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Abstract

In this paper, we consider an inverse problem for the time-fractional diffusion equation on the sphere
where the final data on the sphere are given. The problem is ill-posed in the sense of Hadamard.
Hence, the regularization method has to be used for the stable approximate solution. Then the
well-posedness of the proposed regularizing problem and convergence property of the regularizing
solution to the exact one is proved. Error estimates for this method are provided together with a
selection rule for the regularization parameter.
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1. Introduction

Partial differential equations on spheres have many applications in physical geodesy, potential
theory, oceanography, and meteorology. Evolution equations on spherical geometry such as shallow
water equations have been studied in weather forecasting services. Some numerical methods such as
meshfree methods, radial basic function method, kernel-based methods, in particular, are applied to
solving partial differential equations in the simple domain. The parabolic partial differential equation
defined on the unit sphere S2 ⊂ R3 is given by

∂

∂t
u(x, t)−∆∗u(x, t) = F (u(x, t)), (x, t) ∈ S2 × [0, T ]. (1.1)

Given the initial data u(x, 0) = f(x), the direct parabolic problem is to determine the heat
distribution u(x, t) at later time, while the inverse problem is to recover the u(x, t) at any earlier
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time from the measurement of the final value data u(x, T ) = f(x). For example, in practice, one
may have to investigate the temperature distribution and the heat flux history from the known data
at a particular time. In other words, it may be possible to specify the temperature distribution at a
particular time, say t = T > 0, and from this data the question arises as to whether the temperature
distribution at any earlier time t < T can be retrieved. This is usually referred to as the backward
heat conduction problem (BHCP), or the final boundary value problem. As we known, the inverse
problem is not well-posed in the sense of Hadamard. By the definition of Hadamard then a problem
is called well-posed if it satisfies
1. There exists a solution to the problem (existence),
2. There is at most one solution to the problem (uniqueness),
3. The solution depends continuously on the data (stability). The solution’s behavior hardly changes
when there’s a slight change in the initial condition. A problem which is not well-posed is called
ill-posed.

The direct problem for parabolic equation on the sphere and numerical approximation of it has
been considered by many authors, such as Le Gia Quoc Thong [14, 15]. Recently, the time-fractional
diffusion equation is a mathematical model of a wide class of important physical phenomena. Such
equations describe anomalous diffusion and subdiffusion processes, relaxation phenomena in complex
viscoelastic materials, and so on. In this paper, we are looking for solution u of the following initial
inverse problem on the sphere

ut −
∂

∂t

(∫ t

0

(t− s)α−1

Γ(α)
∆∗u(s)ds

)
= 0, u(x, T ) = f(x).

Here the convolution is given by for any α > 0,∫ t

0

(t− s)α−1

Γ(α)
w(s)ds

defines the Riemann-Liouville fractional integral of w of order α. There are many works which studied
in the time-fractional diffusion equations area, see [1, 2, 3, 4, 6, 7, 10, 13, 19, 20]. To the best of our
knowledge, there aren’t any results on inverse problems for the time-fractional diffusion equations on
the sphere. Our main goal in this paper is to establish a quasi-boundary value method for finding an
approximate solution. The quasi-boundary value method also called the non-local boundary value
method in [9], is a regularization technique by replacing the final condition or boundary condition
by a new approximate condition. This method has been used to solve some inverse problems, for
example, in [17, 18].

The paper is organized as follows. In section 3, we investigate the ill-posedness of the backward
problem for time-fractional diffusion equation on the spheres. In section 4, we present a Quasi-
boundary regularization problem and establish the convergence estimates between the regularized
solution and the exact solution.

2. Preliminaries

We introduced a two-parameter function of the Mittag-Leffler type, which plays an important
role in the time-fractional PDEs equations, and it is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C (2.1)

where α > 0 and β ∈ R are arbitrary constant. General properties of the Mittag-Leffler function are
discussed in [9].
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Lemma 2.1. Let 0 < α0 < α1 < 1. Then there exits constants C−1 , C
+
1 , C

−
2 , C

+
2 > 0 depending only

on γ0, γ1 such that

C−1
α
ex

1
γ ≤ Eα,1(x) ≤ C+

1

α
ex

1
α , ∀x ≥ 0

C−2
Γ(1− α)

1

1− x
≤ Eα,1(x) ≤ C+

2

Γ(1− α)

1

1− x
, ∀x ≤ 0.

These estimates are uniform for all α ∈ [α0, α1].

Lemma 2.2. Assume that α ∈ (0, 1). Then the Mittag - Leffler functions satisfy that

Eα,1(x) =
1

α
ex

1/α − 1

xΓ(1− α)
+O(

1

x2
), 0 < x→ +∞

Eα,1(x) = − 1

xΓ(1− α)
+O(

1

x2
),−∞← x < 0

Eα,0(x) =
1

α
x1/αex

1/α − 1

xΓ(−α)
+O(

1

x2
), 0 < x→ +∞

Eα,0(x) = − 1

xΓ(−α)
+O(

1

x2
),−∞← x < 0.

Spherical harmonics are polynomials which satisfy ∆xY (x) = 0 (where ∆x is the Laplacian
operator in Rn+1) and are restricted to the surface of the Euclidean sphere Sn.

The eigenvalues for −∆ are

λl = l(l + n− 1), l = 0, 1, 2, · · · ,
and the respective eigenfunctions are the spherical harmonics Yl(x) of order l i.e.,

∆Yl(x) = −λlYl(x).

The space of all spherical harmonics of degree l on Sn, denoted by Vl, has an orthonormal basis

{Ylk(x) : k = 1, 2, 3, · · · , N(n, l)},
where

N(n, 0) = 1, N(n, l) =
(2l + n− 1)Γ(l + n− 1)

Γ(l + 1)Γ(n)
, l ≥ 1.

Every function f ∈ L2(Sn) can be expanded in terms of spherical harmonics

f =
∞∑
l=0

N(n,l)∑
k=1

f̂lkYlk, f̂lk =

∫
Sn
fY lkdS,

where dS is the surface measure of the unit sphere. The Sobolev space Hσ(Sn) with real parameter
σ consists of all distributions f such that

‖f‖2Hσ(Sn) =
∞∑
l=0

N(n,l)∑
k=1

(1 + λl)
σ|f̂lk|2 <∞.

Obviously, the norm stems from an inner product

< f, g >Hσ=
∞∑
l=0

N(n,l)∑
k=1

(1 + λl)
σf̂lkĝlk.
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3. The initial value problem fractional diffusion

Consider the following problemut −
∂

∂t

(∫ t

0

(t− s)α−1

Γ(α)
∆∗u(s)ds

)
= 0, x ∈ Sn, 0 < t < T

u(x, 0) = h(x), x ∈ Sn.
(3.1)

Here ∆∗ is the Laplace-Beltrami on the sphere Sn. The direct problem is to find the final value data
u(x, T ) = g(x) from the known initial value data u(x, 0) = h(x).

Every u ∈ L2(Sn) can be expanded in terms of spherical harmonics

u(x, t) =
∞∑
l=0

N(n,l)∑
k=1

ûlk(t)Ylk(x), ûlk(t) =

∫
Sn
u(x, t)Y lk(x)dS,

where dS is the surface measure of the unit sphere. We like put ĥlk =
∫
Sn
h(x)Y lk(x)dS. By taking

the inner product of Ylk with

dûlk
dt

+ λl
∂

∂t

(∫ t

0

(t− s)α−1

Γ(α)
ûlk(s)ds

)
= 0, ûlk(0) = ĥlk.

From the results of W. Clean [8], we derive that

u(x, t) =
∞∑
l=0

N(n,l)∑
k=1

Eα,1(−λltα)ĥlkYlk(x).

By a similar method as in the work of M. Yamamoto et al [11], we can show that the mild solution
of initial problem (3.1) that u ∈ L∞(0, T ;L2(Sn)) if h ∈ L2(Sn).

Theorem 3.1. Given h ∈ Hσ(Sn). Then g satisfies that the following operator

Lg = h, (3.2)

where

Lv =
∞∑
l=0

N(n,l)∑
k=1

L̂(l)v̂lkYlk(x), (3.3)

and

L̂(l) =
1

Eα,1(−λlTα)
. (3.4)

Lemma 3.2. There exists two positive constants C1, C2 such that

C1(l + 1)2β ≤ L̂(l) ≤ C2(l + 1)2β.
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Proof .
Since

1

2
(l + 1)2 ≤ λl = l(l + n− 1) ≤ n− 1

2
(l + 1)2,

and from (4.4), we get

Eα,1(−λlTα) ≤ C+
2

Γ(1− α)

1

1 + λlTα
≤ C+

2

Γ(1− α)

1

λlTα
≤ 2C+

2

Γ(1− α)Tα
(l + 1)−2,

and the following inequality holds

Eα,1(−λlTα) ≥ C−2
Γ(1− α)

1

1 + λlTα

≥ C−2
Γ(1− α)(1 + Tα)

1

λl
≥ 2C−2

Γ(1− α)(1 + Tα)(n− 1)
(l + 1)−2. (3.5)

Then L̂(l) defined in (3.4) satisfying

Γ(1− α)Tα

2C+
2

(l + 1)2 ≤ L̂(l) ≤ Γ(1− α)(1 + Tα)(n− 1)

2C−2
(l + 1)2.

�

4. The inverse initial time-fractional diffusion equation

Consider the following inverse problemut −
∂

∂t

(∫ t

0

(t− s)α−1

Γ(α)
∆∗u(s)ds

)
= 0, x ∈ Sn, 0 < t < T

u(x, T ) = g(x), x ∈ Sn.
(4.1)

Here ∆∗ is the Laplace-Beltrami on the sphere Sn. The inverse problem is to reconstruction the
initial value data u(x, 0) = f(x) from the known final data value u(x, T ) = g(x). Now, we find
an explicit formula of the mild solution of Problem (4.1). Let us assume that u ∈ L2(Sn) can be
expanded in terms of spherical harmonics

u(x, t) =
∞∑
l=0

N(n,l)∑
k=1

ûlk(t)Ylk(x), ûlk(t) =

∫
Sn
u(x, t)Y lk(x)dS,

where dS is the surface measure of the unit sphere. We like put f̂lk =
∫
Sn
f(x)Y lk(x)dS. By taking

the inner product of Ylk with

dûlk
dt

+ λl
∂

∂t

(∫ t

0

(t− s)α−1

Γ(α)
ûlk(s)ds

)
= 0, ûlk(T ) = ĝlk.

Let us assume that u(x, 0) = u0(x) where u0 ∈ L2(Sn). Then, from section 3, we get that

u(x, t) =
∞∑
l=0

N(n,l)∑
k=1

Eα,1(−λltα)û0lkYlk(x).
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Letting t = T in above expression which yields that

g(x) = u(x, T ) =
∞∑
l=0

N(n,l)∑
k=1

Eα,1(−λlTα)û0lkYlk(x) =
∞∑
l=0

N(n,l)∑
k=1

ĝlkYlk(x). (4.2)

Due to the uniqueness of Fourier expansion of the function on L2(Sn), we deduce that Eα,1(−λlTα)û0lk =
ĝlk. From some above observations, we find that

u(x, t) =
∞∑
l=0

N(n,l)∑
k=1

Eα,1(−λltα)

Eα,1(−λlTα)
ĝlkYlk(x). (4.3)

4.1. Ill-posedness and a conditional stability for the inverse problem

Theorem 4.1. The problem (4.1) has a unique solution u ∈ C([0, T ;L2(Sn)))∩C([0, T ;H2(Sn))) if
g ∈ H2(Sn)

In the following Theorems, we prove that the backward problem is stable for t ∈ (0, T ). But the
state at t = 0 is an exception.

Theorem 4.2. Let any g ∈ L2(Sn). Then Problem (4.1) has a mild solution u which depends
continously on the final data g for t > 0.

Proof . We have for t > 0

C−2
Γ(1− α)

1

1 + λltα
≤ Eα,1(−λltα) ≤ C+

2

Γ(1− α)

1

1 + λltα
,

and

C−2
Γ(1− α)

1

1 + λlTα
≤ Eα,1(−λlTα) ≤ C+

2

Γ(1− α)

1

1 + λlTα
. (4.4)

From two preceding estimates, we obtain

Eα,1(−λltα)

Eα,1(−λlTα)
≤ C+

2

C−2

1 + λlT
α

1 + λltα
≤ TαC+

2

tαC−2
.

Then we find that

‖u(x, t)‖2L2(Sn) =
∞∑
l=0

N(n,l)∑
k=1

∣∣∣ Eα,1(−λltα)

Eα,1(−λlTα)
ĝlk

∣∣∣2
≤

(
TαC+

2

tαC−2

)2 ∞∑
l=0

N(n,l)∑
k=1

∣∣∣ĝlk∣∣∣2 =

(
TαC+

2

tαC−2

)2

‖f‖2L2(Sn).

�
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Remark 4.3. If t = 0 then u(x, 0) does not depend on continuity on the given data g on L2 norm.
Since (4.3), we have

f(x) = u(x, 0) =
∞∑
l=0

N(n,l)∑
k=1

1

Eα,1(−λlTα)
ĝlkYlk(x). (4.5)

Then g(x) =
∑∞

l=0

∑N(n,l)
k=1 Eα,1(−λlTα)f̂lkYlk(x). To find f(x), we just need to solve the following

integral equation

(Kf)(x) =

∫
Sn
k(x, ξ)f(ξ)dS = g(x), x ∈ Sn (4.6)

where the kernel is

k(x, ξ) =
∞∑
l=0

N(n,l)∑
k=1

Eα,1(−λlTα)Ylk(x)Ylk(ξ).

From k(x, ξ) = k(ξ, x), we know K is self-adjoint. If f ∈ Hσ, 0 ≤ σ < 2 then g ∈ H2. Because
Hσ, 0 ≤ σ < 2 is compactly embedded into H2, so K : Hσ → Hσ is compact and the problem (4.6) is
ill-posed.

Theorem 4.4. Let f(x) = u(x, 0) ∈ Hp(Sn) satisfy an a priori bound condition

‖f‖Hp(Sn) ≤ E, p > 0 (4.7)

then we have the following estimate

‖f‖L2(Sn) ≤
[

Γ(1− α)(1 + Tα)

C−2

] p
p+1

‖f‖
1
p+1

Hp(Sn)‖g‖
p

4p+4

L2(Sn). (4.8)

Proof . Using the Hölder inequality, we get

‖f‖2L2(Sn) =
∞∑
l=0

N(n,l)∑
k=1

|f̂lk|2 =
∞∑
l=0

N(n,l)∑
k=1

|ĝlk|2

|Eα,1(−λlTα)|2

=
∞∑
l=0

N(n,l)∑
k=1

|ĝlk|
4

2p+2

|Eα,1(−λlTα)|2
|ĝlk|

2p
2p+2

≤

 ∞∑
l=0

N(n,l)∑
k=1

|ĝlk|2

|Eα,1(−λlTα)|2p+2

 1
p+1
 ∞∑

l=0

N(n,l)∑
k=1

|ĝlk|2


p
2p+2

. (4.9)

Applying (4.4), we have

∞∑
l=0

N(n,l)∑
k=1

|ĝlk|2

|Eα,1(−λlTα)|2p+2
≤

∞∑
l=0

N(n,l)∑
k=1

|ĝlk|2

|Eα,1(−λlTα)|2

[
Γ(1− α)(1 + λlT

α)

C−2

]2p

≤
[

Γ(1− α)(1 + Tα)

C−2

]2p ∞∑
l=0

N(n,l)∑
k=1

λ2pl |f̂lk|
2

=

[
Γ(1− α)(1 + Tα)

C−2

]2p
‖f‖2Hp(Sn). (4.10)
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Combining (4.9) and (4.10), we obtain

‖f‖2L2(Sn) ≤
[

Γ(1− α)(1 + Tα)

C−2

] 2p
p+1

‖f‖
2
p+1

Hp(Sn)‖g‖
p

2p+2

L2(Sn). (4.11)

�

4.2. Regularization by quasi-boundary value method

In this subsection, we propose a quasi-boundary value method to solve Problem (11) and give
two convergence estimates under a priori regularization parameter choice rule and an a posteriori
regularization parameter choice rule, respectively.

Let uεβ(x, t) be the solution of the following regularized problemvt −
∂

∂t

(∫ t

0

(t− s)α−1

Γ(α)
∆∗v(s)ds

)
= 0, x ∈ Sn, 0 < t < T

v(x, T ) + βv(x, 0) = gε(x), x ∈ Sn.
(4.12)

Theorem 4.5. Let gε ∈ L2(Sn) such that ‖gε − g‖L2(Sn) ≤ ε. Let assume that

‖f‖Hp(Sn) ≤ E.

Then Problem (4.12) has a mild solution uεβ ∈ L∞(0, T ;L2(Sn)). Moreover, we get the following
estimate

‖uεβ(., 0)− u(., 0)‖L2(Sn) ≤ ε1−ν + max(C1(p), C2(p))
(
ε
νp
4 , ε
)
, (4.13)

where β = εν , 0 < ν < 1.

Proof . By the separation of variables, we know uεβ(x, t) has the following form

uεβ(x, t) =
∞∑
l=0

N(n,l)∑
k=1

Eα,1(−λltα)ĉlkYlk(x). (4.14)

From (4.12), we get the following equality

ĉεlkEα,1(−λlTα) + βĉεlk = (ĝε)lk. (4.15)

Thus, we obtain that ĉεlk = (ĝε)lk
β+Eα,1(−λlTα)

. Substituting ĉεlk into (4.14), we get the following equality

uεβ(x, t) =
∞∑
l=0

N(n,l)∑
k=1

Eα,1(−λltα)

β + Eα,1(−λlTα)
(ĝε)lkYlk(x). (4.16)

The function f εβ(x) = uεβ(x, 0) be as approximation of f(x) defined by

f εβ(x) = uεβ(x, 0) =
∞∑
l=0

N(n,l)∑
k=1

1

β + Eα,1(−λlTα)
(ĝε)lkYlk(x). (4.17)
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Denoted by

fβ(x) =
∞∑
l=0

N(n,l)∑
k=1

1

β + Eα,1(−λlTα)
ĝlkYlk(x). (4.18)

First, we look at the estimate ‖f εβ − fβ‖L2 . Using Parseval’s inequality, we get that

‖f εβ − fβ‖2L2(Sn) =
∞∑
l=0

N(n,l)∑
k=1

(
1

β + Eα,1(−λlTα)

)2

|(ĝε)lk − ĝlk|2

≤ 1

β2

∞∑
l=0

N(n,l)∑
k=1

|(ĝε)lk − ĝlk|2 =
ε2

β2
. (4.19)

In the following, we give two convergence estimates for ‖f εβ(.)− f(.)‖L2(Sn). Indeed, using Parse-
val’s equality and using some simple calculation, we find that

‖fβ(x)− f(x)‖2L2(Sn)

=
∞∑
l=0

N(n,l)∑
k=1

(
1

Eα,1(−λlTα)
− 1

β + Eα,1(−λlTα)

)2

|ĝlk|2

=
∞∑
l=0

N(n,l)∑
k=1

β2

|Eα,1(−λlTα)|2
(
β + Eα,1(−λlTα)

)2 |ĝlk|2
=

∞∑
l=0

N(n,l)∑
k=1

|ĝlk|2

|Eα,1(−λlTα)|2
λpl

β2λ2l(
βλl + λlEα,1(−λlTα)

)2 1

λpl

≤
∞∑
l=0

N(n,l)∑
k=1

|ĝlk|2

|Eα,1(−λlTα)|2
λpl

β2λ2l(
βλl + Eα,1(−λlTα)

)2 1

λpl

≤ E2 sup
l∈N

∣∣∣A(l)
∣∣∣2, (4.20)

where we set

A(l) =
βλ

1− p
2

l

βλl + Eα,1(−λlTα)
≤ βλ

1− p
2

l

βλl + M
λl

=
βλ

2− p
2

l

βλ2l +M
. (4.21)

It is easy to see that the following estimate

A(l) ≤ C1(p)β
p
4 , for all 0 ≤ p < 4 (4.22)

A(l) ≤ C2(p)β, for all p ≥ 4. (4.23)

Indeed, if p > 4 then λ
2− p

2
l ≤ λ

2− p
2

1 and this implies that we choose C2(p) =
λ
2− p

2
1

βλ21+M
in order to deduce

that A(l) ≤ C2(p)β. With the case 0 < p < 4, we let h(y) = βy2−
p
2

βy2+M
. The derivative of it is

h′(y) =
βy1−

p
2 (4M − pM − pβy2)

2(M + βy2)2
.
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The positive solution of the equation h′(y) = 0 is y0 such that 4M − pM − pβy20 = 0, or

y0 =
√

M(4−p)
pβ

. Then if 0 < p < 4 and for y > 0,

h(y) ≤ h(y0) =
βy

2− p
2

0

βy20 +M
=

[M(4−p)
p

]
4−p
p β

p
4

M + M(4−p)
p

= C1(p,M)β
p
4 . (4.24)

Combining (4.19) and (4.24), we get that

‖f εβ − f‖L2(Sn) ≤ ‖fβ − f‖L2(Sn) + ‖f εβ − fβ‖L2(Sn)

≤ ε

β
+ max(C1(p), C2(p))

(
β
p
4 , β
)
. (4.25)

�
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