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Abstract

The aim of the presented study is to introduce and verify two new spaces called P compactness and
P connectedness using P open sets and some of their properties. Moreover, we study the relationship
between these spaces. Another purpose of this study is to examine a new form of separation axioms,
by using P open set namely TPi-spaces where (i = 0, 1, 2). The pertinence between them has been
discussed and several features of these spaces are demonstrated as well.
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1. Introduction

The aims of semi-open sets and their properties were initiated by Levine [7] in 1963.The idea
of dealing with single topological space was developed to bi-topological space, tri-topological, quad
topological by researchers Kelly [4], Kovar [6] and Mukundan [9], lastly the notion Penta topological
space (X, τ1, τ2, τ3, τ4, τ5) was introduced by Muhammad and Khan [5] in 2018, where X is nonempty
set together with five topologies τ1, τ2, τ3, τ4&τ5. Many researchers verified the basic properties of
connectedness and compactness powerful tools in topology. The idea of Hausdorff spaces is almost an
integral part of compactness. Many authors in such as Srivastava and Bhatia [13] introduced some
kinds of compact spaces in topological space according to the sets. Topological space is said to be
compact or have the compact property, if every open cover of X has a finite sub-cover [2]. Last years
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the generalization of compact spaces and locally generalized to bi-topological and tri-topological set-
ting as in [1, 12, 13]. A topological space X is said to be disconnected space if X can be expressed
as the union of two disjoint nonempty open subsets of X, otherwise X is said to be connected space
[2]. In 1965, Levine [8] introduced strongly connected in topology. In 1967 Pervin [10] studied con-
nectedness in bi-topological spaces and in 2016 Tapi and others [16, 17] studied Tri-connectedness in
Tri-topological spaces and he also introduced connectedness in Quad Topological Spaces [14]. Many
papers discussed separation axioms, essentially by replacing open sets, many definitions of separation
axioms according to open sets have been introduced by many researchers as El-Tantawy, Hameed,
Tapi, and others [3, 15]. In this work we developed compactness and connectedness and separa-
tion axioms in Penta topological spaces. we introduced different types of Penta compact and Penta
connected and Penta separation axioms in Penta topological spaces, additionally some properties
of these spaces are investigated. Throughout this paper. A Penta topological space is denoted by
(X,ℑP) and (Y,ℑP) or simply by X and Y. The concept Penta topological space (X, τ1, τ2, τ3, τ4, τ5)
where X is non empty set together with five topologies τ1, τ2, τ3, τ4&τ5, was introduced by Khan and
Khan [5] in 2018. we write ℑP for Penta Topology (P topology) and (X,ℑP) for Penta Topological
Space where ℑP = (τ1, τ2, τ3, τ4, τ5).
In the present work , we introduce ℑP on five different topologies on X, therefore (X,ℑP) is called
Penta Topological Space. The topologies (X,ℑ1), (X,ℑ2), (X,ℑ3), (X,ℑ4), (X,ℑ5) are independently
satisfying the axioms of topology. The elements of ℑ1 are called ℑ1- open set and the complement
of ℑ1-open set is called ℑ1-closed set. And the same with the elements of ℑ2,ℑ3,ℑ4,ℑ5.

Definition 1.1. [5]. Let (X,ℑP) be a Penta Topological Space. Elements of τi; i = {1, 2, 3, 4, 5}
are called τi- open sets and their relative complements are called τi- closed sets. Also a subset A of
X is called penta-open (P − open) if A ∈ ∪τi; i ∈ {1, 2, 3, 4, 5} and its complement is said to be
penta-closed (P − closed). P − open sets satisfies all the axioms of topology. The set of all P − open
sets contains τ1 ∪ τ2 ∪ τ3 ∪ τ4 ∪ τ5 So; the family of all P − open (P − closed) sub sets of (X,ℑP) will
be denoted by (PO(X)), (PC(X)).

Definition 1.2. [5]. Let H be a subset of a Penta topological Space (X,ℑP), then:

1. The (P interior) of H is the union of all (P − open) subset contained in H and is denoted by
intP(H). Thus intP(H) is the largest (P − open) subset of H.

2. The (P closure) of H is the intersection of all (P − closed) sets containing H and is denoted
by clP(H). that is clP(H) is the smallest (P − closed) set containing H. Some properties for
each H ⊆ X [14]

i. (intP(H))c = clP(Hc)

ii. H is P − open iff intP(H) = H
iii. H is P − closed iff clP(H) = H

3. The P neighborhood (in short GPN) H of a point x ∈ X if and only if there exist a P − open
set G such that x ∈ G ⊆ H.

Definition 1.3. [5]. A function f : (X,ℑP) → (Y,ℑP̌) is called

1. P − continuous if f−1(H) ∈ PO(X), for each H ∈ PO(Y).
2. P − open if, f(H) ∈ PO(Y), for each H ∈ ℑP .

3. P − closed if any ℑP-closed set D then f(D) ∈ PC(Y).
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4. P − homeomorphism if f is bijective, P − continuous and P − open.

Proposition 1.4. A function f : (X,ℑP) → (Y,ℑP̌) is P − continuous if and only if the inverse
image of every P − closed in Y is an P − closed set in X.

Proof . Suppose that D is P−closed set in Y then DC P−open set in Y, since f is P−continuous, we
get f−1(DC) ∈ PO(X), therefore f−1(DC) = f−1(Y−D) = f−1(Y)− f−1(D) = X− f−1(D) = (f−1(D))C .
Then (f−1(D))C P − open in X therefore f−1(D) P − closed set in X. □

Example 1.5. A Penta topology ℑP = {X, ∅, {a}, {b}, {b, c}, {a, d}, {a, b}, {a, b, c}, {a, b, d}}
on X = {a, b, c, d}, when ℑ1 = {X, ∅, {a}, {b}, {a, b}} ,ℑ2 = {X, ∅, {b, c}, {d}},
ℑ3 = {X, ∅, {a}, {a, b, d}} ,ℑ4 = {X, ∅, {a, d}, {a, b, d}} and ℑ5 = {X, ∅, {a, b, c}}.
Let ℑP̌ =

{
Y, ∅, {ȧ}, {ḃ}, {ḃ, ȧ}, {ḃ, ċ}, {ȧ, ḋ}, {ȧ, ḃ, ċ}, {ȧ, ḃ, ḋ}

}
on Y = {ȧ, ḃ, ċ, ḋ}, when

ℑ1 =
{
X, ∅, {ȧ, ḋ}, {ȧ, ḃ, ḋ}

}
, ℑ2 =

{
Y, ∅, {ḃ}, {ḃ, ċ}

}
, ℑ3 =

{
Y, ∅, {ȧ}, {ȧ, ḃ, ḋ}

}
,

ℑ4 =
{
Y, ∅, {ȧ}, {ḃ}, {ȧ, ḃ}

}
, ℑ5 =

{
Y, ∅, {ȧ, ḃ, ċ}

}
.

We get
PO(X) = {X, ∅, {a}, {b}, {b, c}, {a, d}, {a, b}, {a, b, c}, {a, b, d}}
PC(X) = {X, ∅, {b, c, d}, {a, d}, {c, d}, {b, c}, {a, c, d}, {d}, {c}}
PO(Y) =

{
Y, ∅, {ȧ}, {ḃ}, {ḃ, ȧ}, {ḃ, ċ}, {ȧ, ḋ}, {ȧ, ḃ, ċ}, {ȧ, ḃ, ḋ}

}
PC(Y) =

{
Y, ∅, {ḃ, ċ, ḋ}, {ȧ, ċ, ḋ}, {ċ, ḋ}, {ḋ, ȧ}, {ḃ, ċ}, {ḋ}, {ċ}

}
.

Let f : (X,ℑP) → (Y,ℑP̌) and f(b) = ḃ, f(c) = ċ, f(d) = ḋ, f(a) = ȧ. Then f is clearly a
P − homeomorphism.

Definition 1.6. Let E be a subset of (X,ℑP), then classes ℑPE of all intersections of E with
P − open subsets of X belong to ℑP is a topology on E,it is called penta- subspace (relative Penta
–topological space for E with respect to P − open sets). The relative Penta –topological space for
E is denoted by (E,ℑPE), such that ℑPE = {G ∩ E : G ∈ ℑP}, P = {1, 2, 3, 4, 5}. From example
1.5, we get ℑPE = {E, ∅, {a}, {b}, {b, c}, {a, b}, {a, b, c}} on E = {a, b, c} then (E,ℑPE) is relative
P − topology.

Definition 1.7. [11]. The subset H ⊆ (X,ℑP) is said to be semi penta open (semiPO) set if
H ⊆ clP(intP(H)) and its complement is said to be semi penta-closed (semiPC) set. Therefore; the
family of all semiPO.(semiPC) sub sets of (X,ℑP) will be denoted by (POS(X)), (PCS(X)).
Note: Every P − open set is (semiPO).

Definition 1.8. A function f : (X,ℑP) → (Y,ℑP̌) is called P − irresolute function if f−1(H) ∈
PO(X), for every H ∈ POS(Y). From example 1.5 we get:

� POS(X) = {X, ∅, {a}, {b}, {b, c}, {a, d}, {a, b}, {a, b, c}, {a, b, d}}

� PCS(X) = {X, ∅, {c}, {d}, {b, c}, {a, d}, {c, d}, {b, c, d}, {a, c, d}}

� POS(Y) =
{
Y, ∅, {ȧ}, {ḃ}, {ḃ, ċ}, {ȧ, ḃ}, {ȧ, ḋ}, {ȧ, ḃ, ċ}, {ȧ, ḃ, ḋ

}
� PCS(Y) =

{
Y, ∅, {ḃ, ċ, ḋ}, {ȧ, ċ, ḋ}, {ċ, ḋ}, {ḋ, ȧ}, {ḃ, ċ}, {ḋ}, {ċ}

}
Therefore P − irresolute.
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2. Penta Connectedness in Penta Topologi cal Space

In this section, we discus P−connectedness and P−disconnectedness by means of P−separation.

Definition 2.1. A Penta Topological space (X,ℑP), is called Penta separated space (P−separated)
if and only if there exist P−open subsets H and K of X, such that H∩clP(K) = ∅ and K∩clP(H) = ∅.
These two conditions are equivalent to (H ∩ clP(K)) ∪ (K ∩ clP(H)) = ∅.From example 1.5 we note
that X is P − separated space because
PO(X) = {X, ∅, {a}, {b}, {b, c}, {a, d}, {a, b}, {a, b, c}, {a, b, d}}. If we take {b, c} and {a, d} then
({b, c} ∩ clP({a, d}))∪ ({a, d} ∩ clP({b, c})) = ∅. therefore {b, c} and {a, d} are P − separation sets.
Also {b} ⊆ {b, c} and {a} ⊆ {a, d}, then {b} and {a} are P − separation.

Remark 2.2. 1. Every two disjoint P−open (P−closed) subsets of any space are (P−separated).

2. let H and K be (P − separated) subsets of X,then if D ⊆ H and S ⊆ K, then D and S are
also (P − separated).

Theorem 2.3. Every two P − open (P − closed) subsets of X are (P − separated),if and only if
they are disjoint.

Proof . Any two (P − separated) H,K sets are disjoint, then two sets P − open (P − closed) are
(P − separated) (because if H,K are both disjoint (P − closed), then H ∩ K = U , clP(H) = H,
clP(K) = K and so that H ∩ clP(K) = ∅,K ∩ clP(H) = ∅).
Conversely, if H,K are both disjoint P−open, then Hc and Kc are both P−closed, so that; H∩K =
∅ → H ⊆ Kc and K ⊆ Hc, also clP(Kc) = Kc and clP(Hc) = Hc. We get clP(K) ⊆ clP(Hc) = Hc and
clP(H) ⊆ clP(Kc) = Kc. Hence H and K are (P−separated) so that H∩clP(K) = ∅, K∩clP(H) = ∅.
□

Definition 2.4. A Penta Topological Space (X,ℑP) is said to be Penta connected (P − connected)
if there exist two P − open subsets H and K of X, provided that H∩K = ∅ and K∪H ≠ X. A Penta
Topological Space is Penta disconnected (P − disconn.) if it does not (P − connected).

Theorem 2.5. Let (X,ℑP) be (P − connected) space, then at least one of the five topologies is
connected.

Proof . suppose that ℑi is disconnected, where ℑi = {τ1, τ2, τ3, τ4, τ5}, then X = H ∪ K where H
and K are disjoint non-empty open sets. Since every open set is a P − open set, then (X,ℑP) is
not (P − connected) space (contradiction by hypothesis). Then at least one of the five topologies is
connected. □

Remark 2.6. The converse of theorem 2.5 is not necessary true.

Example 2.7. From example 1.5 we note that (X,ℑP) is not (P−connected) space in spite of there
exist at least one of five topologies is connected.

Theorem 2.8. Let E be a subset of (X,ℑP). Then E is P − disconnected set iff it can be expressed
as the union of two non-empty (P − separated) sub sets of X.
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Proof . Let E be P−disconnected set, then E = H∪K whereH andK are disjoint non-empty subsets
of ℑPE−P−closed sets. H,K are (P−separated) subsets of X, thusH∩clP(K) = (H∩E)∩clP(K) =
H ∩ clPℑPE

(K) = H ∩K = ∅, similarly K ∩ clPℑPE
(H) = ∅. Then (H ∩ clP(K)) ∪ (K ∩ clP(H)) = ∅.

Conversely, suppose that E = H ∪ K, where H and K are non- empty P − separated subsets of X.
We have H ∩ clP(K) = (H ∩ E) ∩ clP(K) = ∅ and similarly K ∩ clPℑPE

(H) = ∅, so E is a union of
non-empty (P − separated) subsets of E. Thus E is P − disconnected. □

The following example constructs a P − connected space.

Example 2.9. From example 1.5 we note that (X,ℑP̌) is (P − connected), because P − open sets

of Y =
{
Y, ∅, {ȧ}, {ḃ}, {ḃ, ȧ}, {ḃ, ċ}, {ȧ, ḋ}, {ȧ, ḃ, ċ}, {ȧ, ḃ, ḋ}

}
on Y = {ȧ, ḃ, ċ, ḋ}, if we take H = {ȧ}

and K = {ḃ, ċ}. That is ascertain P − connection condition.

Remark 2.10. 1. Let X be P − connected space, then any of the five topologies is not necessary
to connected space. As in the example 1.5.

2. X is P − connected set, iff it is not the union of two non-empty (P − separated) sets.

3. If X is the union of two disjoint non- empty P − open sub sets then X is P − disconnected.

4. If E is P − connected set of X and H,K are (P − separated) sets of X with E ⊆ H∪K, then
either E ⊆ H or E ⊆ K.

5. If E subset of X is a P − connected, then clP(E) is P − connected.

We know that if H and K, P − connected sets then, H∪K is P − disconnected set but by adding
some condition we can prove that P − connected sets by the following theorem.

Theorem 2.11. Let H,K be P − connected sets and H∩K ≠ ∅, then H∪K is P − connected set.

Proof . Assume that H,K ⊆ X, H,K are P − connected and H ∩K ̸= ∅.
Suppose that H ∪K is P − disconnected,
if X,Y are two disjoint non empty P − open sets, X,Y ∈ ℑP(H∪K) then H ∪ K = X ∪ Y; so,
H ⊆ H ∪K → H ⊆ X ∩ Y → H ⊆ X or H ⊆ Y (because H is P − connected).
Also K ⊆ H ∪K → K ⊆ X ∩ Y → K ⊆ X or K ⊆ Y (because K is P − connected).
Now, either H ⊆ X ∧ K ⊆ X → H∪K ⊆ X → Y = ∅ contradiction.
Or H ⊆ Y ∧ K ⊆ Y → H∪K ⊆ Y → X = ∅ contradiction.
Or H ⊆ Y ∧ K ⊆ X → H∩K ⊆ X ∩ Y = ∅ → X ∩ Y = ∅ contradiction.
OrH ⊆ X∧K ⊆ Y → H∩K ⊆ X∩Y = ∅ → X∩Y = ∅ contradiction. HenceH∪K is P−connected. □

And by generalizing the above theorem to any family of P−connected sets we obtain the following
theorem.

Theorem 2.12. The union of any family of P − connected sets have non-empty intersection P −
connected sets.

Proof . Let Mi : i ∈ N is non-empty of P − connected subset of X and suppose that
⋃

i∈∧ Mi

is P − disconnected, then
⋃

i∈∧M = H ∪ K, where H and K are P − separated sets in X. Since⋂
i∈∧ Mi ̸= ∅, we get x ∈

⋂
i∈∧ Mi. Since x ∈

⋃
i∈∧ Mi either x ∈ H or x ∈ K if x ∈ H ∧ x ∈

Mi,∀i ∈ N. By (Remark 2.10[9]) Mi ⊆ H or Mi ⊆ K and since H∩K ≠ ∅. Therefore
⋃

i∈∧ Mi ⊆ H
(because Mi ⊆ H for all i ∈ Z) that leads to K is empty. this is a contradiction.
By similar discussion H is also empty and this is a contradiction.
Then

⋃
i∈∧ Mi is P − connected sets. □
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Theorem 2.13. Let f : (X,ℑP) → (Y,ℑP̌) be a surjective P − continuous function and H,K are
P − separated sets in Y, then f−1(H), f−1(K) are P − separated in X.
Proof . Since H,K are P − separated sets in Y, if f is surjective, then f−1(H), f−1(K) are non-empty
in X. Suppose that f−1(H), f−1(K) are not P − separated in X, then f−1(H) ∩ clP(f

−1(K)) ̸= ∅, then
we obtain that f−1(H)∩ f−1(clP(K)) ̸= ∅, thus H∩ clP(K) ̸= ∅. Similarly, K∩ clP(H) ̸= ∅. So we get
H,K are not P − separated sets in Y, which contradict the hypothesis. Hence f−1(H), f−1(K) are
P − separated in X. □
Theorem 2.14. Let f : (X,ℑP) → (Y,ℑP̌) be a P − continuous function and X is P − connected,
then Y is connected.

Proof . Suppose that Y is not connected, let Y = H ∪ K where H and K are disjoint non-empty
open in Y. Since f is P − continuous, X = f−1(H) ∪ f−1(K) where f−1(H) and f−1(K) are disjoint
non-empty P − open sets in X. Hence Y is connected. □

Proposition 2.15. Let f : (X,ℑP) → (Y,ℑP̌) be a bijective P − continuous function and E is
P − connected in X, then f(E) is P − connected in Y.
Proof . Suppose that f(E) is P − disconnected in Y. Then f(E) = H∪K, where H and K two non-
empty P − separated in Y. By theorem 2.14, we have f−1(H), f−1(K) are P − separated in X. Since
f is bijective, then E = f−1(f(E)) = f−1(H) ∪ f−1(K). Hence E is not P − connected in X, which
contradict the hypothesis. Thus f(E) is P − connected in Y. □
Theorem 2.16. Let f : (X,ℑP) → (Y,ℑP̌) be surjective P − irresolute and X is P − connected,
then Y is P − connected.

Proof . Suppose that Y is P − disconnected, let Y = H∪K where H and K are disjoint non-empty
P − open in Y. Since f is P − irresolute and onto, then X = f−1(H) ∪ f−1(K) where f−1(H) and
f−1(K) are disjoint non-empty P − open sets in K (every P − open set is semiPO.).
Since X is P − connected then we get that Y is P − connected. □

Definition 2.17. A space (X,ℑP) is called strongly P − connected briefly (P SC.) iff it is not a
disjoint union of countably many but more one P − closed set.
By another words, if X ̸= ∪Fi, where Fi are disjoint non empty P − closed sets of X.
Remark 2.18. A subset E of a (X,ℑP) is said to be strongly P − connected iff E ⊆ H or E ⊆ K
whenever E ⊆ H ∪K, H and K are P − open sets in X.
Proposition 2.19. Let E be P SC., then E is P − connected.

Proof . Suppose that E is P − disconnected, then ∃ P − open sets H and K for which E =
(E ∩ H) ∪ (E ∩ K), such that E ∩ H ̸= ∅, E ∩ K ̸= ∅, E ∩ (H ∩ K) = ∅ then E ⊆ (H ∪ K), but by
definition 2.17, E ⊈ H and E ⊈ K contradicts E being P − connected. □

Remark 2.20. A set E will be weakly P − disconnected iff it is not P SC.
By adding some condition to the P − irresolute function we obtain the following

Theorem.

Theorem 2.21. Any surjective P − irresolute image of a strongly P − connected space is strongly
P − connected.

Proof . Let f : (X,ℑP) → (Y,ℑP̌) be surjective P − irresolute function and assume that f(X) is
weakly P − disconnected, since f is P − irresolute using definition 2.17, then the inverse image of
P − semi open sets is P − open sets, so X is a disjoint union of P − open sets. Hence f(X) is P SC.
□
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3. Penta Compactness in Penta Topological Space

Definition 3.1. A collection {Gi : i ∈ ∧} of P − open sets in (X,ℑP) is called a P − open cover
of a subset E of X if E ⊆ {Gi : i ∈ ∧}.

Definition 3.2. A (X,ℑP) is said to be P − compact if every P − open cover of X has a finite sub
cover.

Note: For each {Gi : i ∈ ∧} of P − open sets for which E ⊆ ∪{Gi : i ∈ ∧}, ∃Gi1, Gi2, ..., Gin

among the Gi’s, such that E ⊆ Gi1 ∪ Gi2 ∪ ... ∪ Gin. Then a space (X,ℑP) is P − compact iff for
each {Gi : i ∈ ∧} of P − open sets for which X = ∪{Gi : i ∈ ∧}, there exist finitely many sets
Gi1, Gi2, ..., Gin among the Gi’s such that X = Gi1 ∪Gi2 ∪ ... ∪Gin.

Theorem 3.3. Every P − compact space is compact space.

Proof . Let (X,ℑP) be a P − compact space.
Assume that (X,ℑi) is not compact, where ℑi = (τ1, τ2, τ3, τ4, τ5). Then every open cover of X has
not finite sub cover. Since every open set is a P − open set, so (X,ℑP) is not P − compact space
(contradiction by hypothesis). Hence (X,ℑi) is compact. □

Remark 3.4. The converse is not true.

Example 3.5. Let ℑP = {R, ∅,Q, Irr,Z,N, (−n, n)} be a Penta topology on R, when co-finite topolog
y = {G ⊆ R;Gc is finite} ∪ {∅} such that ℑ1 = {R, ∅,Q}, ℑ1 = {R, ∅, Irr}, ℑ3 = {R, ∅,Z},ℑ4 =
{R, ∅,N} and the usual topology ℑ5 = {R, ∅, u ⊆ R;u = (−n, n)isanopeninteraval}. We can show
that (R,ℑP) is P − compact space but ℑ5 is not compact, because C = {(−n, n) : n ∈ N} is open
cover of R but it hasn’t sub cover.

Proposition 3.6. Every P − closed subset of a P − compact space is P − compact space.

Proof . Let (X,ℑP) be a P − compact space and A ⊆ X be P − closed, suppose that {Gi : i ∈ ∧}
is P − open set of A, then A ⊆ ∪{Gi : i ∈ ∧}, it is clearly that X − A is P − open set. This
shows that the family consisting of the sets X − A and Gi’s is an P − open covers of X, which are
known to be P − compact Hence these covers has finite subcovers, say X−A,Gi1, Gi2, ..., Gin, we get
X = (X−A)∪ (

⋃n
r=1Gir). We claim that A ⊆

⋃n
r=1Gir and assume that there exist a ∈ A, such that

a /∈
⋃n

r=1Gir and a /∈ X−A. Now the family consisting of X−A,Gi1, Gi2, ..., Gin is not an P − open
covers of X. That is a contradiction. Hence A ⊆

⋃n
r=1 Gir hold, such that {Gir : r = 1, 2, ..., n} are

a P − open covers of A. So {Gi} of A, has finite subcover. Then A is a P − compact. □

Proposition 3.7. Every P − closed subset of a P − compact space is P − compact relative P −
topology.

Proof . Let A be a P−closed subset of a P−compact (X,ℑP), then X−A is P−open set in (X,ℑP),
so {Gi : i ∈ ∧} be P−open cover of A such that A ⊆ ∪{Gi : i ∈ ∧} and (X−A)∪{Gi : i ∈ ∧} = X.
Hence A ⊆ ∪{Gi : i ∈ ∧} (because X is P − compact, ∃A ⊆ (X− A) ∪ {Gi : i ∈ ∧} = X). Then A
is P − compact relative X. □

Theorem 3.8. P − continuous image of a P − compact space is P − compact.
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Figure 1: Relationship between the compactness space

Proof . Let f : X → Y be a P − continuous function and let {Gi : i ∈ ∧} be a P − cover of
E. then {f−1(Gi) : i ∈ ∧} is a P − open cover of X, (f−1(G)) is a P − open set in X, since X is
P − compact it has a finite sub cover say X = f−1(Gi1)∪ ...∪ f−1(Gin) = f−1(Gi1 ∪ ...∪Gin). So that
X = Gi1 ∪Gi2 ∪ ... ∪Gin. Hence Y is P − compact. □

Proposition 3.9. Any surjective P − irresolute image function of a P − compact space is P −
compact.

Proof . Let f : (X,ℑP) → (Y,ℑP̌) be surjective P − irresolute function and X is P − compact space
then to prove Y
P − compact space, suppose that {Gi : i ∈ ∧} is P − open sets of Y, then {f−1(Gi) : i ∈ ∧} is
P − open sets of X (because f is P − irresolute). Since X is P − compact has a finite subcover, we
get {f−1(G1), f

−1(G2), ..., f
−1(Gn)} then it leads to {G1, ..., Gn} is a finite subcover of Y, we get Y is

P − compact. □

Definition 3.10. A Penta Topological Space (X,ℑP) is called locally P − compact if every point in
X has at least one GPN has at least one P − compact sub spaces.

Theorem 3.11. Every P − compact space is locally P − compact.

Proof . Let (X,ℑP) be P − compact space, then X is both P − closed and P − open set and has at
last one GPN whose P − closure is P − compact. Hence (X,ℑP) is locally P − compact. □

Remark 3.12. 1. The converse of theorem 3.11 is not true, this can be seen through the following
example.
Example.
Let X be infinite set with discrete penta topological space, then X is not P − compact but the
collection of all singleton sets is an infinite P − open cover of X which cannot has a finite
subcover, by hypotheses X is locally P − compact, hence for each point of x ∈ {x} has a GPN

whose P − closure is P − compact.

2. Every locally compact space is locally P − compact space, from definition locally compact space
and every open set is P − open set.

By theorems 3.3,3.11 and remarks 3.12, present the following diagram that illustrates the rela-
tionship between the compactness space. We get Figure 1
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4. Penta Separation Axioms in Penta Topological Spaces

Definition 4.1. A space (X,ℑP) is said to be

i. TP0 space if for every pair of distinct points v, u of X, there exists a P − open set containing one
of them but not the other.

ii. TP1 space if for every pair of distinct points v, u of X, there exists two P − open sets containing
one of the two points but not the other.

iii. TP2 space if for every pair of distinct points v, u of X, there exists two distinct P − open sets
H,K, such that v ∈ H, u ∈ K.

Results 4.2. A Penta Topological Spaces (X,ℑP):

First case: Every T0- Topological Space is a ℑP0- Topological Space.

Second case: Every T1- Topological Space is a ℑP1- Topological Space.

Third case: If there is no one of the topologies is a T0 − space, then the Penta Topological Space is
a ℑP0- Topological Space.

Fourth case: If there is no one of the topologies is a T1 − space, then the Penta Topological Space
is a ℑP1- Topological Space.

Fifth case: If at least one of the topologies is a Ti − space ∀i = 0, 1, then the Penta Topological
Space is a ℑPi- Topological Space.

Let us discus the following examples for above cases:

Example 4.3. Let X = {a, b, c, d}.

1. For First and second cases.
ℑ1 = {X, ∅, {b}, {b, d}, {b, c}, {a, d}, {a, b, d}, {b, c, d}}, ℑ2 = {X, ∅, {a}, {a, b}, {a, b, d}, {a, b, c}}
ℑ3 = {X, ∅, {a}, {b, d}, {a, d}, {a, b, d}, {b, c, d}}, ℑ4 = {X, ∅, {b}, {d}, {b, d}, {b, c}, {b, c, d}, {a, b, c}}
ℑ5 = {X, ∅, {a}, {b}, {b, d}, {a, b, d}, {b, c, d}, {a, b}}, are five Topological Spaces, then
ℑP = {X, ∅, {a}, {d}, {b}, {b, d}, {b, c}, {a, d}, {a, b}, {a, b, c}, {a, b, d}, {b, c, d}}
Therefore (X,ℑP) is TPi − space with the five topological spaces is Ti − spaces. ∀i = 0, 1

2. For the third and Fourth cases.
ℑ1 = {X, ∅, {b}, {a, b, c}}, ℑ2 = {X, ∅, {a}, {b}, {a, b}, {b, d}, {a, b, d}, {b, c, d}}
ℑ3 = {X, ∅, {a}, {b, c, d}}, ℑ4 = {X, ∅, {d}, {a, d}}, ℑ5 = {X, ∅, {b}, {b, d}, {b, c}, {b, c, d}}, are
five Topological Spaces. Then
ℑP = {X, ∅, {a}, {d}, {b}, {b, d}, {b, c}, {a, d}, {a, b}, {a, b, c}, {a, b, d}, {b, c, d}}.
Therefore (X,ℑP) is TPi − space, but there exist (X,ℑ2) is Ti − spaces. ∀i = 0, 1

3. For the fifth case.
ℑ1 = {X, ∅, {b}, {a, b}}, ℑ2 = {X, ∅, {a, d}, {a, b, d}}, ℑ3 = {X, ∅, {b, d}, {b, c, d}},
ℑ4 = {X, ∅, {a}, {d}, {a, d}} and ℑ5 = {X, ∅, {b, c}, {a, b, c}}, are five Topological Spaces, then
ℑP = {X, ∅, {a}, {d}, {b}, {b, d}, {b, c}, {a, d}, {a, b}, {a, b, c}, {a, b, d}, {b, c, d}}.
Therefore (X,ℑP) is TPi − space but the five topological spaces are not Ti − spaces. ∀i = 0, 1

Results 4.4. A Penta Topological Spaces (X,ℑP):
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Figure 2:

First case: If there is no one of the topologies is a T2 − space then the Penta Topological Space is
a ℑP2- Topological Space.

Second case: If at least one of the topologies is a T2 − space then the Penta Topological Space is a
ℑP2- Topological Space.

Example 4.5. A Penta topology
ℑP = {X, ∅, {a}, {b}, {c}, {d}, {b, d}, {b, c}, {a, d}, {a, b}, {a, c}, {c, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}}
on X = {a, b, c, d}, when

I. ℑ1 = {X, ∅, {a}, {b}, {d}, {b, d}, {b, c}, {a, d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}}
ℑ2 = {X, ∅, {a, c}, {b, d}}, ℑ3 = {X, ∅, {c}, {c, d}, {a, c, d}}, ℑ4 = {X, ∅, {c}, {d}, {c, d}} and
ℑ5 = {X, ∅, {a}, {a, b}, {a, c}, {a, b, c}} are five Topological Spaces, then (X,ℑP) is TP2 − space
but not necessary that one of the five topologies T2−space. It is clear that (X,ℑ1) is T2−space.

II. ℑ1 = {X, ∅, {b}, {a, d}, {b, c}, {a, b, d}, {b, c, d}}, ℑ2 = {X, ∅, {a, c}, {b, d}},
ℑ3 = {X, ∅, {c}, {c, d}, {a, c, d}},ℑ4 = {X, ∅, {c}, {d}, {c, d}} and
ℑ5 = {X, ∅, {a}, {a, b}, {a, c}, {a, b, c}} are five Topological Spaces.
Then (X,ℑP) is TP2 − space but the five topologies are T2 − space.

By results 4.2,4.4 and definition 4.1, we obtain the following diagram which illustrates the rela-
tionship between the types of separation axioms. By using case (1,5) we get Figure 2.

Proposition 4.6. A space (X,ℑP) is a TP0 − space if and only if for every distinct points v, u of
X, clP{v} ≠ clP{u}.

Proof . For every v, u of X and v ̸= u, whenever X is a TP0 − space there exist a P − open set such
that v ∈ H, u ∈ X\H, hence {u} ⊆ X\H is a P − closed set, clP{u} ⊆ X\H, so v /∈ clP{u}. Then
clP{v} ≠ clP{u}.
Conversely, assume that v ̸= u, then clP{v} and clP{u}, are distinct sets, ∃ρ ∈ X belong to one sets
ρ ∈ clP{v} and ρ /∈ clP{u}. Now v /∈ clP{u} (because v ∈ clP{u} then clP{v} ⊆ clP(clP{u}) =
clP{u}). Also ρ ∈ clP{v} ⊆ clP{u} which is a contradiction, therefore v ∈ (clP{u})c, so (clP{u})c is
P − open set contained one but not the other. Then X is a TP0 − space. □

Theorem 4.7. A Penta topological space X is a TP1 − space, iff every singleton is P − closed sets.

Proof . Obvious. □

Theorem 4.8. A strongly P − connected TP1 − space has at most one point in uncountable space.
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Proof . By theorem 4.7, we have a singleton set in a TP1 − space is P − closed set. Therefore, we
get TP1 − space cannot have countably many but more than one point. □

By adding some conditions to the function, we get the following theorems.

Theorem 4.9. Let f : (X,ℑP) → (Y,ℑP̌) be a bijective P − open function and X is a Ti − space
then Y is TPi − space, where i = 0, 1, 2.

Proof . We prove the case i = 2.
Let v2, u2 be two points in Y and v2 ̸= u2, since f is bijective, then ∃v1, u1 ∈ X and f(v1) = v2, f(u1) =
u2. But X is a T2, then ∃ two disjoint open sets H,K ∈ X, whenever v1 ∈ H, u1 ∈ K. Then
f(H), f(K) are P − open sets in Y (because every P − open is semiP0., and f is P − open) we get
v2 ∈ f(H), u2 ∈ f(K) and f(H) ∩ f(K) = ∅. Hence Y is TP2 − space. □

Theorem 4.10. Let f : (X,ℑP) → (Y,ℑP̌) be an injective P − continuous function and Y is Ti −
space, then X, is TPi − space, where i = 0, 1, 2.

Proof . We prove the case i = 1
Since Y is T1 and let v, u of X and v ̸= u, there exist two disjoint P − open sets H,K ∈ Y (because
every P − open is semiP0.) such that f(v) ∈ H, f(u) ∈ K, f(v) ̸= f(u), since f is P − continuous,
then f−1(H) and f−1(K) are P − open sets of mathbbX, we get v ∈ f−1(H), u ∈ f−1(K). Hence X is
TP1 − space. □

Theorem 4.11. Let f : (X,ℑP) → (Y,ℑP̌) be an injective P − continuous function and Y is TPi −
space, then X, is TPi − space, where i = 0, 1, 2.

Proof . We prove the case i = 2
Let v, u of X and v ̸= u, since f is one to one, then f(v) ̸= f(u) in Y. But Y, is TP2 − space, then
there exist two disjoint P − open sets H,K ∈ Y, whenever f(v) ∈ H, f(u) ∈ K. Then f−1(H), f−1(K)
a P − open (because f is P − continuous), we get v ∈ f−1(H), u ∈ f−1(K) and f−1(H) ∩ f−1(K) = ∅.
So X is TP2 − space □

Theorem 4.12. Let f : (X,ℑP) → (Y,ℑP̌) be an injective P − irresolute function and Y, is TPi −
space. Then X, is TPi − space, where i = 0, 1, 2.

Proof . We prove the case i = 0
Let v, u in X and v ̸= u, since f is one to one, then f(v) ̸= f(u) in Y, Y is TP0−space, then ∃ a P−open
set H ∈ Y, whenever f(v) ∈ H, f(u) /∈ H. Then f−1(H) is semiP0. Set (because f is P − irresolute
and every P − open is semiP0. set), we get v ∈ f−1(H), u /∈ f−1(H). So X is TP0 − space. □

Proposition 4.13. Let f : (X,ℑP) → (Y,ℑP̌) be P − homeomorphim and Y is TP2 − space, then
X TP2 − space.

Proof . We prove the case i = 0
Suppose that v1, v2 ∈ X, with v1 ̸= v2. We get f(v1) ̸= f(v2) and f(v1), f(v2) ∈ Y, since Y is
TP2 − space there exist two P − open sets H,K ∈ Y such that f(v1) ∈ H, f(v2) ∈ K and H ∩K = ∅.
Now v1 ∈ f−1(H), v2 ∈ f−1(K) and f−1(H)∩f−1(K) = f−1(H∩K) = f−1(∅) = ∅. Hence X is TP2−space.
□

Theorem 4.14. Every P − compact subset of TP2 − space is P − closed set.
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Proof . Let E be a P − compact subset of TP2 − space (X,ℑP) and suppose that u /∈ E, then
∃ distinct P − open set contains u and v ∈ E. We obtain H,K P − open sets contains u and v
respectively. ∃ {Gv : v ∈ E} is P − cover of E by P − open sets in X, we get ∃ finitely many of
them, Gv1, ..., Gvn is P − cover of E, thus G =

⋃n
i=1 Gvi contains E and disjoint from P − open set

C =
⋂n

i=1Cui. Taking the intersection of P − open sets contains u, if w ∈ G, then w ∈ Gvi, then
w /∈ Cvi and w /∈ C. Then C is P − open set and u ∈ C disjoint from E. □

Example 4.15. From example 1.5, since X is finite, then (X,ℑP) P − compact but (X,ℑP) is not
TP2 − space.

Results 4.16. All discrete spaces are locally P − compact and TP2 − space these are P − compact
if and only if they are finite.

5. Conclusions

The main results of this paper are stated as below:

1. the concepts of connectedness, compactness and separation axioms on Penta topological space
developed with some theorems and the relationship between them.

2. If f : (X,ℑP) → (Y,ℑP̌) be bijective P − open function and X is a Ti − space, then Y is
TPi − space, where i = 0, 1, 2.

3. If f : (X,ℑP) → (Y,ℑP̌) be injective P − continuous function and Y is a Ti − space, then X is
TPi − space, where i = 0, 1, 2.

4. If f : (X,ℑP) → (Y,ℑP̌) be injective P − continuous function and Y is a TPi − space, then X
is TPi − space, where i = 0, 1, 2.

5. If f : (X,ℑP) → (Y,ℑP̌) be injective P − irresolute function and Y is a TPi − space, then X is
TPi − space, where i = 0, 1, 2.

6. If P − connected space then there exist at least one of the five topologies is connected.

7. Every P − compact space is locally P − compact space.

8. Every locally compact space is locally P − compact space.
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