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Abstract

Interpretability of word vector components is very important for obtaining conceptual relations.
Word vectors derived from counting models are interpretable but suffer from the high-dimensionality
problem. Our goal in this study is to obtain interpretable low-dimensional word vectors in such a
way that the least accuracy loss occurs. To achieve this goal, we propose an approach to reduce
the dimensions of word vectors using a labeling method based on the BPSO algorithm and a voting
method for selecting final context words. In this approach, we define several different base models
to solve the labeling problem using different data and different objective functions. Then, we train
each base model and select 3 of the best solutions for each model. We create the target word vectors
of the dictionary based on the context words labeled ”1”. Next, we use the three best solutions of
each base model to build the ensemble. After creating the ensemble, we use the voting method to
assign the final label to the primary context words and select N final context words. In this study,
we use the corpus ukWaC to construct word vectors. We evaluate the resulting word vectors on the
MEN, RG-65, and SimLex-999 test sets. The evaluation results show that by reducing the word
vectors dimensions from 5000 to 1507, the Spearman correlation coefficient of the proposed approach
has been reduced to a lesser extent compared to each base model. Therefore, the accuracy drop of
the proposed approach is justified after reducing the dimensions from 5000 to 1507. It is not a large
penalty because the resulting word vectors are low-dimensional and interpretable.
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1. Introduction

Distributional semantic models (DSMs) are a set of methods that extract the meaning of words
from large corpora. In DSMs, the meaning of a word in a sentence is represented by a vector
automatically [4]. There are two models for constructing word vectors: count-based models and
prediction-based models [5]. Count-based models usually consider the most frequent words in a
corpus as context words. Then, they count the co-occurrence of the dictionary target words with
the context words using a fixed window around the dictionary words [23]. Semantic word vectors
obtained by counting-based models are usually high-dimensional and each dimension corresponds to
a natural word, so word vectors are interpretable and meaningful. Dimensional reduction methods
such as Non-negative Matrix Factorization (NMF) [14] and Singular Value Decomposition (SVD)
[24] are usually used to reduce the vector’s dimensions and implicit word vectors are generated. The
resulting implicit word vector dimensions have no semantic equivalent.

Predictive models often use neural methods to obtain word vectors and generate dense implicit
word vectors that the resulting dimensions are not meaningful [28]. Predictive models such as
Word2Vec [25], Glove [29] and FastTexts [7] usually have high performance in NLP tasks. Many
tasks such as machine translation [1], sentiment analysis [27, 18], question answering [12], text
classification [33], and topic modeling [11] use distributional semantic vectors. The word vectors
obtained by prediction models have good performance in these applications but cannot reflect the text
information because the resulting word vectors are not interpretable. Explicit word vectors obtained
by counting methods are meaningful, but the main drawback is the high dimensions of word vectors.
Common dimension reduction methods produce implicit vectors and eliminate interpretability. In this
study, for the first time, we intend to reduce the word vector’s dimensions by using an optimization
method, to keep the interpretability of word vectors. We identify effective context words to obtain
word vectors using the BPSO-based labeling algorithm by two different objective functions that are
applied on two different co-occurrence matrices on a corpus. Then, we report the best low-dimensional
set of context words for producing semantic word vectors by the voting method.

We will briefly explain how to construct word vectors in counting-based methods.

� We usually select some of the most frequent words in the corpus as primary context words. In
a co-occurrence matrix, each column corresponds to a context word, and each row corresponds
to a dictionary word namely the target word.

� Consider a fixed window size (W) and count the co-occurrence of the target word with the
context words that are placed in the neighborhood of the target word (±W ) in the sentence.

� The component Cij in the co-occurrence matrix corresponds to the co-occurrence of the ith
target word and the jth context word in the interval ±W in sentences.

� The ith row of the co-occurrence matrix represents the target word vector which is corresponding
to the ith row.

Raw co-occurrence numbers in the co-occurrence matrix are biased. Usually, the Pointwise Mu-
tual Information method is used to eliminate this bias. Pointwise mutual information reflects the
correlation between two words in a corpus. A larger PMI association means more correlation between
two words or frequent occurrences of two words in the corpus. Also, a smaller PMI association means
that if the first word occurs in one sentence, we expect that the second word is not in the sentence.
So a larger PMI means more semantic relevance of the two words and vice versa. We obtain the PMI
measure for the target word t and the context word c based on the following Equation [21]:
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PMI(t, c) = log
P (t, c)

P (t)P (c)
(1.1)

If the target word t and the context word c are independent, the PMI measure will be zero.
Usually, a positive PMI or PPMI measure is used to eliminate co-occurrence matrix bias.

PPMI = max (PMI, 0) (1.2)

In this study, we propose a method for classifying primary context words into two classes, effective
and not effective, which assigns a label ”1” or ”0” to each context word using a BPSO-based labeling
algorithm. Labels ”1” and ”0” correspond to effective context words and not effective context words,
respectively. To solve the classification problem using BPSO-based labeling algorithm, we define
two different objective functions namely OF1 and OF2. The function OF1 tries to maximize the
Spearman correlation coefficient between the similarities of word pairs. The function OF2 minimizes
the sum of squares of the words vector’s differences. Next, we get the optimal solutions obtained by
objective functions OF1 and OF2 using different co-occurrence matrices, which have 1000 and 500
columns. Then, we use a voting method in ensemble to classify primary context words as effective
and not effective. The proposed method classifies N context words from 5K primary context words
by the label ”1”. The evaluation results show that the vectors dimensions are reduced from 5000 to
N=1500 by minimal loss of accuracy.

The following of this paper is structured as follows: Section 2 discusses related works in literature,
while section 3 explains how the proposed approach reduce explicit word vectors dimension by finding
final context words. We describe the evaluation results and discussions in detail in Section 4. Finally,
the paper is concluded in Section 5.

2. Related Work

Distributional semantic models are divided into two category namely count-based and prediction-
based models. The word vectors obtained by the count-based model are explicit. Each dimension of
a word vector corresponds to a lexical word. Prediction-based models generate implicit word vectors.
That is, each dimension of the word vector is just a real number and does not refer to a specific
concept. Predictive models are usually very accurate. Accuracy in count-based models is usually less
but, the word vectors are meaningful. Explicit word vectors are valuable because a lot of information
can be extracted from each word vector. We can obtain information such as word senses and words
relatedness in different fields using explicit word vectors.

Despite the remarkable success and widespread acceptance of word embedding models, there is
still a drawback: the inability to provide a conceptual equivalent of word embedding dimensions.
In implicit word vectors, the meaning of individual dimensions is unattainable. This issue is a
problem in general and in sensitive fields like medicine in particular. Because using uninterpretable
word vectors, the conceptual relationship between different diseases and drugs cannot be accurately
identified. For example, in the medical concepts of Insulin and Diabetes mellitus, word embedding
models can achieve semantic similarity between two words. But it is not possible to determine
how much the concept of pharmacological substance or hormone is related to insulin. Conceptual
relations can be easily extracted by having interpretable word vectors. Interpretable representations
can provide explanatory answers to questions about conceptual relatedness [19].

Attempts have been made in the literature to transform word embeddings into interpretable
representations. Reference [34] uses sparseness and non-negativity by changing the loss function in
Glove to create interpretable word vectors. Reference [26] uses non-negative matrix factorization
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(NMF) on the co-occurrence matrix to extract interpretable representations. Article [35] uses a k-
sparse denoising autoencoder to construct a sparse high-dimensional non-negative mapping for word
embeddings called SParse Interpretable Neural Embeddings (SPINE). Reference [15] suggests Sparse
Overcomplete Word Vectors for solving the optimization problem and produces a high-dimensional
sparse non-negative mapping of implicit word vectors. The main idea of these researches for creating
an interpretable representation is to create sparseness in the word embedding dimensions. They turn
low-dimensional word embeddings into the sparse non-negative high-dimensional mapping of word
vectors. Then, a semantic equivalent is assigned to each word vector dimension. These methods are
not able to extract low-dimensional interpretable word vectors directly from the corpus.

The main disadvantage of semantic word vectors resulting from count-based methods is high
dimensionality. Dimensional reduction methods such as NMF, SVD, and PCA are usually used to
reduce the dimensions of explicit word vectors, which cause the vectors to lose their interpretability.
So, the word vectors are transferred to a new implicit vector space with low dimensionality.

Attempts have been made to reduce the dimensions of explicit word vectors. Reference [8] believes
that it is not crucial to consider all non-existent relationships which are zero in the co-occurrence
matrix. The word pair relations are only valuable if they are non-zero in vector representation.
References [9] and [30] use filtering methods to reduce the dimension of word vectors. They choose
the most relevant context words for each target word. References [16] and [17] use filtering methods
to extract r relevant context words based on the highest likelihood score. In the literature, not
much attention has been paid to reducing the dimensions of explicit word vectors that maintain
the interpretability of word vectors. The above research identifies important context words for each
target word in the dictionary. The filtering methods do not explicitly suggest the final context words
for each corpus. As a result, it is not possible to construct the target word vectors in the dictionary
based on final context words.

Particle swarm optimization is an efficient evolutionary optimization algorithm introduced by
Kennedy and Eberhart in 1995 [22]. The PSO algorithm has recently been used to select important
data features in many tasks. Reference [32] suggests a PSO-based multi-objective method to select
features. First, the feature selection method displays the features using a graph representation model.
Then, the feature centralities are calculated for all graph nodes. Finally, a PSO-based search process
is run to select important features. The authors of [31] introduce an online feature selection method
based on the multi-objective PSO algorithm for multi-label classification. Reference [10] provides an
efficient feature selection algorithm based on BPSO and CS-BPSO methods. The algorithm improves
the efficiency of Arabic email authorship analysis. Article [2] introduces a multi-objective PSO-based
method that rates based on the frequency of features. Then, it uses these ratings to select remarkable
features. In this study, we propose a BPSO-based labeling method to find the final context words.
First, we assign labels ”0” and ”1” to the most frequent context words in the corpus using the
proposed labeling optimization algorithm. The label ”1” means the context word is effective, and
the label ”0” means the context word is not effective. We perform context word labeling operation
using two different objective functions OF1 and OF2, on two different co-occurrence matrices, namely
SD and DD. We solve the optimization problem with the constraints N= 500 and N= 1000, namely
that the number of context words by label ”1” should be 500 and 1000, respectively. Then, we use
a voting method in ensemble to select the final context words from all the different base models in
which the labeling problem is solved. Then, we generate and evaluate the co-occurrence matrix of
the target words in the dictionary using the final context words obtained by the voting method in
ensemble. The evaluation results report that using ensemble and voting method in comparison to
each base model improves the Spearman correlation coefficient of word vectors on test sets. The
results are presented in detail in Section 4.2.
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3. Proposed Approach

Our goal in this study is to select the final context words to reduce the dimensions of explicit
word vectors. So, the interpretability of word vector components is maintained. To achieve this goal,
we propose a method based on the BPSO algorithm and the voting method in an ensemble to select
the final context words. The proposed method consists of two phases. In the first phase, by the
BPSO-based labeling method, we label the primary context words in different modes using different
objective functions and different co-occurrence data. In the second phase, we get the best label
for each primary context word using the voting method in an ensemble. In Section 3.1, we briefly
describe the particle swarm optimization method. In Section 3.2, we introduce the context word
labeling method, which is based on the BPSO algorithm. The labeling method uses two proposed
objective functions to solve the problem. We utilize the voting method in the ensemble for selecting
the final context words in section 3.3.

3.1. Particle Swarm Optimization

The PSO algorithm is a population-based stochastic search algorithm inspired by the swarm
behavior of some species, such as flocks of birds and schools of fish. Kennedy and Eberhart introduced
the PSO algorithm in 1995 [22]. A swarm consists of a collection of particles. Each particle is a
member of the swarm population. A particle is a candidate solution for the desired problem. The
PSO algorithm uses a multi-dimensional search to find the best solution. Each particle flies in a
multi-dimensional search space. A particle uses the best position discovered by itself and discovered
by its neighbors (other particles) to move towards the optimal solution [10, 2, 3]. Each particle has
position and velocity parameters. The position and velocity of the ith particle are denoted by xi
and vi, respectively. The movement of each particle is based on its best position (pbest) and the
best solution in the swarm (gbest), namely a particle with the best pbest [10]. To solve the feature
selection problem using the PSO algorithm, we consider a multi-dimensional vector for the position
of each particle. Each dimension of the particle position corresponds to a feature [31]. Suppose
the search space has D dimensions and there are m particles in the swarm. The ith particle has a
position xi = [xi1, xi2, . . . , xiD] with velocity vi = [vi1, vi2, . . . , viD] where i = 1, 2, . . . ,m. In the PSO
algorithm, each particle moves to its best position (pbest) and best position of swarm (gbest), which
is pbesti = [pbesti1, pbesti2, . . . , pbestiD] and gbesti = [gbesti1, gbesti2, . . . , gbestiD]. The ith particle
updates its position based on its velocity (vi), which is randomly generated based on the pbest and
gbest positions. For each dimension h of the ith particle, the velocity vih and the position xih are
calculated by Equations 3.1 and 3.2.

vtih = wvt−1ih + c1b1(pbest
t−1
ih − x

t−1
ih ) + c2b2(gbest

t−1
h − xt−1ih ) (3.1)

xtih = xt−1ih + vtih (3.2)

In Equations 3.1 and 3.2, t is the number of iterations (number of generations). Inertia weight
is used to control the speed and balance of the algorithm’s exploration and exploitation capabilities.
Large w maintains the high velocity of particles and prevents particles from being caught in the
local optimum. A small w causes the particles to take advantage of their current search location.
The constants c1 and c2 in Equations 3.1 and 3.2 are the acceleration coefficients. These constants
determine the degree to which particles tend to be closer to the pbest and gbest positions. Fixed
numbers b1 and b2 are random numbers with uniform distribution in the range 0 and 1. The condition
for termination of the PSO algorithm is the achievement of maximum iterations (number of genera-
tions), a specific value of pbest, or no improvement in pbest [2]. The particle efficiency is measured
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by the degree of proximity of the particle to the local optimal. The proximity is calculated based
on the predefined objective function for the problem [13]. The first step to solving the optimization
problem is to select an appropriate objective function.

First, the particle swarm optimization algorithm was used for continuous problems. Later, it was
developed for discrete problems, known as binary particle swarm optimization [36]. In the BPSO
algorithm, discrete values 0 and 1 are assigned to the position of the ith particle based on the velocity
vi. The sigmoid function is applied based on the following equations:

xtih =

{
1, if rand(0, 1) < S(vtih)

0, else
(3.3)

S(vtih) =
1

1 + e−v
t
ih

(3.4)

The function rand() specifies a random number between zero and one. Parameter vtih represents
the new velocity of the particle at the moment t. When S(vtih) is more significant than random
numbers, the position of the particle will be 1. Figure 1 shows a D-dimensional binary solution
obtained by a particle [10].

Figure 1: D-dimensional solution obtained by a particle.

3.2. Labeling context words using BPSO-based labeling algorithm

In this study, using the BPSO algorithm, we label the primary context words by ”0” and
”1”. Label ”1” means the context word is effective, and label ”0” means the context word is
not effective. First, we consider the D most frequent words in the corpus (of the type of noun,
verb, adverb, and adjective) as the primary context words. The target word vector in the dictionary

is
−→
W = [w1, w2, . . . , wD]. The set of labels assigned to the primary context words is denoted by

L = l1, l2, . . . , lD. This study selects a limited number of N words from the primary context words
as the final context words. Therefore, we propose a constraint to solve the BPSO-based labeling
problem. That is, the number of words that have a binary label ”1” is N.

ΣD
j=1lj = N (3.5)

To solve the labeling problem, we create a training set by selecting m words from the dictionary.
First, we create a co-occurrence matrix for the target words in the dictionary using the primary
context words. Then, we extract the word vectors of the training set from the co-occurrence matrix
and place them in the matrix T. The proposed method defines the label lj for the jth column of
the matrix (columns correspond to the primary context words). The matrix T has m rows and D
columns. Then, we multiply the binary label of the jth column by all components of the jth column
of matrix T. As a result, each element of the matrix T is denoted by t, which corresponds to the cell
in ith row and the jth column. Implicit word vectors obtained by prediction-based methods have high
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efficiency. To get the objective function, we try to use the implicit vectors obtained by prediction-
based methods. So the low-dimensional explicit word vectors obtained by the labeling method have
the most similarity and the most negligible difference with the implicit vectors. For this reason,
we propose to reduce the difference between low-dimensional explicit word vectors obtained by the
labeling method and implicit word vectors in the objective function. In this research, we use implicit
word vectors obtained by word2vec software. We get the implicit vectors of the training set words
by 1000 dimensions and put them in the matrix W2V. The dimensions of the matrix W2V are
m × 1000. Each component of the matrix W2V is denoted by wvi,j, corresponding to the ith row
and the jth column. The smaller distance between the target word vectors obtained by the labeling
method (matrix T) and the implicit vectors obtained by the Word2Vec method (matrix W2V) means
that low-dimensional explicit word vectors attained by the labeling method are more efficient and
accurate. Comparing the components of two matrices is not possible because the dimensions of the
matrices T and W2V are not equal. For this reason, we obtain the following product matrices:

T = T × T ′ (3.6)

W = W2V ×W2V ′ (3.7)

The matrices T and W have m rows and m columns. Each component of the matrix T is denoted
by τi,j, which corresponds to ith row and jth column. Also, each element of the matrix W is denoted
by ωi,j, which corresponds to ith row and jth column. Each component τi,j of the matrix T is the

inner product of the target word vector corresponding to the ith row (
−→
t i) and the target word vector

corresponding to the jth row (
−→
t j) of the matrix T. Also, each component ωi,j of the matrix W is the

inner product of the target word vector corresponding to ith row (−→wvi) and the target word vector
corresponding to jth row (−→wvi) of the matrix W2V.

τi,j =
−→
t i.
−→
t j (3.8)

ωi,j = −→wvi.−→wvj (3.9)

Then, for solving the labeling problem, we try to make the word vectors of matrix T similar to
implicit word vectors of matrix W2V. In this research, we propose two different objective functions
to solve the labeling optimization problem. In Section 3.2.1, we describe an objective function based
on the Spearman correlation coefficient. In Section 3.2.2, we explain an objective function based on
the sum of squares of the word vector’s differences.

3.2.1. Objective function OF1

One way to evaluate the similarity of word pairs is to use the Spearman correlation coefficient.
If the Spearman correlation coefficient between the similarity of the word pairs of the matrices W2V
and T is more remarkable, we get better and more accurate labels. We define an objective function
that maximizes the Spearman correlation coefficient between the similarity of word pairs of matrices
W2V and T. The steps for obtaining cosine similarity of word pairs in matrices W2V and T are as
follows:

1. The inner product of the word pairs in the matrices W2V and T is found in matrices W and
T, respectively. The matrices W and T are m×m.

2. Calculate o = m2−m
2

+m.
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3. V T = [vt1, vt2, . . . , vtO] and WT = [wt1, wt2, . . . , wtO].

4. for i = 1. . .m{

a. For j = i. . .m{
(i) vtz =

τi,j√
τi,i×τj,j

(ii) wtz =
ωi,j√
ωi,i×ωj,j

(iii) z = z + 1

b. }

5. }

To calculate the Spearman correlation coefficient, the word pair’s similarities in matrices W2V
and T should be written in vectors WT and VT, respectively. The word pairs similarity matrix is
symmetric, so the number of components needed to write the word pairs similarities on a vector is
o = m2−m

2
+ m. In step 3, we construct the vectors VT and WT, which have O columns. In step

4-a-i, we calculate the cosine similarity of the word pair in the ith row and jth column of the matrix
t and put it in vtz. Also, in step 4-a-ii, we get the cosine similarity of the word pair in the ith row
and jth column in the matrix W2V and put it in wtz. Then, we define the objective function based
on the Spearman correlation coefficient of vectors WT and VT as follows:

OF1 = SpearmanCorrelation(WT, V T ) (3.10)

The labeling method labels the primary context words (lj) in such a way that maximizes the objective
function OF1.

3.2.2. Objective function OF2

In this study, we propose to reduce the distance between the target word vectors obtained by
final context words (

−→
t i) and the implicit target word vectors obtained by Word2Vec software (−→wvi)

to construct low-dimensional explicit word vectors accurately. Therefore, we define the objective
function of the problem based on the sum of squares of the word vector’s differences as follows:

OF2 = Σf
i=1Σ

f
j=1(ωi,j − τi,j)2 (3.11)

To solve the BPSO-based labeling problem, context word labels (lj) must be selected in a way
that minimizes the objective function of Equation 3.11.

3.2.3. Labeling algorithm

In the labeling method based on the BPSO algorithm, NP is the number of population. Each
member of the population is a particle. The position of each particle is a D-dimensional vector. The
components of the particle position vector correspond to the labels of the primary context words.
The best particle is determined after running the following optimization algorithm:

1. The population size is NP.

2. Initialize the population (position and velocity of each particle) randomly.

a. The particle position should be randomly initialized using binary labels ”0” and ”1”.
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3. For each particle:

a. Apply the objective function (OF1 or OF2) and get the new pbest.

4. Choose the best pbest from all the particles and place it in gbest.

5. Do:

a. For each particle:

(i) Calculate objective function.

(ii) Update pbest.

b. Update gbest.

c. Update the new velocity of the particle based on Equation 3.1.

d. Update the new position of the particle based on Equation 3.3.

6. Until the termination condition (maximum iterations or a specific value of pbest, or no im-
provement in pbest) is met.

In the next section, we will explain how to use the voting method in the ensemble for finding the
final context words.

3.3. Apply voting method in the ensemble to find final context words

A simple machine learning model usually has limited capability. In recent years the ensemble
has been used instead of a simple model because it is difficult to find the best model. The ensemble
combines several models to provide a better and more accurate output. The output of the ensemble is
more representative. The advantage of using an ensemble is that it uses the ability of different models
to estimate different patterns. Also, the errors of one model are compensated by other models. As
a result, using an ensemble of models is more efficient than using a simple machine learning model
[20, 37]. Research has shown that to have a high-performance ensemble; we must use strong models
in the construction of the ensemble and leave out the weak models [20].

Ensembles usually consist of three sub-functions: 1- Choose a suitable base model depending on
the problem. Choosing a base model with high accuracy has a significant impact on the accuracy
and efficiency of the ensemble. 2- We have to sample the training data several times and use the
sampled data for training by the base algorithm and produce several base models. 3- Combine the
results of base models to obtain an accurate output. Majority voting methods are usually used to
aggregate the results of simple base models and generate ensemble output.

In this research, we use the BPSO-based labeling method as a base model. Then we create
the dictionary using 45K most frequent words, including 20K nouns, 10K verbs, 10K adjectives,
and 5K adverbs. Then we consider the 5K most frequent words of the corpus (including nouns,
verbs, adjectives, and adverbs) as the primary context words. Then, we obtain the co-occurrences
of the target words in the dictionary with the primary context words using the exponential function
e−0.1α and put the resulting co-occurrence numbers in the matrix XSD. The exponential function
assigns a higher coefficient to context words that are closer to the target word. Component xij shows
the co-occurrence of the target word corresponding to the ith row and the primary context word
corresponding to the jth column. Parameter α is the absolute value of the simple distance between
the target word and the primary context word. Also, we obtain the co-occurrence matrix of the
target words in the dictionary (45K) and the primary context words (5K) using the dependency
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distance between the target word and the primary context word and put it in the matrix XDD. We
use co-occurrence matrices XSD and XDD as training examples. To solve the BPSO-based labeling
problem, we use two constraints N = 500 and N = 1000. We also use two different objective
functions OF1 and OF2, to solve the problem. We solve the problem of selecting N final context
words in the following cases and assign a binary label to each primary context word. We consider
eight different base optimization models for ensemble construction:

1. Matrix XSD, N = 1000, and objective function OF1.

2. Matrix XDD, N = 1000, and objective function OF1.

3. Matrix XSD, N = 1000, and objective function OF2.

4. Matrix XDD, N = 1000, and objective function OF2.

5. Matrix XSD, N = 500, and objective function OF1.

6. Matrix XDD, N = 500, and objective function OF1.

7. Matrix XSD, N = 500, and objective function OF2.

8. Matrix XDD, N = 500, and objective function OF2.

Spearman correlation coefficient of word similarity task on MEN, RG-65, and SimLex-999 test
sets in matrix XDD is better than the matrix XSD. Spearman’s correlation coefficient of test sets in
cases N = 1000 than in cases N = 500 is higher. We assign labels to primary context words using
the eight base optimization models mentioned above. Then, we create an ensemble and combine the
results of these base optimization models. We use the voting method to assign the final label to
the primary context words and select the N final context words. Then, we use the N final context
words to create the co-occurrence matrices X ′SD and X ′DD using the simple distance and dependency
distance, respectively. Next, we evaluate the resulting word vectors on test sets using the word
similarity task. The evaluation results are reported in Section 4.2. The results show that using the
ensemble, labeling the primary context words, and selecting the final context words are improved
compared to the base models.

4. Experimental Evaluations

4.1. Corpus

The ukWaC corpus [6] is a huge corpus for the English language that contains over one billion
words. The corpus was created by web crawling. The corpus is used as a general resource for
the English language. The corpus includes the Part Of Speech Tag (POS) and the dependency
parsing index. In this research, we use the first part of the ukWaC (namely ukwac dep parsed 01)
to overcome computational constraints. Then, we evaluate the resulting word vectors on the word
similarity task using the MEN, RG-65, and SimLex-999 test sets.
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4.2. Evaluation results and discussions

As mentioned in Section 3.3, we create a dictionary using 20K most frequent nouns, 10K most
frequent verbs, 10K most frequent adjectives, and 5K most frequent adverbs in the corpus. We also
consider 5K of the most frequent words (including nouns, verbs, adjectives, and adverbs) as primary
context words. Next, we construct the co-occurrence matrices XSD and XDD using the dictionary
target words and the primary context words. Then, we obtain the Spearman correlation coefficient
of the co-occurrence matrices XSD and XDD on the MEN, RG-65, and SimLex-999 test sets. The
results are reported in Table 1. As you can see in Table 1, the Spearman correlation coefficient of
the matrix XDD is higher than the matrix XSD in the MEN, RG-65, and SimLex-999 test sets by
0.65%, 6.5%, and 5.08%, respectively. As a result, we find that the word vectors obtained using the
dependency distance are more accurate.

Table 1: Spearman correlation coefficient of matrices XSD and XDD.

test sets Matrix XSD Matrix XDD

MEN dataset 67.79 68.44
RG-65 dataset 56.33 62.83
SimLex-999 dataset 26.73 31.81

In the first step, to evaluate the first base model, we solve the BPSO-based labeling problem using
constraint N = 1000, data XSD, and the objective function OF1. Then, we get three of the best
solutions obtained by the labeling optimization algorithm (which maximizes the objective function
OF1). We construct the vectors of the dictionary target words using the final context words and
evaluate them on the test sets. The results of evaluating word vectors using three of the best solutions
obtained are reported in Table 2. As you can see in Table 2, the accuracy of the 1000-dimensional
word vectors has decreased compared to the matrix XSD, which has 5000 dimensions. The accuracy
drop is expected because we have lost considerable amounts of data to maintain interpretability in
dimensional reduction operations. Solution 3 obtained better Spearman correlation coefficients than
solutions 1 and 2. Spearman correlation coefficient of solution 3 compared to matrix XSD decreased
for the MEN test set by 2.36%. Also, the Spearman correlation coefficient increased by 0.8% and
0.31% in RG-65 and SimLex-999 test sets, respectively. We use the labels obtained by the first base
model in solutions 1, 2, and 3 to build the ensemble.

Table 2: Spearman correlation coefficient of first base model solutions in comparison to matrix XSD.

test sets Solution 1 Solution 2 Solution 3 Matrix XSD

MEN dataset 65.69 64.94 65.43 67.79
RG-65 dataset 51.08 56.68 57.13 56.33
SimLex-999 dataset 24.43 23.69 27.04 26.73

To evaluate the second base model, we solve the BPSO-based labeling problem with constraint
N = 1000 using data XDD and the objective function OF1. Then, we get three of the best solutions
obtained by the labeling optimization algorithm (which maximizes the objective function OF1).
Then, we construct the dictionary target words vectors obtained by using the N=1000 final context
words and evaluate them on the test sets. The evaluation results of the best solutions 1, 2, and 3 are
presented in Table 3. The Spearman correlation coefficient of the second solution is much larger than
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solutions 1 and 3. Therefore, we consider the second solution as the best answer obtained from the
labeling problem. Spearman correlation coefficient of the second solution compared to matrix XDD

decreased on MEN and SimLex-999 test sets by 5.21% and 4.72%, respectively. Also, the Spearman
correlation coefficient in the RG-65 test set increased by 2.91%. Examining the results in Table 3,
we find that the accuracy drop in the word vectors obtained by the dependency distance is more
severe. We use solutions 1, 2, and 3 obtained in the second base model to construct the ensemble.

Table 3: Spearman correlation coefficient of second base model solutions in comparison to Matrix
XDD.

test sets Solution 1 Solution 2 Solution 3 Matrix XDD

MEN dataset 63.04 63.23 63.50 68.44
RG-65 dataset 55.91 65.74 55.53 62.83
SimLex-999 dataset 27.02 27.09 28.34 31.81

To evaluate the third base model, we solve the PSO-based labeling problem using constraint N =
1000, data XSD, and the objective function OF2. Then, we get three of the best solutions obtained
by the labeling optimization algorithm (which minimizes the objective function OF2). Next, using
N = 1000 final context words, we construct the dictionary target word vectors and evaluate them on
the test sets. The evaluation results of solutions 1, 2, and 3 are presented in Table 4. We consider
the third solution the best solution by comparing the results obtained by solutions 1, 2, and 3. The
Spearman correlation coefficient of the second solution compared to the matrix XSD is decreased in
the MEN and SimLex-999 test sets by 1.18% and 2.71%, respectively. In the RG-65 test set, the
Spearman correlation coefficient is increased by 2.04%. In the third base model, we use solutions 1,
2, and 3 to construct the ensemble.

Table 4: Spearman correlation coefficient of third base model solutions in comparison to matrix XSD.

test sets Solution 1 Solution 2 Solution 3 Matrix XSD

MEN dataset 65.83 66.61 65.18 67.79
RG-65 dataset 55.63 58.37 56.99 56.33
SimLex-999 dataset 24.53 24.02 23.58 26.73

Next, to evaluate the fourth base model, we solve the PSO-based labeling problem with constraint
N = 1000 using the data XDD and the objective function OF2. Then, we select three of the best
solutions obtained by the labeling optimization algorithm (which minimizes the objective function
OF2). Then, we construct the vectors of the dictionary target words based on the final context words
obtained by each solution and evaluate them on the test sets. Spearman correlation coefficients of
solutions 1, 2, and 3 are reported in Table 5. We use the three solutions obtained by the fourth base
model to construct the ensemble. Solution 2 got the best Spearman correlation coefficients in the
RG-65 and SimLex-999 test sets. Solution 3 also got the best Spearman correlation coefficient on
the MEN test set. The second solution compared to matrix XDD decreases the Spearman correlation
coefficient of MEN, RG-65, and SimLex-999 datasets by 5.34%, 1%, and 5.08%, respectively.

To evaluate the fifth base model, we solve the PSO-based labeling problem using constraint N =
500, the data XSD, and the objective function OF1. We select the three best solutions that maximize
the objective function OF1 and construct the dictionary target word vectors using the final context
words of each solution. Then, we evaluate the explicit word vectors that have 500 dimensions on the
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Table 5: Spearman correlation coefficient of fourth base model solutions in comparison to matrix
XDD.

test sets Solution 1 Solution 2 Solution 3 Matrix XDD

MEN dataset 62.85 63.10 65.95 68.44
RG-65 dataset 54.18 61.83 57.84 62.83
SimLex-999 dataset 26.28 26.73 26.00 31.81

test sets. The evaluation results are shown in Table 6. The first solution in comparison to matrix
XSD decreases the spearman correlation coefficients on MEN, RG-65, and SimLex-999 test sets by
3.33%, 3.37%, and 3.27%, respectively. We use the three solutions 1, 2, and 3 obtained by the fifth
base model to construct the ensemble.

Table 6: Spearman correlation coefficient of fifth base model solutions in comparison to matrix XSD.

test sets Solution 1 Solution 2 Solution 3 Matrix XSD

MEN dataset 64.46 64.21 63.89 67.79
RG-65 dataset 52.96 50.43 51.58 56.33
SimLex-999 dataset 23.46 24.60 23.96 26.73

To evaluate the sixth base model, we solve the PSO-based labeling problem using constraint N =
500, data XDD, and the objective function OF1. Then, we select three of the best solutions obtained
by the labeling optimization algorithm (which maximizes the objective function OF1). Then, we
construct the dictionary target words vectors using N=500 final context words obtained from each
solution and evaluate them on the test sets using the word similarity task. The evaluation results
of solutions 1, 2, and 3 are presented in Table 7. Solution 1 provides a better Spearman correlation
coefficient than solutions 2 and 3. Of course, in this base model, the accuracy drop is very severe.
The first solution in comparison to the matrix XDD decreases the Spearman correlation coefficient
by 7.72%, 7.78%, and 3.67% on the MEN, RG-65, and SimLex-999 test sets, respectively. This sharp
accuracy drop is expected because we have retained only 500 of the 5,000 dimensions and leave out
a large amount of information. Results show that the accuracy loss due to dimension reduction in
the word vectors obtained by the dependency distance is greater than the simple distance.

Table 7: Spearman correlation coefficient of sixth base model solutions in comparison to matrix XDD.

test sets Solution 1 Solution 2 Solution 3 Matrix XDD

MEN dataset 60.72 63.23 60.30 68.44
RG-65 dataset 55.05 43.81 54.61 62.83
SimLex-999 dataset 28.14 29.93 26.66 31.81

To evaluate the seventh baseline model, we solve the PSO-based labeling problem using constraint
N = 500, data XSD, and the objective function OF2. Next, we select three of the best solutions to
the labeling problem that minimizes the objective function OF2. Then, we construct the dictionary
target words vectors using N=500 final context words obtained by each solution and evaluate them
on the test sets using the word similarity task. Evaluation results of the labeling problem solutions
are reported in Table 8. The Spearman correlation coefficient of the second solution compared to
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matrix XSD is decreased by 4.12%, 2.83%, and 2.05% on MEN, RG-65, and SimLex-999 test sets,
respectively. We derive solutions 1, 2, and 3 from the seventh base model to construct the ensemble.

Table 8: Spearman correlation coefficient of seventh base model solutions in comparison to matrix
XSD.

test sets Solution 1 Solution 2 Solution 3 Matrix XSD

MEN dataset 62.10 63.67 61.19 67.79
RG-65 dataset 50.97 53.50 50.24 56.33
SimLex-999 dataset 25.30 24.68 22.68 26.73

Next, to evaluate the eighth base model, we solve the PSO-based labeling problem by constraint
N = 500, data XDD, and the objective function OF2. Next, we select three of the best optimization
problem solutions that minimize the objective function OF2. Then, we obtain the target word
vectors of the dictionary using N=500 final context words obtained by each solution, and evaluate
the resulting word vectors on the test sets. The results of the evaluations are reported in Table
9. Evaluation results of solution 2 are better than solutions 1 and 3 on the test sets. Spearman
correlation coefficient of word vectors obtained by the second solution compared to matrix XDD

is decreased on MEN, RG-65, and SimLex999 test sets by 7.08%, 2.78%, and 3.78%, respectively.
Solutions 1, 2, and 3 are used to construct the ensemble.

Table 9: Spearman correlation coefficient of eighth base model solutions in comparison to matrix
XDD.

test sets Solution 1 Solution 2 Solution 3 Matrix XDD

MEN dataset 59.54 61.36 61.73 68.44
RG-65 dataset 56.32 60.05 56.77 62.83
SimLex-999 dataset 25.23 28.03 26.79 31.81

In the second step, we create an ensemble using three of the best BPSO-based labeling problem
solutions for each base model. And we count the number of labels ”1” assigned to each primary
context word. For each primary context word, a number is obtained to indicate the number of labels
”1” assigned. Then, we try to determine the final label of each primary context word. For this
reason, we do an ablation study to find the threshold of voting. Our studies show that a threshold
smaller than four does not achieve the goal of obtaining low-dimensional interpretable word vectors.
So, we consider the thresholds:

1. vote ≥ 4

2. vote ≥ 5

3. vote ≥ 6

4. vote ≥ 7

Then, we construct the co-occurrence matrices X ′SD and X ′DD using the final context words
obtained by each threshold. Then, we evaluate the dictionary target word vectors on the test sets.
The evaluation results are reported in Table 10. In the matrix X ′SD , compared to matrix XSD in
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threshold vote ≥ 4, the Spearman correlation coefficient on the MEN and RG-65 test sets is decreased
by 3.87% and 1.13%, respectively. In the SimLex-999 test set, the accuracy has increased by 1.27%.
By reducing the dimensions of word vectors from 5000 to 2557, the accuracy on the SimLex-999 test
set is improved. Also, the Spearman correlation coefficient of matrix X ′SD compared to matrix XSD

in threshold vote ≥ 5 is decreased on MEN and RG-65 test sets by 0.93% and 1.13%, respectively.
Therefore, by reducing the dimensions of word vectors from 5000 to 1507, we see a 1% accuracy
drop on the MEN and RG-65 test sets. Also, the Spearman correlation coefficient is increased by
1.65% on the SimLex-999 test set. The matrix X ′SD in threshold vote ≥ 6 has 713 dimensions. The
matrix X ′SD compared to matrix XSD, leaves out 4287 primary context words. In this case, the
Spearman correlation coefficient in MEN and RG-65 test sets has decreased by 2.34% and 1.76%,
respectively. The accuracy of the SimLex-999 test set increases by 0.12%. In threshold vote ≥ 7,
word vector dimension reduced sharply from 5000 to 298. So, the Spearman correlation coefficient
is decreased dramatically on MEN, RG-65, and SimLex-999 by 3.87%, 7.53%, and 2.21, respectively.
In thresholds vote ≥ 4, vote ≥ 5, and vote ≥ 6, the accuracy improves in the SimLex-999 test set.
The accuracy improvement is justified because in the co-occurrence matrix XDD compared to the
matrix XSD, the Spearman correlation coefficient on the SimLex-999 test set is 5.08% higher. As a
result, by using the ensemble, we benefit from the strengths of base models that use the data XDD.

Table 10: Spearman correlation coefficient Matrix X ′SD using the voting method.

Matrix XSD Matrix X ′SD

voting threshold no voting vote ≥ 4 vote ≥ 5 vote ≥ 6 vote ≥ 7
Num of context words 5000 2557 1507 713 298
MEN dataset 67.79 63.92 66.86 65.45 63.92
RG-65 dataset 56.33 55.78 55.20 54.57 48.80
SimLex-999 dataset 26.73 28.00 28.38 26.85 24.52

In the next step, we construct the matrix X ′DD using the final context words obtained from
thresholds vote ≥ 4, vote ≥ 5, vote ≥ 6, and vote ≥ 7. Then, we evaluate the resulting word vectors
on the test sets. The evaluation results are reported in Table 11. By reducing the word vectors
dimensions to 2557 by threshold vote ≥ 4, we see a decrease in Spearman correlation coefficient
on the MEN and RG-65 test sets by 2.5% and 2.45%, respectively. Also, the Spearman correlation
coefficient of the SimLex-999 test set is increased by 0.3%. By reducing the word vectors dimensions
to 1507 by threshold vote ≥ 5, the Spearman correlation coefficient on MEN, RG-65, and SimLex-999
test sets is decreased by 3.4%, 2.26%, and 0.56%, respectively. This decrease in accuracy is justifiable,
as we have omitted 3493 dimensions from the word vector and left out the amount of information to
reduce vectors dimensions. In the threshold vote ≥ 6, the number of word vector dimensions is 713.
In this threshold the Spearman correlation coefficient for MEN, RG-65, and SimLex-999 test sets
is decreased by 4.98%, 6.11%, and 3.31%, respectively. In the threshold vote ≥ 7, the word vector
dimensions are reduced from 5000 to 298. In evaluating the word vectors using threshold vote ≥ 7, the
Spearman correlation coefficient on the MEN, RG-65, and SimLex-999 sets is decreased significantly
by 5.71%, 10.46%, and 6.6%, respectively.

By examining Tables 10 and 11 and comparing their results with the results of each base model,
we find that we have been able to reduce the dimensions of the vectors by using the ensemble,
and we also experience less reduction in the Spearman correlation coefficient compared to each base
model. Depending on the processing power of researchers, they can use the appropriate number of
dimensions for their research. As shown in Tables 10 and 11, the Spearman correlation coefficients
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Table 11: Spearman correlation coefficient Matrix X ′DD using the voting method.

Matrix XDD Matrix X ′DD

voting threshold no voting vote ≥ 4 vote ≥ 5 vote ≥ 6 vote ≥ 7
Num of context words 5000 2557 1507 713 298
MEN dataset 68.44 65.94 65.04 63.46 62.73
RG-65 dataset 62.83 60.38 60.57 56.72 52.37
SimLex-999 dataset 31.81 32.11 31.25 28.50 25.21

of word vectors by thresholds vote ≥ 4 and vote ≥ 5 are not significantly different. Therefore,
we propose to use the threshold vote ≥ 5, to produce interpretable low-dimensional word vectors
in which word vectors have 1507 dimensions. In this case, in the matrix X ′SD , we have removed
3493 primary context words and selected only 1507 final context words. Therefore, the Spearman
correlation coefficient change occurs on the MEN, RG-65, and SimLex-999 test sets by -0.93, -1.13,
and +1.65, respectively. Also, in the matrix X ′DD, in threshold vote ≥ 5 using 1507 dimensions,
the Spearman correlation coefficient on the MEN, RG-65, and SimLex-999 test sets is decreased by
3.4%, 2.26%, and 0.56%, respectively. As mentioned before, by reducing the word vector dimensions,
a more severe decrease in the resulting word vectors is observed using the dependency distance than
the simple distance. However, because the words vectors obtained by the dependency distance have
a higher Spearman correlation coefficient than the simple distance, they are preferred to construct
more accurate word vectors.

5. Conclusion

Our goal in this study is to obtain interpretable low-dimensional word vectors. To achieve this
goal, we propose a labeling method based on the BPSO algorithm. To solve the labeling problem,
we use two different co-occurrence matrices that use the simple distance and dependency distance as
the data of the problem. To construct co-occurrence matrices, we use 5K of the most frequent words
in the corpus as primary context words. To solve the labeling optimization problem, we define two
different objective functions: 1- Maximizing Spearman correlation coefficient and 2- Minimizing the
sum of squares of the word vector’s differences using implicit word vectors obtained by Word2Vec
software. Then, to solve the problem, we consider eight different base models and solve the labeling
problem for each base model. We use three of the best answers obtained by the labeling problem for
each base model to build the ensemble. After creating the ensemble, we count the number of labels
”1” for each of the 5K primary context words. Then, using different voting thresholds, vote ≥ 4,
vote ≥ 5, vote ≥ 6 and vote ≥ 7 extracted from an ablation study, we assign the final label to
each primary context word. After applying the voting method, primary context words that have the
label ”1” are final context words. Using the final context words obtained by each voting threshold,
we construct the dictionary target word vectors by simple distance and dependency distance and
place them in the matrices X ′SD and X ′DD, respectively. Next, we evaluate the target word vectors
of matrices X ′SD and X ′DD using each voting threshold. The evaluation results show that using
the ensemble and the voting method, the word vector dimensions in the cases vote ≥ 4, vote ≥ 5,
vote ≥ 6, and vote ≥ 7 reduce to 2557, 1507, 713, and 298, respectively. In the co-occurrence
matrix X ′SD, the Spearman correlation coefficient of word vectors in thresholds vote ≥ 4, vote ≥ 5 is
increased by 1.13% and 1.65%, respectively on the SimLex-999 test set. These results indicate the
utilization of base models expertise based on data XDD in the ensemble. In the threshold vote ≥ 5,
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we see an accuracy drop of about 1% in the MEN and RG-65 test sets. An accuracy drop of about
1% on the test sets is justified due to word vector dimensions reduction from 5000 to 1507. Also, in
the matrix X ′DD, we see a 2 -3% accuracy drop on the MEN and RG-65 test sets. The accuracy drop
on the SimLex-999 test set is a small number of 0.5%. In threshold vote ≥ 7 using 298 dimensions,
a sharp accuracy drop occurs on the word vectors of matrices X ′SD and X ′DD. We can use final
context words in this threshold as golden words for NLP tasks such as finding the title and keywords
extraction. In this study, we tried to create low-dimensional explicit word vectors (1507 dimensions)
by the least accuracy drop. If the researchers wish, we will provide them the final context words.
Researchers can apply this approach to their favorite corpus, extract the final context words, and
create interpretable low-dimensional word vectors.
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