

z2n − α3n−1

)
= ωnQα(z).

Assume that Ql
α(ω z) = ωnl

(z) Ql
α(z) for some l ≥ 1. Now we use the Law of Induction, then

Ql+1
α (ω z) = Qα

(
Ql

α(ω z)
)
= ωnl+1 Ql+1

α (z). □

Lemma 3.2. For any η(z) = α2

z
. Then Qα satisfies the equation η ◦ Qα(z) = Qα ◦ η(z) for each

z ∈ C∞.
Proof .We notice η−1(z) = α2

z
= η(z). Then

Qα ◦ η(z) = 2α1−n

(
α2

z

)n

−

(
α2

z

)n
((

α2

z

)2n

− αn+1

)
(
α2

z

)2n − α3n−1

=
−α6n + α3n+1z2n + 2α5n+1 − 2α4nz2n

zn (α4n − α3n−1z2n)

= α2 z2n − α3n−1

2α1−nz3n − 2α2nzn − zn (z2n − αn+1)

=
α2

Qα(z)
= η ◦ Qα(z).

□

From Lemma 3.1 and Lemma 3.2, the orbits of points with the form ωk z, where k = 0, 1, 2, . . . , 2n−1,
or form (α2/z) behave symmetry of the iteration ofQα, e.g., ifQl

α(z) tends to 0 (or∞), thenQl
α(ω

k z)
or Ql

α(α
2/z) also tends to 0 (or ∞) or ∞ (or 0) respectively, for 1 ≤ k ≤ 2n− 1 as l tends to ∞ of

Qα. A Fatou component W is invariant if f(W ) ⊆ W and fixed if f(W ) = W. If fp(W ) = W, we
called W is periodic component for some p ∈ N.

Theorem 3.3. [1] If the Fatou set F (R) of R has two completely invariant components, then these
are the only components of R.

Corollary 3.4. Suppose that W is a Fatou component of Qα, then W = η(W ). In special case
η(I0) = I∞ and η(I∞) = I0.
Proof . Suppose that W is a Fatou component of Qα, then by use Lemma 3.2 W = η(W ), thus
W fixed component and W = η(W ) = η−1(W ), it follows W is completely invariant . By Theorem
3.3, we have only two components I0 and I∞, and by Lemma 3.2 η(z) = α2/z, then η(I0) = I∞ and
η(I∞) = I0. □

Now, we have

Q́α(z) = nzn−1 (3α
3n−1 − 4αn − αn+1) z2n − z4n (1− 2α1−n)− α4n + 2α5n−1

(z2n − α3n−1)2
(3.1)
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Q́α(z) = nzn−1 (3α
3n−1 − 4αn − αn+1) z2n − z4n (1− 2α1−n)− α4n + 2α5n−1

(z2n − α3n−1)2
= 0,

then either z = 0 with multiplicity n − 1 and from Lemma 3.2, ∞ is a critical point of Qα with
multiplicity n− 1, or

z4n
(
1− 2α1−n

)
−

(
3α3n−1 − 4αn − αn+1

)
z2n + α4n − 2α5n−1 = 0

p2nα =
3α3n−1 + 4α4n + αn+1 ±

√
(3α3n−1 + 4α4n + αn+1)2 − 4 (1− 2α1−n) (α4n − 2α5n−1)

2 (1 + 2α1−n)

There are two roots

p2nα =
3α3n−1 + 4α4n + αn+1 +

√
(3α3n−1 + 4α4n + αn+1)2 − 4 (1− 2α1−n) (α4n − 2α5n−1)

2 (1 + 2α1−n)
(3.2)

and

p2nα =
3α3n−1 + 4α4n + αn+1 −

√
(3α3n−1 + 4α4n + αn+1)2 − 4 (1− 2α1−n) (α4n − 2α5n−1)

2 (1 + 2α1−n)
(3.3)

there are 4n critical points other than 0 and ∞. By use Lemma 3.1 and Lemma 3.2, we can written
the critical points as form Cr(Qα) = {ωk

0pα , ωk
0 α2/pα : 0 ≤ k ≤ 2n − 1}, where ω0 = exp(iπ/n),

note that Qα has one free critical orbit. Let W ⊂ C∞ and c ∈ C. We define cW = {cz : /z ∈ W}.

Lemma 3.5. I0 and I∞ have the symmetry (2n − fold), if z ∈ I∞ or I0, then ωz ∈ I∞ or I0,
respectively, and ω2n = 1. We discuss the case I0.
Proof . For any W ⊂ I0 be define as {z ∈ I0 : ωz ∈ I0}, W is non-empty and open set since I0
consist of small neighborhood of 0. Now if W ̸= 0, suppose that z0 ∈ I0 ∩ ∂W, that is z0 ∈ ∂W we
have z0 ∈ I0 and ωz0 ∈ I0. Hence ωz0 ∈ ∂I0 since ωz0 ∈ ∂W and W ⊂ I0. Then Ql

α(z0) → 0 whereas
Ql

α(z0) ̸→ 0 as l → ∞. But Ql
α(z0) = ωnlQl

α(z0) → 0. This is a contradiction. Therefore ωI0 = I0.
Similarly we can proof that ωI∞ = I∞. □

Using the same steps and technique as the source [10], the results can be generali to the following
Lemma.

Lemma 3.6. Let W be a Fatou component of Qα. Let z0 and ωk0z0 belong to W , where ω2n = 1 and
ωk ̸= 1. Then ωkz0 ∈ W for each integer k.Then W has the symmetry (2n− fold) and surround 0.

Proposition 3.7. Assume that α ∈ R( R Real numbers). Then τ|α| = {z ∈ C : |z| = |α|} be the
round circle and Qα : τ|α| → τ|α|. Moreover, τ|α| ⊂ J(Qα) if the free critical orbits are attracted by
∞ or 0.
Proof .Assume that z = |α|eiθ, where θ ∈ [0, 2π). Then

|Qα(z)| ≤ 2|α|1−n |α|n − |α|n ⋆ |α2ne2niθ − αn+1|
|α2ne2niθ − α3n−1|

= 2|α| − |α| = |α|.

This means that Qα(τ|α|) ⊂ τ|α|. If α is real, we have |α| ̸= 1, since α2n−2 ̸= 1, α1−n ̸= 1, by use the
definition of Qα. Now we have two cases.
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� Case 1 if |α| > 1, we have |α|n+1
2n < |α| < |α| 3n−1

2n , that is α3n−1 is large such that by (0.1)
Qα has 3n roots and no poles in D|α| = {z ∈ C : |z| < |α|}. From the Argument Theorem, thus
Qα(τ|α|) around the origin 3n times anticlockwise. Hence, Qα(τ|α|) = τ|α|

� Case 2 if 0 < |α| < 1, we have |α|n+1
2n < |α| < |α| 3n−1

2n . Note that if αn+1 is large and α3n−1 is
small such that by (0.1), then we have

Qα(z) = 2αn−1zn − zn (z2n − αn+1)

z2n
.

Since α3n−1 is small Qα has n roots and 2n poles in Dα, thus Qα(τ|α|) around the origin n
times clockwise. Therefore, Qα(τ|α|) = τ|α|. Therefore Qα : τ|α| → τ|α| is a surjection in the
two cases. Suppose that z0 ∈ τ|α| ⊂ F (Qα), then Ql

α(z0) → 0 or ∞ as l → ∞. However, on
the other side, Ql

α(z0) ∈ Qα(τ|α|) = τ|α| for each l ≥ 0, that is contradict.
Hence, τα ⊂ J(Qα)

□

Example 3.8. If n is odd and Qα(−α) = −α, then τα is not contained J(Qα).
If Qα(−α) = −α. By (3.1), we have

Q́α(z) = nzn−1−z4n + (3α3n−1 − αn+1) z2n (1− 2α1−n)− α4n

(z2n − α3n−1)2
+ 2nα1−nzn−1

Q́α((−α)) = n(−α)n−1−(−α)4n + (3α3n−1 − αn+1) (−α)2n (1− 2α1−n)− α4n

((−α)2n − α3n−1)2
+ 2nα1−n(−α)n−1

= −nαn−1α
4n − 3α5n−1 + α3n+1 − α4n

(α2n + α3n−1)2
− 2n

=
nα2n−2 − 4nαn−1 − 3n

1 + 2αn−1 + α2n−2

If Q́α((−α)) = 0, then nα2n−2 − 4nαn−1 − 3n = 0, or α2n−2 − 4αn−1 − 3 = 0, thus, either α =

−(0.6457)
1

n−1 or α = 4.6457
1

n−1 . Hence −α is superattracting fixed point of Qα, but this is not attract
to 0 or ∞. Then τ|α| ̸⊂ J(Qα).

4. The Proof of Main Results

We study a sufficient and necessary condition for J(Qα) is a quasicircle.
Let f : D → D

′
be an orientation-preserving homeomorphism between open sets in the plane. If f

is continuously differentiable, then it is K-quasiconformal if the derivative of f at every point maps
circles to ellipses with eccentricity bounded by K.
A simple closed curve is quasicircle if is equal to the image of the unit circle for a quasiconformal
homeomorphism map from C∞ → C∞.

Lemma 4.1. [3] Assume that the rational map is hyperbolic, it has exactly two Fatou components.
Then the Julia set is a quasicircle.

Corollary 4.2. Suppose that Qα is hyperbolic map have exactly two Fatou component I0 and I∞,
then J(Qα) is quasicircle.
Proof . By Lemma 4.1 and by Lemma 3.2, I0 and I∞ are contain in F (Qα). Then J(Qα) is
quasicircle □
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Proposition 4.3. Assume that pα ∈ I0 or I∞, then the J(Qα) is quasicircle.
Proof . Assume that pα ∈ I0. Then by Lemma 3.2 α2/ pα ∈ I∞, also by Lemma 3.1 ωj pα ∈ I0
and ωjα2 pα ∈ I∞ for 0 ≤ j ≤ 2n − 1, we assume that Q−1

α (I0) has the unique component say,
I0 and Q−1

α (I∞) has the unique component say, I∞. If the degree of the restriction of Qα is m and
Qα : I0 → I0 is proper, then n ≤ m because n is the local degree of Qα at 0. Now in I0 the preimages
of 0 have elements other than 0 by Lemma 3.1, it follows 3n ≤ m i.e. 3n = m because 3n is the degree
of Qα, implies n = m or 3n = m. We prove that n = m is not correct. From assumption pα ∈ I0 that
(2n−1) free critical points of Qα{ωj pα : 1 ≤ j ≤ 2n−1} lies in I0 by Lemma 3.5 From the definition
of Qα in (3.1), thus there exist preimages 2n at least for Qα(pα){ωj pα : 1 ≤ j ≤ 2n−1} in I0 (counted
with multiplicity ). Hence 2n ≤ m, which is contradict with n = m. Therefore 3n = m and Q−1

α (I0)
has the unique component I0, also prove Q−1

α (I∞) has the unique component I∞. We assume that
only there are I0 and I∞ contain in F (Qα). Now, note that there were either superattracting basins
or parabolic basins contain one critical point at least, which is contradict because each of the critical
points lie in I0 and I∞. If there were either Herman rings or Siegel disks, thus J(Qα) contains one
critical value at least and is contradicted. By Corollary 4.2, thus Qα is hyperbolic. According to
Lemma 4.1, J(Qα) is a quasicircle. □

Proposition 4.4. Suppose that |α| is large enough. Then J(Qα) is a quasicircle.
Proof .From (3.2), we have

p2nα =
3α3n−1 + 4α4n + αn+1 +

√
(3α3n−1 + 4α4n + αn+1)2 − 4 (1− 2α1−n) (α4n − 2α5n−1)

2 (1 + 2α1−n)
.

Thus |pα| ≈ |α| 3n−1
2n , if |α| is large enough. Since n ≥ 2, thus α

3n−1
2n ≥ |α| 54 > |α| 65 . Define

β = {z : |z| > |α| 65}. Now, if |α| is large enough and z ∈ β, then

Qα(z) ≥2|α|n−1|z|n − |z|n (|z|2n − |α|n+1)

|z|2n − |α|3n−1
> 2|α|n−1|α|

6n
5 −

|α| 6n5
(
|α| 12n5 − |α|n+1

)
|α| 12n5 − |α|3n−1

>2|α|
n+5
5 − 1

2
|α|

6
5 > 2|α|

6
5

This means that Qα(β) ⊂ β. Therefore β is contained in I∞. Conversely pα holds |pα| ≈ |α| 3n−1
2n >

|α| 65 . It follows that pα ∈ β ⊂ I∞ if |α| is large enough. By Proposition 4.3, J(Qα) is a quasicircle □

Proposition 4.5. Assume that α ∈ R. Then is a quasicircle iff J(Qα) = τ|α| if α > 1.
Proof . Suppose that α > 1, we have Qα(τα) = τ|α| and in the round disk D|α| = {z : |z| < |α|}, Qα

has no poles and 3n roots from Proposition 3.7. Hence Qα(Dα) = D|α|. Thus, Dα ⊂ F (Qα).
From Lemma 3.2, C∞\D̄|α| ⊂ F (Qα) In special case Dα ⊂ I0, also C∞\D̄|α| ⊂ I∞. It follows that
J(Qα) = τ|α| because I0 ∩ I∞ = ϕ.
Conversely, we assume that 0 < |α| < 1. And assume that J(Qα) is a quasicircle, thus J(Qα) = τ|α|
because Qα(τα) = τ|α|. Hence, Dα = I0, and Qα : D|α| → D|α| has a degree 3n for the covering map.
Conversely, if 0 < |λ| < 1, D|α|, include 2n poles and n roots for Qα, which is a contradict. Hence
if 0 < |λ| < 1, J(Qα) is not quasicircle. □

Let A0 = Q−1
α (I0)\I0 be the first preimage of I0 and A∞ = Q−1

α (I∞)\I∞ the first preimage of I∞.
If J(Qα) is not a quasicircle, by proposition 4.3. It follows one of the free critical points not lies in
I0 or I∞, thus one of the free critical points lies in A0 and A∞. So A0 and A∞ are both non-empty.
Let U ⊂ X be an open set of a topological space X and V ⋐ Uan open, compactly contained set
(i.e., V̄ is compact and V̄ ⊂ U ).
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Theorem 4.6. [5]

(i) Every polynomial-like mapping f : U
′ → U of degree d is hybrid equivalent to a polynomial p

of degree d.

(ii) If Kf is connected, p is unique up to conjugation by an affine map.

Proposition 4.7. Both ∂I0, ∂I∞, and each of the preimages of them is quasicircles around 0.
Proof . For each closed set V = C∞\ (I0 ∪ I∞) amidst I0 and I∞ divided into closed sets V1, V2, V3

between I∞ and A0, A0 and A∞ and A∞ and I0 (see Figure (2)). For any smooth simple closed
curve Γ ⊂ A) ⊂ V around 0. We assume that in V3 the preimage of Γ is smooth simple closed curve
around 0. Note that V , includes no critical values. Therefore in V3 the preimage of Γ contains of
finitely many smooth simple closed curves. Assume that Γ3 is not around 0. Therefore in V3, Γ3

can disfigure to a point. It follows that in V, Γ = Qα(Γ3) can also disfigure to a point. Which is
contradicted because Γ ⊂ V is around 0. Hence in V3 the preimage of Γ are smooth simple closed
curves around 0 and ∞. In V3, there are two components for Q−1

α (Γ), thus between two simple closed
curves, the annular region include either poles or roots , this is impossible. Then, Q−1

α (Γ) ∩ V3 is a
smooth simple closed curve around 0, say J. Let γ ⊂ C be a simple closed curve and assume that the
bounded component of C\γ is γint. We remark that in Γintis the Jordan disk include Jintis compactly
contained. By Theorem 4.6, Therefore Qα : Jint → Γint is quasiconformally equivalent to qn(z) = zn.
We know that J(qn) = S1. Then ∂I0 is a quasicircle. Similarly, also I∞ is a quasicircle. Because
each of the preimages of I0 and I∞ are include in V1 ∪ V2 ∪ V3, It follows that each of the preimages
of I0 and I∞ are quasicircles around 0. □

Figure 2:
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