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Abstract
It is known that there are disk-cyclic operators that are not satisfy the disk-cyclic criterion. This
work introduce weakly disk-cyclic operators, which are kind of disk-cyclic operators, and study its
relation with disk-cyclic criterion with several results and properties.
Keywords: disk-cyclic, codisk-cyclic, mixing operators, weakly mixing operators.

1. Introduction

Let H be a separable infinite dimensional Hilbert space, and T ∈ B(H) is said to be a hypercyclic
operator if the orbit of T, orbt (T, x) = {T nx : n ≥ 0}, is dense in H [3]. The first sufficient condition
for hypercyclic (the Hypercyclic Criterion) discovered independently by kitai [7] and Godefroy and
Shapioro [4]. In 1974 Hilden and Wallen [5], generalized the definition of hypercyclic operators to
supercyclic by cone orbit, Corbt (T, x) = {αT nx : α ∈ C , n ≥ 0 }, is dense in H. Jamil in her Ph.
D. thesis [6], partition the cone orbit into three parts, according to unit circle as: disk-cyclic operators
when |α| ≤ 1, circle cyclic operators when |α| = 1 and codisk-cyclic operators when |α| ≥ 1. But
Saavedra and Müller[9], proved that every circle cyclic operators are hypercyclic.

There are many authors studied disk-cyclic operators from multiple aspects like: Bamerni defined
subspace disk-cyclic and multidisk-cyclic operators on Banach Spaces [2], and Yu-Xia Iiang and
Ze-Hua Zhou introduced Disk-cyclic and Codisk-cyclic tuples of the adjoint weighted composition
operators on Hilbert spaces [8].

A sufficient conditions for disk-cyclic operators were found by Jamil in 2002 [6], which is called
disk-cyclic criterion. In 2016 Bamerni [1], provided another version to the disk-cyclic criterion, which
is simpler than the main disk-cyclic criterion. Moreover, proved that (T satisfies disk-cyclic criterion
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if and only if
⊕k

i=1 T is disk-cyclic for all k ≥ 2) [1]. Now the national quotation.
Is

⊕n
i=1 T ∈ DC (H) for all n ≥ 2, disk-cyclic operator whenever T is?

This quotation motivates as to introduce a new concept of disk-cyclic phenomena which is called
weakly D-mixing operator T ∈ B(H) as:

T ⊕ T : H ⊕H → H ⊕H is disk-cyclic.

Weakly D-mixing operators deals with D- return sets and proper D- return sets which defined as
respectively:

ND (U, V ) = ND
T (U, V ) = {n ∈ N : T n(αU) ∩ V ̸= ∅ ;α ∈ D}

ND(U1, V1) ∩ND (U2, V2) ̸= ∅.

Although the weakly D-mixing concept and Disk-cyclic Criterion are equivalent, there is still a need
for studying it properties by using D- return sets.
This work discuss the necessary and sufficient conditions for an operator to be weakly D-mixing. We
first tried to reduce the four open sets to three or two open sets only.
After that we studied the relation between weakly D-mixing and thick D- return sets.
Finally, we gave the sufficient conditions for an operator to be weakly D-mixing.
This work consists of two sections. In section two, we introduced four concepts (D-return set,
properD- return set and thick set) and its properties. In section three, we introduced the concept of
weaklyD-mixing and reduced the four open sets to three or two open sets only.
We remark D := α ∈ C, 0 < |α| ≤ 1, unless otherwise stated.

2. D-Return Set With Disk-cyclic Operators

The following theorem gives specific certain of disk-cyclic criterion use in this paper.

Definition 2.1 (Disk-cyclic Criterion). Suppose that T ∈ B(H) is called satisfies disk-cyclic
criterion. If there exists an increasing sequence of positive integers {nk} in N and {αnk

} in D; For
which there are a dense subsets Y, X in H and a sequence of mappings, Snk

: Y → H, as k → ∞ such
that:

(i) αnk
T nkx → 0 for all x ∈ X

(ii) (a) 1
αnk

S
nk

y → 0 for all y ∈ Y

(b) TnkSnk
y → y for all y ∈ Y.

Theorem 2.2. [1] Every operator satisfies disk-cyclic criterion is disk-cyclic operator.

Proposition 2.3. [6] Let {H i}
n
i=1

be a family of separable, infinite dimensional Hilbert spaces, let
Ti ∈ B (Hi). If

⊕n
i=1 T i ∈ DC

(⊕n
i=1 H i

)
, then Ti ∈ DC (Hi), for all i = 1, . . . , n.

Proposition 2.4. [1] T ∈ B (H) satisfies the disk-cyclic criterion if and only if
⊕r

i=1 T is disk-cyclic
operator for all r ≥ 1.

In flowing example we show that the disk-cyclic operators not necessary satisfy Disk-cyclic Criterion.

Example 2.5. [1] Let T ∈ B (C) , such that T (x) = 2x. Then T is a disk-cyclic operator but does
not satisfy Disk-cyclic Criterion.



Weakly disk-cyclic ...; 12 (2021) No. 2, 2531-2537 2533

Proposition 2.4 and example 2.5 lead to the following main problems

Problem 2.6.
(i) Dose every disk-cyclic operator satisfy the Disk-cyclic Criterion?

(ii) Is
⊕n

i=1 T ∈ DC (H) for all n ≥ 2, disk-cyclic operator whenever T is?

Nareen in (2016) [1], proved the two above problem are equivalent.
The part two of problem 2.6 motivates as to introduce a new concept of disk-cyclic phenomena.
Our starting point is the following definitions.
Definition 2.7. [2] A subsets S of N, is said to be a thick set if for every M∈ N there exists t∈ N
such that t, t+ 1, . . . , t+M ∈ S.

Definition 2.8. Let T ∈ B(H) and U, V be any non-empty open subsets of H, then the set
• ND (U, V ) = ND

T (U, V ) = {n∈ N :T n (αU) ∩ V ̸= ∅ ;α ∈ D} is called a D-return set.
While,

• CD (U, V ) = CD
T (U, V ) = {n∈ N : T n (αU) ⊂ V ;α ∈ D} is called a proper D- return set.

The following propositions gives some properties on D- return and proper D- return.
First we recall that if A and B are two subsets of N then the sum (difference) set A± B is defined
by A± B = {n−m : (n,m) ∈ A× B, n ≥ m}.

Proposition 2.9. Let T ∈ B (H) , and U, V,W be non-empty open subsets of H, then
(i) ND (U, V ) + CD (V,W ) ⊂ ND (U,W )

(ii) ND (U,W )− CD (U, V ) ⊂ ND (V,W )

Proof .
(i) Let k ∈ ND (U, V ) + CD (V,W ) .

Thus k = n+m; n ∈ ND (U, V ) , m ∈ CD (V,W ) .
Then there exist α, β ∈ D such that T n (αU) ∩ V ̸= ∅ and Tm (βV ) ⊂ W .
Hence there is an open set X in U, such that T n (αX) ⊂ V and T n (βαX) ⊂ βV,
so T k (βαX) = T

m
(T n (βαX)) ⊂ TmβV ⊂ W .

Hence T k (βαX) ∩W ̸= ∅, so T k (σU) ∩W ̸= ∅ where δ ∈ D. Then k ∈ ND (U,W ) .

(ii) Let k ∈ ND (U,W )− CD (U, V )
i.e. k = n−m; n ∈ ND (U, V ) and m ∈ CD (U, V ) .
Then there exist α, β ∈ D such that T n (αU) ∩W ̸= ∅ and Tm (βU) ⊂ V , so βU ⊂ T−mV.

Then αU ⊂ T−m
(

α
β
V
)
. Hence T n(αU) ⊂ T n

(
T−mα

β
V
)
= T k

(
α
β
V
)
. Then T k

(
α
β
V
)
∩W ̸=

∅. So T k (αV ) ∩ βW ̸= ∅. Since |β| ≤ 1, so βW ⊂ W, thus Tk (αV ) ∩W ̸= ∅.

□

Example 2.10. Let T ∈ B(H), U, V be any non-empty open subsets of H, then

ND (U, V ) ̸= ND (V, U)

In fact, T (x) = 2x is a disk-cyclic operator by Example 2.5. So if we take U = (1, 3) , V =
(10, 25) . then for all α ∈ D, 1 /∈ ND (U, V ). While when α = 1

10
, 1 ∈ ND (V, U).



2534 Abdulkareem, Jamil

3. Weakly Disk-cyclic Mixing Operators

This section, study some properties of a new concept on disk-cycliclty phenomena (weakly disk-
mixing).

Definition 3.1. T ∈ B (H), is called weakly disk-mixing if T ⊕ T : H ⊕H → H ⊕H is disk-cyclic.
We refer to it by weakly D-mixing.

Remark 3.2. The technique of the concept of weakly D-mixing is:
For any four non-empty open subsets U1, U2, V1, V2 of H, there exists some n∈ N and α1, α2∈ D
Such that T n (α1U1) ∩ V1 ̸= ∅ and T n (α2U2) ∩ V2 ̸= ∅. i.e,

ND (U1, V1) ∩ND (U2, V2) ̸= ∅.

Although weakly D-mixing concept is another form of Disk-cyclic Criterion concept but we use the
technique of the weakly D-mixing to prove a generalization of Example 2.5.
The technique of weakly D-mixing is an approximation property involving 4-tuples of open sets
whereas the technique of disk-cyclic concept is an approximation property involving pairs of open
sets. The following theorem shows that in the definition of weakly D-mixing one may reduce the
four open sets to 3-tuples and even to 2-tuples.

Theorem 3.3. Let T ∈ B(H). U, V, U 1, U2 be non-empty open subsets of H. Then the following are
equivalent:

(i) For any U , V in H we have ND (U, V ) ∩ND (V, V ) ̸= ∅.

(ii) For any U1, U2, V in H we have ND (U1, V ) ∩ND ( U2, V ) ̸= ∅.

(iii) T is weakly D-mixing.

Proof .
(i) =⇒ (ii) Let U1, U2, V be non-empty open subsets of H. By (i) we can get ND (U, V ) ̸= ∅, so
T is a disk-cyclic operator. Hence there is some n∈ N, α ∈ D such that V1 = U2 ∩ T−n

(
1
α
V
)

is
non-empty and open. By the hypothesis there is some m ∈ ND (U1, V1) ∩ ND (V1, V1) . Thus there
exist β1, β2 ∈ D such that

Tm (β1U1) ∩ V1 ̸= ∅ and Tm (β2V1) ∩ V1 ̸= ∅.
Therefore there is x ∈ V1 ⊂ T−n

(
1
α
V
)
, such that x ∈ Tm (β1U1), then T n+m (αβ1U1) ∩ V ̸= ∅,

Also, there is y ∈ V1 such that Tm (β2y) ∈ V1, thus y ∈ U2 and Tn (αy) ∈ V, which implies that
Tm+n(αβ2y) ∈ V, then

T n+m (αβ2U2) ∩ V ̸= ∅.

We have that
n+m ∈ ND (U1, V ) ∩ND (, U2, V ) .

(ii) =⇒ (iii) Let U1, U2, V1, V2 be non-empty open subsets of H. By (ii) we can get ND (U1, V ) ̸= ∅,
so T is a disk-cyclic operator. Hence there is some n∈ N,α ∈ D such that V = V1 ∩ T−n( 1

α
V2)

is a non-empty open set. Moreover, since disk-cyclic operator have dense range, also T−n(U2) is
non-empty and open. By the hypothesis we find

m ∈ ND (U1, V ) ∩ND
(
T−n(U2), V

)
.
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Then there exist β1, β2 ∈ D such that

Tm (β1U1) ∩ V ̸= ∅ and Tm−n(β2U2) ∩ V ̸= ∅.

But V ⊂ V1 then m ∈ ND (U1, V1).
On the other hand V ⊂ T−n

(
1
α
V2

)
, thus Tm−n(β2U2) ∩ T−n

(
1
α
V2

)
̸= ∅.

That is Tm(β2αU) ∩ V2 ̸= ∅, which yields that

m ∈ ND (U1, V1) ∩ND (U2, V2) .

Hence T is weakly D-mixing.
(iii)=⇒ (i) Trivial □

Theorem 3.4. Let T ∈ B(H). U , V, V1, V2 be non-empty open subsets of H. then the following are
equivalent:

(i) For any U , V in H we have ND (U,U) ∩ND (U, V ) ̸= ∅.

(ii) For any U , V1, V2 in H we have ND (U, V1) ∩ND ( U, V2) ̸= ∅.

(iii) T is weakly D-mixing.

Proof .
(i)=⇒ (ii) Let U, V1, V2 be non-empty open subsets of H. By the hypothesis we can get
ND (U, V ) ̸= ∅, so T is a disk-cyclic operator. Hence there is some n∈ N, α ∈ D such that U1 =
U ∩ T−n

(
1
α
V

1

)
is a non-empty open set. Since disk-cyclic have dense range, implies that T−n (V2)

is non-empty and open, so that there exists some m ∈ ND (U1, U1) ∩ ND
(
U1, T−n

(
1
α
V

2

))
. Then

there exist β1, β2 ∈ D such that

Tm (β1U1) ∩ U1 ̸= ∅ and Tm (β2U1) ∩ T−n

(
1

α
V

2

)
̸= ∅

Thus Tm+n (αβ2U1) ∩ V2 ̸= ∅.So n+m∈ ND (U, V2) .
On the other hand, there is x ∈ U1 ⊂ U such that Tm(β1x) ∈ U1 ⊂ T−n

(
1
α
V

1

)
, then Tm+n (αβ1x) ∈

V1. Hence Tm+n (αβ1U) ∩ V1 ̸= ∅. Therefore

n+m∈ ND (U, V1)

Which implies that n+m∈ ND (U, V1) ∩ND (U, V2) .
(ii) =⇒ (iii) Let U1, U2, V1, V2 be non-empty open subsets of H. By the hypothesis we can get
ND (U, V1), so T is a disk-cyclic operator. Hence there is some n∈ N,α ∈ D such that U =
U1 ∩ T−n( 1

α
U2) is a non-empty open set. Moreover, since disk-cyclic operator have dense range, also

T−n(V2) is non-empty and open. By the hypothesis we find m ∈ ND (U, V1) ∩ND (U, T−nV2).
Then there exist β1, β2 ∈ D such that Tm (β1U) ∩ V1 ̸= ∅ and Tm (β2U)) ∩ T−nV2 ̸= ∅.
In particular, there exists x ∈ U ⊂ U1 with Tm (β1x) ∈ V1. Thus

m ∈ ND (U1, V1) .

Also, there exists y ∈ U ⊂ T−n( 1
α
U2) such that Tm(β2y) ∈ T−nV2. We then conclude that T n(αy) ∈ U2

and since α ∈ D,
Tmα (T n(β2y)) = Tmβ2 (T

n(αy))∈ αV 2 ⊂ V2.
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While Tmβ2 (T
n(αy)) ∈ Tmβ2U2, therefore Tm(β2U2) ∩ V2 ̸= ∅. Thus

m ∈ ND (U2, V2) .

Which yields that
m ∈ ND (U1, V1) ∩ND (U2, V2) .

Hence T is weakly D-mixing.
(iii) =⇒ (i) Trivial □

Theorem 3.5. Let T ∈ B(H). The following are equivalent:

(i) T is weakly D-mixing.

(ii) Each ND (U, V ) ̸= ∅ and for each U1, V1, U2, V2 non-empty open subsets of H, there are
non-empty open sets U3, V3 such that ND (U3, V3 ) ⊂ ND (U1, V1 ) ∩ND (U2, V2 ).

(iii) All sets ND (U, V ) are thick.

(iv) ND (U, V )−ND (U, V ) = N, for any U, V.

Proof .
(i)=⇒ (ii) Let U1, V1, U2, V2 be non-empty open subsets of H. Since T is weakly D-mixing, thus there
is m ∈ ND (U1, U2 ) ∩ND (V1, V2 ) . Since U1, V1 are non-empty and open we can get U3, V3, non-
empty open sets such that U3⊂ U1 and V3⊂ V 1, So there exist α1, α2 ∈ D such that Tm (α1U3)⊂ U2

and Tm (α2V1)⊂ V 2. Then ND (U3, V3 ) ⊂ ND (U1, V1 ) .
Moreover, if n ∈ ND (U3, V3 ) , then by proposition 2.9

n+m ∈ ND (U3, V3 ) + CD (V3, V2) ⊂ ND (U3, V2 ) ,

so that
n = (n+m)−m ∈ ND (U3, V2 )− CD (U3, U2) ⊂ ND (U2, V2 )

Hence ND (U3, V3 ) ⊂ ND (U2, V2 ).
So ND (U3, V3 ) ⊂ ND (U1, V1 ) ∩ND (U2, V2 ).
(ii)=⇒ (i) This is travel.
(i)=⇒ (iii) Let U, V non-empty open subsets of H, L be a positive integer .
Since T is weakly D-mixing, then by proposition 2.9

⊕L
i=1 T ∈ DC (H) . Thus, by proposition 2.9,

T ∈ DC (H) . Hence one can find n∈ N and α ∈ D such that T n (αU) ∩ T−i (V ) ̸= ∅ for all
i = 0, .., L. So n, . . . , n + L ∈ ND (U, V ) .
Therefore ND (U, V ) is a thick set.
(iii)=⇒ (iv) Let M∈ N . By (iii) ND (U, V ) is thick, then there exist k∈ N such that k, . . . , k+M ∈
ND (U, V ) . So M = k − k +M ∈ ND (U, V )−ND (U, V ) .
(iv)=⇒ (i) Let U, V, V2 be non-empty open subsets of H. by (iv) ND (U, V ) ̸= ∅ otherwise N =∅,
thus T∈ DC (H) . So one can find an m∈ N , α ∈ D and a non-empty open set V1 ⊂ V such that
Tm (αV1) ⊂ V2. By (iv), we can take k∈ N such that k ∈ ND (U, V1 ) and k +m ∈ ND (U, V1 ).
Then by proposition (2.9 part (i))

k +m ∈ ND (U, V1 ) ∩
[
ND (U, V1 ) + CD (V1, V2)

]
⊂ ND (U, V1 ) ∩ND (U, V2 ) .

Hence by (2.9 part (ii)) the result done. □
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4. Conclusion

We gave the define of weakly D-mixing and reduced the four open sets to three or two open sets
only. Every weakly D-mixing operators is another form of Disk-cyclic Criterion and every weakly
D-mixing operators gave the ND(U, V ) are thick sets.
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