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Abstract

The present study deal with the effective heat transfer with the activity of connected inclined mag-
netic field of the asymmetric channel through the porous medium. The effect of sliding speed on
channel walls was taken into account and the effect of nonlinear particle size was analyzed applying
long wavelength and low Reynolds count estimates. The mathematical expression of axial velocity,
stream function and pressure rise was analytically determined. The effect of the physical parameter
is included in the present model on the computational results. They are presented in chart form by
applying for the Mathematica program.
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1. Introduction

The phenomenon of periscope carriage is a form of stuff carriage that Engenders in progressive
wave unclasping or systole which is deploy along the length of a distensible tube.the topic of periscope
is fountains consequential in chatted applied mathematics geometry and physiological world this
is because of its many applications in genuine life example blood pumping machines biomedical
geometry cancers therapy geophysics and many others the vital studies in this articulated are [3] act
regarding peristaltic flow below the effect of paramagnetic field and hotness convection in different
situations consulted by studies [11, 4] sundry instances other hand flow through porous medium
have Numerous Applicative applications such as bio mechanics Fabrication candidacy of fiuids in the
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chatted fabricating human lung in the gall bladdre with emeris in small blood ships these a chieved
the the peristaltic conveyed in an symmetric channel and the effect of careened paramagnetic field on
magneto fluid flow through porous medium [2, 1] debated , the impact of MHD peristaltic conveyance
throught poros medium stumble conditions play an indis pensable turn in turn in many applications
rather than the no-slip conditions like. ( Polymer ,industry) engineering medical application(polishing
artificial heart) and technoiogcal, process may reserarches have been made on the slip condtion and
its impacts ,on peristaltic flow of non-Now tonian fluids sevral non-Newtoian fluids such as polymer
Ablates blood and multing rade oil can be bis criminate its according to own lmmanent equation
the relation between shear stress and the rate of deformation [8] Among several non-Newtoninal
fluid hyperbolic tangent model is one of the non-Newtoian models [10] foreword an betail study On
the peristaltic conreyance of a hyperbolic tangent fluid in an asymmetric channel [9] lately studies
the influence of an in inclined faramagntic field on peristaltic commuter ofa hyperbolic tangent
nonoflliud inan inclined Aqueduct having flexile walls the target of the preset attain is to study
the lmpact of inclined paramagnetic field on the peristaltic commuter of non-Newtoninan fluid in
anti-symmetric porous Aqueduct the non-Newtonian fluid is hyperblic tangent fluid model the attain
is done by applying the assumption of lengthy wavelengnth and low Reynolds number [5] the non-
linear. Thethermodynamicfa parts of blood mayesy not be indispensable when the blood is inside
the body yet it winds up basic when it is pulled out of the body. Considering the hugeness of heat
transfer in circulation system [6] analyzed the thermodynamic pieces of circulatory system in the
blood-viewing tube as the Cassone liquid. [7] Examination of warmth temperature to the springflow
of fluid Directed through a penetrable redirect inside seeing the MHD. An activity on the trading of
solids to the weight fluid by techniques for a disproportionate and non uniform channel in a porous
medium. Adjudge equations were unlaced using regular perturbation technical for asmall weissenberg
number for the stream function and the velocity are Accessing and the results were analyzed and
shown graphically.

2. Mathematical Formulation

Consider the two dimensional flow of incompressible hyperbolic tangent fluid in an asymmetric
channel having width d1 + d2. The flow is caused by infinite sinusoidal wave train moving ahead
with constant velocity c along the walls of the channel. Different wave amplitudes, phase angle and
channel widths result in an asymmetric channel. The geometries of the walls are modeled as

h̄1(x̄, t̄) = d1 + a1 sin
(2π
λ
(x̄− ct̄)

)
upper wall

h̄2(x̄, t̄) = d2 + a2 sin
(2π
λ
(x̄− ct̄) + ϕ

)
lower wall,

(2.1)

where a1, a2, d1, d2, λ, c, t are the amplitudes of the waves , ,width of the channel ,wavelength, wave
speed ϕ, (0 ≤ ϕ ≤ π) the phase difference and the rectangular coordinate system is chosen in such
a way that X -axis lies in the direction of wave propagation and Y -axis perpendicular to X . It is
noticed that ϕ = 0 corresponds to symmetric channel with waves out of phase and for ϕ = π the waves
are in phase. Further, a1, a2, d1, d2 and ϕ satisfy the condition a21 + a22 + 2a1a2 cos(ϕ) ≤ (d1 + d2)

2.
The constitutive equation forhyperbolic tangent fluid (following Pop and Ingham is given by

τ = −
(
η∞ + (η0 + η∞) tanh(Γγ)

n
)
γ (2.2)
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η∞ is the infant shear rate viscosity, η0 is the zero shear rate viscosity, Γis the time constant, n is
the power-law index and

.
γis defined as

γ̇ =

√
1

2

∑
i

∑
j

.
γ

ij

.
γji =

√
1

2
(2.3)

Here is the second invariant strain tensor. We consider the consititutive equation ( ), the case for
which η∞=0 and Γγ̇ < 1. The component of extra stress tensor can be written as

τ = −
[
(η0(Γ

.
.
γ)n

]
.
γ

τ = −
[
(η0(1 + n(Γ

.

.

γ − 1)

]
.
γ

(2.4)

It is further assumed that there is no motion of walls in the longitudinal direction. This as-
sumption restrict the deformation of the walls , it does not imply that the channel is rigid along the
longitudinal motions.

Figure 1: A physical sketch of the problem

3. Governing Equation

The governing equations of the motion in an inclined channel and inclined magnetic field of
hyperbolic tangent fluid in the laboratory frame (x̄, ȳ) can be written as

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (3.1)

ρ(
∂

∂t̄
+ ū

∂

∂x̄
+ v̄

∂

∂ȳ
)ū = −∂p̄

∂x̄
+

∂

∂x̄
τ̄ x̄x̄ +

∂

∂ȳ
τ̄ x̄ȳ − σB2

0 cos β
∗(ū cos β∗ − v̄ sin β∗)− η0

ū

k̄
(3.2)

ρ(
∂

∂t̄
+ ū

∂

∂x̄
+ v̄

∂

∂ȳ
)v̄ = −∂p̄

∂ȳ
+

∂

∂x̄
τ̄ x̄ȳ +

∂

∂ȳ
τ̄ ȳȳ + σB2

0 sin β
∗(ū cos β∗ − v̄ sin β∗)− η0

v̄

k̄
(3.3)

ρCp(
∂

∂t̄
+ ū

∂

∂x̄
+ v̄

∂

∂ȳ
)T̄ = k′(

∂2

∂t̄2
+

∂2

∂x̄2
+

∂2

∂ȳ2
)T̄ + η0[(

∂ū

∂x̄
+
∂v̄

∂ȳ
)2 + 2(

∂2ū

∂x2
)2 + 2(

∂2v̄

∂y2
)] (3.4)

where theρ, ū, v̄, ȳ, p̄, η0, k0, k̄, B0, σ are the fluid density ,axial velocity , transverse velocity, transverse
coordinate , pressure, viscosity , material constant, permeability parameter, constant magnetic field,
is the electrical conductivity. The flow is unsteady in the laboratory frame (x̄, ȳ). However in a
coordinate system moving with the wave speed c (in wave frame (X̄, Ȳ ),the motion is steady. The
following expressions

X̄ = x̄− ct̄, Ȳ = ȳ, Ū = ū− c, V̄ = v̄, P̄ (X̄, Ȳ ) = P̄ (x̄, ȳ, t̄) (3.5)
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where Ū , V̄ , P̄ represent the velocity components and pressure in the wave frame.
To carry out the non-dimensional analysis we set up the following non-dimensional quantities

x =
x̄

λ
, y =

ȳ

d1
, u =

ū

c
, v =

v̄

c
, h1 =

h̄1
d1
, h2 =

h̄2
d1
, p =

p̄d21
η0cλ

,Da =
k̄

d21
, Re =

ρcd1
η0

,

δ =
d1
λ
, Ha = d1

√
σ

η0
B0, τ =

d1
η0c

τ̄ , We =
Γc

d1
, t =

ct̄

λ
, θ =

(T̄ − T̄0)

(T̄1 − T̄0)
, Ec =

c2

cp(T̄ − T̄0)
,

pr =
µcp
k

(3.6)

where (δ) is the wave number, (Re) is the Renold number, (We) is the Weissenberg number, (Ha) is
the Hartman number,
( We) Then, in view of Eq (2), Eqs. (3) to (4) take the form

δ
∂u

∂x
+
∂v

∂y
= 0 (3.7)

Re(δ
∂u

∂t
+ δu

∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
+ δ

∂τxx
∂x

+
∂τxy
∂y

−Ha2 cos β∗(u cos β∗ − v sin β∗)− u

Da
(3.8)

Reδ(δ
∂v

∂t
+ δu

∂v

∂x
+ v

∂v

∂y
) = −∂p

∂y
+ δ2

∂τxy
∂x

+ δ
∂τyy
∂y

+Ha2δ sin β∗(u cos β∗ − v sin β∗)− δ
v

Da
(3.9)

Reσ(
∂

∂t
+ ψy

∂

∂x
+ δψx

∂

∂y
)θ =

1

Pr
(c2δ2

∂2

∂t2
+ δ2

∂2

∂x2
+

∂2

∂y2
)θ + Ec[(

∂ψy

∂y
+ δ2

∂ψx

∂x
)2 + 2δ2(

∂2ψy

∂x2
)2

+ 2δ(
∂2ψx

∂y2
)] (3.10)

where

τxx = −2[1+n(We

.

γ − 1)]
∂u

∂x
, τxy = −[1+n(We

.

γ − 1)](
∂u

∂y
+δ2

∂v

∂x
), τyy = −2δ[1+n(We

.

γ − 1)]
∂v

∂y

The stream function (ψ) is connected with the velocity components by the relations

U =
∂ψ

∂y
, V = −δ∂ψ

∂x

the non-dimensional variables defined in Eqs.(11) (12),(13) gives the following equation

Reδ

(
ψy

∂

∂x
− ψx

∂

∂y

)
ψy = −∂p

∂x
+ δ

∂Sxx

∂x
+
∂Sxy

∂y
−Ha2 cos β∗((ψy + 1)cosβ∗ + δψx sin β

∗)− 1

Da
ψy

(3.11)

Reδ3
(
ψy

∂

∂x
− ψx

∂

∂y

)
ψx = −∂p

∂y
+ δ2

∂Sxy

∂x
+ δ

∂Syy

∂y
+ δHa2 sin β∗ ((ψy + 1)cosβ∗ + δψx sin β

∗)− δ

Da
ψx

(3.12)

Elimination of p between Eqs.(3.11) and (3.12) yields

Reδ

(
ψy

∂

∂x
− ψx

∂

∂y

)
∇2ψ = δ

[
∂2

∂x∂y
(τxx − τyy)

]
+

[
∂2

∂y2
− δ2

∂2

∂x2

]
Sxy −Ha2cos2β∗

(
∂2ψ

∂y2
−

δ2Ha2sin2β∗∂
2ψ

∂x2

)
− δ Ha2 cos β∗ sin β∗ψxy − 1

Da
(ψyy − δψxy)

(3.13)
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where

∇2 = δ2
∂2

∂x2
+

∂2

∂y2

The dimensionless boundary conditions in the wave frame are

ψ =
F

2
,
∂ψ

∂y
= −1 at y = h1. (3.14)

ψ =
−F
2
,
∂ψ

∂y
= −1 at y = h2 (3.15)

θ = 0 at y = h1, θ = 1 at y = h2 (3.16)

where F is the dimensionless time mean flow rate in the wave frame. It is related to the dimensionless
time mean flow rate Q1 in the laboratory frame through the expression

Q1 = F + 1 + d. (3.17)

The dimensionless forms of h1(x) and h2(x) are

h1(x) = 1 + a sinx, h2(x) = −d− b sin(x+ ϕ) (3.18)

where a, b, ϕ and d satisfy:
a2 + b2 + 2ab cosϕ ≤ (1 + d)2.

4. Solution of the problem

The Eq.(3.13) is highly non-linear and complicated; therefore it is impossible to obtain closed
form solution for all the involving arbitrary parameters . So we employ the perturbation technique
to find the solution. For perturbation solution, we expand.

ψ = ψ0 +Weψ1 + o(We2)

F = F0 +We F1 + o(We2)

p = p0 +We p1 + o(We2)

(4.1)

and substitute the expressions (3.16) into Eqs. (3.9)-(3.11) with boundary conditions Eq.(3.12) and
Eq.(3.13), equating the coefficients of like powers of We, we get the following system of equations:

4.1. Zero order system

In the zeroth order system , negligible the terms of order We, we get

∂2τ0xy
∂y2

−mψ0yy = 0 (4.2)

m =

√
Ha2 cos2 β − 1

Da
+ σ2

n− 1
(4.3)

From Eq. (3.9) we get

∂p0
∂x

=
∂

∂y
τ0xy −m(ψy + 1) (4.4)
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And from Eq.(3.10) we get

∂p

∂y
= 0 (4.5)

Such

τ0xy = ψ2
0yy (4.6)

ψ0 =
F0

2
,

∂ψ0

∂y
= −1 at y = h1 and ψ0 = −F0

2
,

∂ψ0

∂y
= −1 at y = h2 (4.7)

4.2. First order system

∂2τ1xy
∂y2

+ (
n

n− 1
)
∂2

∂y2
[(ψ0yy)

2]−mψ1yy = 0 (4.8)

∂p1
∂x

=
∂3ψ1

∂y3
+ (

n

n− 1
)
∂

∂y
[(ψ0yy)

2]−mψ1y = 0 (4.9)

ψ1 =
F1

2
,

∂ψ1

∂y
= −1 at y = h1 and ψ1 = −F1

2
,

∂ψ1

∂y
= −1 at y = h2 (4.10)

In solving the corresponding zeroth and first order system we obtain the final expression for stream
function

ψ =
e−

√
my(e2

√
myc1 + c2)

m
+ c3y + c4 +We

 e2(h1+h2)
√
m(h1−h2)

2(1+m)2m2n

ξ

3m

A3 + A4y (4.11)

ξ = eh2
√
m
(
−2 + h1(−1 +m)

√
m− h2(−1 +m)

√
m
)
+ eh1

√
m
(
2 + h1(−1 +m)

√
m
)2

(−1 +m)
(4.12)

In solving the corresponding zeroth and first order system we obtain the final expression for stream
function

u = ψ0y +Weψ1y (4.13)

4.3. Solution of energy equation

Applying the long wavelength and low Reynolds number approximation on Eq.(3.10), we get

0 =
1

Pr

(
∂2

∂y2

)
θ + Ec

(
∂2ψ

∂y2

)2

(4.14)

The solution of Eq. (4.14) with boundary conditions Eq. (3.16) can be written as
θ = c1+c2y+y2Ec(h1−h2)2(−1+m)2mnprWe)(12e2h1m+2my−24eh1m+h2m+2my+12e2h2m+
2my−12e2h1m+2myh1m+12e2h2m+2myh1m+12e2h1m+2myh2m−12e2h2m+2myh2m+3e2h1m+
2myh12m+6eh1m+h2m+2myh12m+3e2h2m+2myh12m−6e2h1m+2myh1h2m−12eh1m+h2m+
2myh1h2m − 6e2h2m + 2myh1h2m + 3e2h1m + 2myh22m + 6eh1m + h2m + 2myh22m + 3e2h2m +
2myh22m + 12e2h1m + 2myh1m32 − 12e2h2m + 2myh1m32 − 12e2h1m + 2myh2m32 + 12e2h2m +
2myh2m32 − 6e2h1m+2myh12m2 − 12eh1m+ h2m+2myh12m2 − 6e2h2m+2myh12m2 +12e2h1m+
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2myh1h2m2+24eh1m+h2m+2myh1h2m2+12e2h2m+2myh1h2m2−6e2h1m+2myh22m2−12eh1m+
h2m+2myh22m2−6e2h2m+2myh22m2+3e2h1m+2myh12m3+6eh1m+h2m+2myh12m3+3e2h2m+
2myh12m3−6e2h1m+2myh1h2m3−12eh1m+h2m+2myh1h2m3−6e2h2m+2myh1h2m3+3e2h1m+
2myh22m3+6eh1m+h2m+2myh22m3+3e2h2m+2myh22m3−12e2h1m+2myn+24eh1m+h2m+
2myn− 12e2h2m+ 2myn+ 12e2h1m+ 2myh1mn− 12e2h2m+ 2myh1mn− 12e2h1m+ 2myh2mn+
12e2h2m+ 2myh2mnpr,
c1 and c2 are constant can be determined from the boundary conditions.

5. Results and discussion

This section is divided in to sub sections. In the first, the temperature field distribution is
discussed. In the second, the flow characteristics are illustrated using the software MATHEMATICA.
These resulte are in good agreement with those reported by [5].

5.1. The temperature field distribution

Many parameters are effected by the temperature field such as Prandtl number (Pr) , Eckert
number (Ec), Hartman number (Ha), Weissnberg number (We), Darcy number (Da), phase different
(ϕ), inclined parameter B and law number (n) from Figures (4) ,(5), (6) and (9) show that the
increasing in each of Hartman number (Ha), Weissnberg number (We), Darcy number (Da) and law
number (n) leads to decreasing in the temperature. While the increasing in Prandtl number (Pr) ,
Eckert number (Ec) leads to increasing in the temperature, see Figures, (2) and (3) Figure.(7) and
(8) show that there is a very small change in temperature with increasing phase different and inclined
parameter B.

5.2. Pumping characteristic

Figs 10-17 portray the variety of pressure rise in capacity of volumetric stream rate in the wave
outline for various estimations of the Hartmann number (Ha) , inclined magnetic parameter (β)
,Weissbering number (We), law number (n) , Darcy number (Da) and phase different (ϕ). The whole
region is considered into five parts (i) peristaltic pumping region where (∇p > 0, F > 0). (ii)
augmented pumping(co- pumping) region where (∇p < 0, F > 0). (iii) when (∇p > 0, F < 0).
Then it is a retrograde pumping region. (iv) There is a co-pumping region where (∇p < 0, F < 0).
(v) (∇p = 0) corresponds to the free pumping region. Figure. 11, shows that pressure rise increases
with increasing Hartmann number Ha. It can be seen from the graph that in a retrograde region
It can be seen from the graph that in a retrograde region (∇p > 0, F < 0), the pumping rate
decreases in a co¬pumping region where (∇p < 0, F > 0). with an increase in Ha. Figure. 10,
shows that pressure rise p decreases with increasing Weissbering number (We). It is observed that
the pumping rate increases in the co¬pumping region (∇p < 0, and free pumping region (∇p = 0..
Figure.12 shows that pressure rise p decreases with increasing inclined parameter B. It is observed
that in a retrograde pumping region (∇p > 0, F < 0)., the pumping rate increases a co-pumping
region where (∇p < 0, with an increase in B. Fig.13 shows that pressure rise ∇p decreases with
increasing law number (n). It is observed that in a retrograde pumping region (∇p > 0, F < 0).,the
pumping rate increases in a co-pumping region where (∇p < 0 with an increase in (n). From Fig.14
shows that pressure rise ∇p increases with increasing Darcy number (Da). It can be seen from the
graph that in a retrograde region (∇p > 0, F > 0)., the pumping rate decreases in a co¬pumping
region where (∇p > 0, F < 0). with an increase in (Da). Fig.15 shows that pressure rise p decreases
with increasing phase different (ϕ).It is observed the pumping increases in the region of augmented
pumping and the co¬pumping region (∇p < 0.
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5.3. Velocity distribution

Figures. 16-21 represent the variation of axial velocity u across the channel for different values of
the Hartmann number (Ha), the Darcy number (Da), the inclined parameter (B), law number (n),
Weissberng number (We) and phase difference
Figure. 16 shows that the axial velosity decreases in the central region of the channel with increasing
Hartmann number Ha, while the axial velocity increases in the boundary of the channel wall. The
reason behind this fact is the Lorentz force that arises due to the application of an inclined magnetic
feild , which plays a vital role in decelerating the fluid motion. Similarly the axial velocity has
reducing effect at the central region of the channel and accelerating effect near the the channel wall
for increasing Darcy number (Da) as shown in Figure 17. In this case velocity decreases due to the
increase of particle size suspended in the fluid itself and causes flattening of the velocity profiles. In
order to satisfy the conservation of mass, the flow rate remains same for any value of these parameters
at any cross section of the channel. From Figure. 21 shows that the axial velocity decreases in the
central region of the channel with increasing the phase difference parameter while the axial velocity
increases near the the channel wall.

From Figure.19, we observed that the axial velocity also decreases at the central region with
increasing the law number (n) of the channel, while the axial velocity increases in the boundary of
the channel wall. It is examined. Figure. 20, we observed that the axial velocity increase at the
central region with the increase of the Weissberng number (We), while the axial velocity decreases
in the boundary of the channel wall.

Figure 2: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.

Figure 3: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.
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Figure 4: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.

Figure 5: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.

Figure 6: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.

Figure 7: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.

Figure 8: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.

Figure 9: The variation of temperature with
y for different value of Ec at n = 1.5, P r =
1, Q1 = 1.1, Ha = 1, ϕ = 0.5, a = 0.2, b =
0.2, d = 0.5, We = 1.5, Da = 0.2.
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Figure 10: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 11: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 12: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 13: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 14: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 15: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.
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Figure 16: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 17: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 18: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 19: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 20: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.

Figure 21: The variation of temperature with y
for different value of Ec at n = 1.5, P r = 1, Q1 =
1.1, Ha = 1, ϕ = 0.5, a = 0.2, b = 0.2, d =
0.5, We = 1.5, Da = 0.2.
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6. Conclusions

In this paper, we have theoretically studied the effect .heat transfer with the activity of connected
inclined magnetic felid of asymmetric channel through the .porous medium . In this investigation,
special emphasis has been paid to study such as velocity distribution, the pumping characteristic
and heat transfer on the basis of a simple analytical solution.

� The axial velocity at the central region decreases with the increasing values of the Hartmann
number (Ha), Darcy number (Da), the inclined parameter (B) and power law number (n),
whereas it increases in the boundary of the channel wall.

� The axial at the central region increases with the increasing values of Weissberng number (We),
whereas it decreases in the boundary of the channel wall.

� There is a linear relationship between pressure rise for each wave length and volumetric flow
rate.

� The pressure rise increases in retrograde pumping with the increasing value (B) , (We) and
(n) whereas it decreases with the increasing values, (Da), (Ha), (k) and (ϕ).

� The temperature transfer decreases with the increasing values of the (Ha), (Da), (n) and (We),
whereas it increases with increasing (Ec) and (Pr).
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