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Abstract
The application of structural reliability analysis has become very important to ensure the strength of
the studied structural design, as it presents results that help in giving evidence about the acceptance
of that design according to the materials used under specific operating conditions. In this research
an experiment was done, to find out the effect of G.U.M mouthwash on cured and re-cured Visible
Light Cured (VLC) composite dental filling material, made according to agreed international stan-
dards, where many studies have documented that the surface of restorative materials placed on the
tooth may also be affected by the chemical effect of different types of oral health care products, and
the experiment was analyzed mathematically by applying structural reliability analysis to know the
probability of structural failure when dental filling were exposed to the mouthwash G.U.M (Opera-
tional conditions), using analysis technique: the D-vine copula. The results were that the probability
of structural failure gave an indication from which to infer the extent to which the experiment was
accepted or rejected.
Keywords: Structural reliability, Probability of structural failure, D-vine copula, mouthwash,

dental filling, material.

1. Introduction

Structural reliability analysis is a decision-making tool that supports the planning of the studied
engineering structure at the design stage to determine its ability to work under certain operating
conditions throughout its expected life. It allows the inclusion of relevant information and inference
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from the available data, to estimate the probability of structural failure, which is the main objective
of the analysis, that is, it gives safe and more accurate estimates of the design. Structural reliabil-
ity analysis is often used in the framework of quality controls and results are rejected outside the
permissible range, accordingly, it has been used in many engineering fields. The structural relia-
bility analysis is carried out with the help of statistical and probabilistic methods that reflect the
engineering reality to evaluate the structural design to ensure satisfactory performance [6, 20, 24, 34].

For the purpose of analysis, uncertain quantities such as loads, material properties, geometric
dimensions, environmental factors, etc., are represented by the k-dimensional vector of basic random
variables X = (X1, X2, . . . , Xk), then the random variables are formulated through a mathematical
model known as the performance function or the limit state function G(X) that shows the variables
included in the design as it plays a key role in the analysis process. The G(X) is can divide the
variables space into two domains: safe domain (G(X) > 0 ) and failure domain G(X) ≤ 0).

Thus, the probability of structural failure pf is calculated by performing a multidimensional
integration of the joint probability density function f(x1, x2, . . . , xk) of X within the boundaries
provided by the performance function in failure domain G(X) ≤ 0.

pf = pG(X) ≤ 0) =

∫
. . .

∫
G(X)≤0

f(x1,x2, . . . , xk) dx1, dx2, . . . , dxk (1.1)

but it’s difficult to perform the above integration because in most engineering practices there is a
multi-correlation between random variables, which makes it difficult to perform the multi-integration
in Eq.(1.1) to obtain the probability of structural failure. Accordingly, the researchers presented many
techniques, which are an analytical approximation of integration that makes the calculations more
flexible to help estimate the probability of structural failure in light of the problem of correlation such
as the first-order reliability method (FORM) [2, 16, 25, 30, 31, 39], second-order reliability method
(SORM) [36, 42, 44], simulation method [7], neural networks [9, 29], etc.

In this research, a structural reliability analysis by the first-order reliability method (FORM),
was used with the aim of evaluate the effect of mouthwash G.U.M on the dental filling made of the
light-cured composite material.

The use of mouthwash has become very popular because it prevents and controls some diseases
of the teeth and gums because it contains antibacterial agents [17]. Several studies have documented
that the surface of restorative materials placed on a tooth may also be affected by the chemical effect
of various types of oral health care products [8, 10].

To achieve the aim of the research, an experiment was conducted (Described in detail in Section
(3)), for dental filling under agreed laboratory conditions, it was treated with G.U.M mouthwash.
After that, a structural reliability analysis was conducted in order to know the probability of struc-
tural failure of the dental filling, which shows the extent of the effect resulting from the use of G.U.M
mouthwash, the analysis was carried out through the surface hardness and geometric dimensional
accuracy (thickness and diameter) of the filling.

The research is organized as follows: In Section (2) the methodological background and techniques
used in the structural reliability analysis are clarified, in Section (3) the experience of dental filling
and the results obtained based on the application of the reliability analysis methods are explained,
while in Section (4) the most important conclusions that have been reached are mentioned.

2. Methodological background and the technique of structural reliability analysis
In this section, the first-order reliability method (FORM) in structural reliability analysis and

the analysis techniques based on it are explained.
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The FORM is one of the essential methods of structural reliability analysis widely used in its
analysis of engineering problems when there are correlations between the studied random variables, it
has provided computational procedures to calculating the probability of structural failure [15, 22, 38].

The FORM in structural reliability analysis, in general require that the random variables are
independent and have a standard normal distribution, otherwise, the correlated original variables
X = (X1, X2, . . . , Xk) in (X-space) should be transformed into independent standard normal variables
Y = (Y1, Y2, . . . , Yk) in (Y-space), where transformation vector denoted as Y = T (X) and the inverse
transformation is denoted as X = T−1(Y), thus the performance function G(x) of correlated original
vector X transform into g(Y) is performance function of independent standard normal vector Y. The
researchers have introduced several transformation techniques such as Rosenblatt transformation,
Nataf transformation, etc.[6, 32].

After that, the optimal design point or what is known as the most probability point (MPP) for
failure in the standard normal space (Y-space) is searched in an iterative manner through one of the
optimization algorithms such as HL-RF, iHL-RF and etc.[15], and when the most probable point
(MPP) of failure found, the reliability index that symbolizes it has the Greek letter β is calculated
at MPP by the following formula [12, 14]

β = ∥Y∥
S.t g(Y) = 0

}
(2.1)

where Y = y1, y2, . . . , yk , is the vector of the most probable point (MPP) in the normal space, and
∥.∥ is the norm of vector:

∥Y∥ =
√

YTY =
√
y12 + y22 + · · ·+ yk2 (2.2)

and thus it can calculate the probability of structural failure pf depending on the reliability index β
as [45]

pf = Φ(−β) = 1− Φ (β)

where Φ is the cumulative distribution function:

Φ(β) =

∫ β

−∞

1√
2π

e−( 1
2
)y2dy (2.3)

It should be noted that, there are many techniques adopted by FORM in its general computational
procedures, which sometimes leads to those techniques being called: structural reliability analysis
techniques based on the idea it presented in the process of transforming correlated variables or
providing iterative improvement algorithms and the like.

In this research, FORM used transforming correlated variables technique: Rosenblatt transfor-
mation with D-vine model, accordingly, the analysis technique here are named as D-vine copula
technique which will be explained below.

2.1. D-vine copula technique
The vine copula was proposed by Joe in 1969 and developed by Bedford and Cook [3, 4], has

become one of the important mathematical tools of great importance in statistical analysis, as it
has been applied in probability and uncertainty theory, to provide solutions in multidimensional
correlation problems. It works on constructing a joint probability distribution function for corre-
lated random variables (more than two), by decomposing the joint probability density function of
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multidimensional random variables into product of the marginal probability distribution functions
and bivariate copula density functions. What is meant by vine is a graphical model structure of a
nested set of trees that describes the conditions necessary to build a suitable mathematical model
representing the multidimensional joint probability distribution that depends in its construction on
the bivariate copula functions, which are selected according to the nature of the data, therefore, the
results are more accurate [4, 21, 3, 43].

The vine copula technique was recently developed in the field of structural reliability analysis
[11, 40, 41].

There are several types of vine copula each model gives a specific way to represent multidimen-
sional joint density function, in this research, the D-vine was used in structural reliability analysis,
this technique is organized as follows: The definition of copula is given in section (2.1.1). The D-vine
copula description is introduced in section (2.1.2). The structural reliability analysis based on of
D-vine copula is explained in section (2.1.3).

2.1.1. Definition of copula
The copula is defined as the linking function between marginal distribution functions of correlated

random variables with each other to form the joint distribution function [28]. According to Sklar’s
theory [28], consider a vector X = X1, X2, · · · , , Xk of random variables with a marginal distribution
functions FX1(x1), FX2(x2), . . . , FXk

(xk), the joint distribution of X can be written as [27]

FX1,X2,··· ,Xk
(x1, x2, . . . , xk) = C (FX1 (x1) , FX2 (x2) , . . . , FXk

(xk) ; θ)

= C( u1, u2, . . . , uK ; θ)
(2.4)

where C is denoted copula; θ is parameter of the copula function; ui = FXi
(xi), i = 1, 2, . . . , k; all ui

on the interval [0, 1] a follow uniform distribution, namely, C( u1, u2, . . . , uK ; θ) is a k-dimensional
joint distribution function with marginal distribution on the interval [0, 1]k → [0, 1] that follow
uniform distribution; and C is unique if all marginal distribution FXi

(xi) are continuous.
Moreover, we get the joint probability density function through the derivation Eq.(2.4) as [35]

fX1,X2,...,Xk
(x1, x2, . . . , xk) = c (FX1 (x1) , FX2 (x2) , . . . . . . , FXk

(xk) ; θ)
k∏

i=1

fXi
(xi) (2.5)

fXi
(xi) is marginal probability density function of Xi, c (FX1 (x1) , FX2 (x2) , . . . , FXk

(xk) ; θ) is the
density function of C, which is given by the derivative of the copula function C as

c (FX1 (x1) , FX2 (x2) , . . . . . . , FXk
(xk) ; θ) = c (u1, u2, . . . , uk; θ) =

∂KC (u1, u2, . . . , uk; θ)

∂u1∂u2 . . . ∂uk

(2.6)

And the parameter θ is estimated using MLE as

θ̂ = argmax L (c12) (2.7)

where
L(c12) =

n∑
i=1

lnc12(u1i, u2i; θ) (2.8)

It is worth noting, there are several types of copula functions to constructing joint distribution;
therefore, a suitable copula must be chosen according to the study data. In this paper, according to
the study data in the application side, the type of copula that was used is Clayton.
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Where the Clayton is a type of copulas that belongs to Archimedes’ copulas proposed by Clayton
(1978), it has the formula in case bivariate as

C (u1, u2; θ)=
(
u−θ
1 + u−θ

2 − 1
)− 1

θ (2.9)
where θ is the copula parameter restricted on interval (0,∞), the parameter θ is controls the scale
of dependence strength, if θ → 0 the marginal distributions are independent, and when θ → ∞ the
copula reaches the upper bound of the Fre‘chet-Hoeffding. But the lower bound of the Fre‘chet-
Hoeffding cannot be obtained because to the restriction on the copula parameter. This indicates
Clayton copula cannot account for negative dependence, the Clayton copula has been used to study
correlated risks because it shows a strong dependence on the left tail, while the right-tail is relatively
light as shown in Figure.1 [37].

The properties of the Clayton copula as following
(i) The probability density function with two variables is

C (u1, u2; θ) =
∂2C(u1, u2; θ)

∂u1∂u2

=
∂2

∂u1∂u2

(
u−θ
1 + u−θ

2 − 1
)− 1

θ

= (θ + 1) (u1u2)
−θ−1 (u1

−θ + u2
−θ − 1

)−2− 1
θ

(2.10)

(ii) The conditional function h (u1, u2) [39]

F2/1 (x2/x1) = C2/1 (u2/u1) =
∂C(u1, u2; θ)

∂u1

= h21 (u1, u2)

= u−θ−1
1

(
u1

−θ + u2
−θ − 1

)−1− 1
θ

(2.11)

(iii) The tail dependence [36]

• The lower tail dependence is:
λL = 2−

1
θ (2.12)

• The upper tail dependence is:
λU = 0 (2.13)

Where the tail dependence among the random variables can have great influences in the field
of reliability analysis [11].

Figure 1: The scatter plots of bivariate Clayton copula function with different parameters (θ =
1, 5, 10)

(iv) The general formula of clayton copula as [28]

C (u1, u2, . . . , uk; θ) =
(
u−θ
1 + u−θ

2 + . . .+ u−θ
k − k + 1

)− 1
θ , θ > 0 (2.14)
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2.1.2. Description of the D-vine copula model
This section is organized as follows, the graphical model of D-vine is described in section (2.1.2.1),

the mathematical model and its construction are explained in sections (2.1.2.2) and (2.1.2.3) respec-
tively

2.1.2.1. Graphical model of D-vine copula
The graphical model of D-vine is structure of a nested set of trees, similar to a bunch of grapes,

this trees contains nodes and edges as illustration in Figure.(2). The following is an explanation of
the structure and contents of the graphical [18]

(i) Trees Tj , D-vine has tree {T1, T 2, . . . , Tk−1}, j = 1, 2, .., k − 1 , k is number of variables.

(ii) Nodes N, for each tree has (k − j + 1) of the nodes, which are important to determining the
labels for each edge, and that the edge in the Tj becomes a node in the Tj+1, and so on. In
tree 1 only the nodes represent the marginal distributions of the random variables.

(iii) Edges E, the nodes are linked to each other by (k − j) of the edges in each tree, the edges
represents a copula density functions in the mathematical model, where the total number of
edges is k (k − 1) / 2 which is the copula functions required in the mathematical model, for
example in Fig.2 illustrates the graphical model of D-vine copula with three variables, note
that edge label 12 represents bivariate copula density function c12, and 13/2 represents the
conditional copula density function c13/2.

Figure 2: D-vine with three variable

2.1.2.2. Mathematical model of D-vine copula
To explant the mathematical model for D-vine copula, let the multidimensional joint probability

density function
f (x1, x2, . . . , xk) of random vector X = (X1, X2, . . . , Xk), can be decomposed as [40]

f (x1, x2, . . . , xk) = f1 (x1) f2/1 (x2/x1) f3/1,2 (x3/x1, x2) . . . . . . .fk/1,2,...,k−1 (xk/x1, x2, . . . ., xk−1)
(2.15)

the conditional densities functions of correlated variables in Eq.(2.15) are obtained through copula
function, to illustrate this, let’s take a case of three random variables X1, X2, X3, the PDF decompose
as follows [1]

f (x1, x2, x3) = f1 (x1) f2/1 (x2/x1) f3/1,2 (x3/x1, x2) (2.16)
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where f1 (x1) is marginal density function of X1, and f2/1 (x2/x1) is conditional density function can
be obtained using copula function as

f2/1 (x2/x1) =
f(x1, x2)

f(x1)
=

c12 {F (x1) , F (x2) ; θ12} f(x1)f(x2)

f(x1)

= C12 {F (x1) , F (x2) ; θ12} f (x2)

(2.17)

where c12 is bivariate copula density function.
and by same way the conditional density function f3/1,2 (x3/x1, x2) can be obtained as

f3/1,2 (x3/x1, x2) =
f13/2 (x1, x3/x2)

f2/1 (x2/x1)

= c13/2

{
F1/2 (x1/x2) , F 3

2
(x3/x2); θ13/2

}
.f3/2

(
x3

x2

)
(2.18)

f3/2

(
x3

x2

)
=

f(x2, x3)

f(x2)
=

c23 {F2 (x2) , F3 (x3) ; θ23} .f (x2) .f3 (x3)

f(x2)

= c23 {F2 (x2) , F3 (x3) ; θ23} .f3 (x3) (2.19)

then, substituting Eq.(2.19) in (2.18)

f3/1,2

(
x3

x1

, x2

)
= c13/2

{
F1/2 (x1/x2) , F3/2(x3/x2); θ13/2

}
c23 {F2 (x2) , F3 (x3) ; θ23} .f3 (x3) (2.20)

where c13/2
{
F 1

2
(x1/x2) , F 3

2
(x3/x2); θ13/2

}
is conditional copula density function, F (x1/x2) and F (x3/x2)

are the conditional cumulative distribution functions, we obtain it by the derivation of the copula
function with respect to the conditional variable as

F1/2 (x1/x2) =
∂C12 (u1, u2)

∂u2

= h12 (u1, u2) (2.21)

F3/2 (x3/x2) =
∂C23 (u2, u3)

∂u2

= h32 (u3, u2) (2.22)

where h(.) represents the conditional distribution. and the function c13/2(u3/u2, u1/u2) is correspond-
ing to the conditional distribution function [26] C3/1,2(u3/u2, u1/u2). thus, substituting the Eq. (2.17)
and Eq.(2.20) in Eq. (2.16), the PDF became as

f (x1, x2, x3) = f1 (x1) .f2 (x2) .f3 (x3) .c12 {F1 (x1) , F2 (x2) ; θ12}
.c23 {F2 (x2) , F3 (x3) ; θ23} .c13/2

{
F (x1/x2) , F (x3/x2); θ13/2

} (2.23)

the joint probability density function in Eq.(2.23) is the mathematical model of three-dimensional
D-vine.

In general, the probability density function in Eq.(2.15) has D-vine model as follows

f (x1, x2, . . . , xk) =
k∏

p=1

fp(xp)×
k−1∏
j=1

k−j∏
i=1

ci,i+j/i+1,....,i+j−1{
Fi/i+1,...,i+j−1

(
xi/xi+1, . . . .., xi+j−1

)
, Fi+j/i+1,...,i+j−1

(
xi+j/xi+1, . . . .., xi+j−1

)
, θ

} (2.24)

where fp(xp), p = 1, 2, . . . , k is the marginal probability density function of Xp, ci,i+j/i+1,....,i+j−1 is
copula density function, subscript j represents tree Tj, subscript i represents edge in tree Tj.
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2.1.2.3. Construction the D-vine model
To construction the functions of D-Vine model in Section (2.1.2) illustration as follows [19].
We take the D-vine model with three-dimensional as Eq.(2.23) and Figure. 2 :

.c23 {F2 (x2) , F3(x3); θ23} .c13/2
{
F (x1/x2) , F (x3/x2); θ13/2

}
(i) Characterize the marginal density functions f1 (x1) , f2 (x2) , f3 (x3) of random variables X1, X2

and X3 , respectively, based on the study sample data (x1i, x2i, x3i), i = 1, 2, . . . , n where n is
the total number of samples.

(ii) Determined cumulative distribution functions, FX1 (x1i) = u1i, FX2 (x2i) = u2i , FX3 (x3i) =
u3i , i = 1, 2, . . . , n .

(iii) Determined which bivariate copula type in tree 1, for each the c12 {F1 (x1) , F2 (x2) ; θ12} and
c23 {F2 (x2) , F3 (x3) ; θ23}, by plotting the original data, then choosing the appropriate copulas.

(iv) Estimate the parameters of the selected copula using the original data by using MLE.

(v) Construction the bivariate conditional copula density function c13/2
{
F (x1/x2) , F (x3/x2); θ13/2

}
in tree 2 as follows,

based on the conditional function h(.) of copulas in tree 1:

h12 (u1, u2) = F (x1/x2) =
∂C (u1, u2; θ12)

∂u2

= v1 (2.25)

and
h32 (u3, u2) = F (x3/x2) =

∂C (u2, u3; θ23)

∂u2

= v2 (2.26)

Then, c13/2
{
F (x1/x2) , F (x3/x2); θ13/2

}
is transform as Eq.(2.27) through transform observations :

c13/2
(
v1, v2; θ13/2

)
(2.27)

and estimate the parameter θ13/2 by using MLE method, and then appropriate copula is chosen as
mentioned in above. That is, the estimation of copula functions for the vine model depended on the
sequential estimation of the successive tree on the previous tree, etc.

2.1.3. Structural Reliability Analysis Adoptive D-vine Copula technique
The D-vine Copula technique helped to analysis the structural reliability according to the FORM

approach, where first the Rosenblatt transform method with D-vine model was used to transform
random variables with multi-dimensional correlations from (x-space) to independent standard normal
random variables (y-space), and then the analysis is carried out [11], according to this, the trans-
formation procedure, and the reliability analysis is carried out will be explained in sections (2.1.3.1)
and (2.1.3.2) respectively.



Analysis of the structural reliability of...; 12 (2021) No. 2, 2555-2569 2563

2.1.3.1.Transformation variables
For the structural reliability analysis, the correlated random vector X = (x1, x2, . . . xk) are

transformed into independent standard normal vector Y = (y1, y2 , . . . , yk), here, by adopting the
Rosenblatt transformation with the D-vine model [11, 39, 41].
The Rosenblatt transformation as

Φ(y1) = F1 (x1)

Φ (y2) = F2/1 (x2/x1)

Φ(y3) = F3/1,2 (x3/x1,x2)

Φ (yk) = Fk/1,2,k−1(xk/x1, x2, . . . , xk−1)

(2.28)

where Φ is standard normal distribution function of Yi, and Fk/1,2,k−1(xk/x1, x2, . . . , xk−1 ) is condi-
tional distribution function of original variables Xi. But the Rosenblatt transform requires knowledge
of the joint distribution function, and since the variables (X1, X2, . . . , Xk) are correlated it is diffi-
cult to obtain the joint functions, therefore, the D-vine model was used, for its ability to provide
the joint distribution functions as well as the conditional functions required in the transformation,
as explained in Sections (2.1.2.2) and (2.1.2.3), then the transformation process will be as follows
In a three-dimensional case,
let F1 (x1) = u1, F2 (x2) = u2 , F3 (x3) = u3; then, obtained Y = T (X) as:

(i)

Φ (y1) = F1 (x1) = u1; then, y1 = Φ−1 ( u1) (2.29)

(ii)

Φ (y2) = F2/1 (x2/x1) =
∂C12 (F1 (x1) , F2 (x2))

∂F1 (x1)
=

∂C12 (u1, u2; θ12)

∂u1

= h21 (u1, u2) ; then,

y2 = Φ−1 (h21 (u1, u2) ) (2.30)

(iii)

Φ (y3) = F 3
1,2
(x3/x1,x2) =

∂C13/2

(
F3/2 (x3/x2) , F1/2 (x1/x2)

)
∂F1/2 (x1/x2)

= h3/2,1/2((h32 (u3 , u2) , (h12 (u1 , u2)),

then

y3 = Φ−1
(

h3/2,1/2((h32 (u3 , u2) , (h12 (u1 , u2))
)

(2.31)

where Φ−1 (.) is inverse CDF of standard normal variable Yi, h12 (u1, u2) and
h3/2,1/2((h32 (u3 , u2) , (h12 (u1 , u2)) are conditional copula function.

Also, the inverse transformation is performed to obtain vector X corresponding to vector Y based
on the above , X = T−1X as

(i) description From Eq.(2.29); then,
x1 = F1

−1(Φ (y1)) (2.32)
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(ii) description From Eq.(2.30); then, u2 = h−1
21 (Φ (y2) , u1) ; and u2 = F2 (x2) then,

x2 = F−1
2 (h−1

21 (Φ (y2) , u1) (2.33)

(iii) description From Eq.(2.31); then, u3 = h−1
32 (h

−1
3/2,1/2( Φ (y3) , h12 (u1 , u2)), u2) , and u3 = F3 (x3)

;then,
X3 = F−1

3 (h−1
32 (h

−1
3/2,1/2( Φ (y3) , h12 (u1 , u2)), u2)) (2.34)

where F−1
Xi

(.) is invers cdf of Xi , h−1(., .) invers function of h(., .).

2.1.3.2. Structural reliability analysis
In this section, the procedure for reliability analysis is explained adopting algorithm improved HL-

RF (IHL-RF) with D-vine copula [11], where the IHL-RF is one of the common iterative algorithm
applied in structural reliability analysis to obtain the most probable point (MPP) in standard normal
space (Y-space) according to the technique used in the reliability analysis process, as there are
techniques due to of their computational complex furcation require convergence and efficiency in
iterative steps, in IHL-RF this is done by controlling the step size α when search of the MPP
for calculating the reliability index β and then obtain the probability of structural failure pf [12].
Accordingly, the working steps of the analysis algorithm are explained in Section (2.1.3.2.2).

But before that, the gradient vector of the performance function ∇g(Y) that is fundamental to
the analysis process, will be explained in the section (2.1.3.2.1).

2.1.3.2.1. Computing the gradient vector
The gradient vector of the performance function ∇g(Y) of standard normal vector Y calculate

as [11]
∇g (Y) = JT

XY∇G(X) (2.35)
where ∇G(X) is gradient vector of the performance function of original vector X:

∇G(X) =

{
∂G

∂x1

,
∂G

∂x2

, . . . . . . ,
∂G

∂xk

}
(2.36)

JXY =
[
∂xi

∂yi

]
k×k

is the Jacobean matrix obtained through the inverse of theJYX, where the JYX can
be obtained by differentiating both sides of the Eq.(2.28) as [11, 31]

JYX =

[
∂yi
∂xi

]
k×k

=

 0 i < j
1

φ(yi)
fi/1,...,i−1 (xi /x1, x2, .., xi−1) i = j
1

φ(yj)

∂Fi/1,..i−1(xi /x1,x2,..,xi−1)

∂xi
i > j

 , (2.37)

the JYX can be illustration with three variables as [11]

JYX =


f1(x1)
φ(y1)

0 0
1

φ(y2)

∂F2/1(x2/x1)

∂x1

f2/1(x2/x1)

φ(y2)
0

1
φ(y3)

∂F3/1,2(x3/x1,x2)

∂x1

1
φ(y3)

∂F3/1,2(x3/x1,x2)

∂x2

f3/1,2(x3/x1,x2)

φ(y3)

 (2.38)

where the conditional functions of the JYX are obtained according to the D-vine copula model in
section (2.1.2.2).

After obtaining JYX, the JXY is obtained as

JXY = J−1
YX (2.39)
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2.1.3.2.2. Algorithm of Structural reliability analysis
The algorithm of Structural reliability analysis to calculate the probability of structural failure

as
(i) Definition of the performance function textbfG(X).

(ii) transformation the correlated random variables from (X- space) into the independent standard
(Y-space) according to Eqs.(2.29), (2.30) and (2.31).

(iii) Based on inverse transformation, can be obtain vector X corresponding to vector Y by Eqs.(2.32),
(2.33) and (2.34) and then, substituting these equations into the performance function G(X)
for each random variableXi, thus, G(X) transformed into g (Y) of independent standard nor-
mal vector Y:

G(X) g(T−1(X)−−−−−→ g(Y) (2.40)

(iv) Set s = 0, where s is iteration.

(v) Select an initial point of vector Xs, set Xs = µX ,where µX is vector mean of original variables.

(vi) Compute points of vector Ys in standard normal space, by Eq. (2.29), (2.30) and (2.31).

(vii) Compute value of Performance function g(Y) at Ys .

(viii) Compute gradient vector ∇g (Y) by Eq.(2.35) at Xs and Ys

(ix) Obtain most probable point MPP as:
Ys+1 = Ys + α ds (2.41)

where ds is search direction, calculate as:

ds =
(∇g (Ys ))

TYs − g (Ys)

(∇g (Ys ))T∇g (Ys )
∇g (Ys )− Ys (2.42)

α is step size ,as

α =
1

2
∥Ys∥+ c |g (Ys)| (2.43)

and

c =
2 ∥Ys∥

∥∇g (Ys)∥
+ 10 (2.44)

(x) Compute vector Xs+1 corresponding to vector Ys+1.

(xi) If ∥Xs+1 − Xs∥ ≤ ε where ε is the permissible error(ε = 10−6); then, go to step (xii). otherwise,
s = s+ 1, go to step (v)

(xii) Calculated reliability index as :
β =∥ YM+1 ∥ (2.45)

and then probability of structural failure obtained as:

pf = Φ(−β) (2.46)

(xiii) Stop
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3. Case study

3.1. Introduction
This research aims to find out the effect of G.U.M mouthwash on cured and re-cured Visible Light

Cured (VLC) composite filling material (Smile USA, shade A2) through the extent to which their
surface hardness and dimensional geometric (thickness and diameter) are affected when using G.U.M
mouthwash. The study established in the dental lab, Department of Prosthetic Dental Technology,
College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq

For the purpose of achieving the aim of the research, the structural reliability analysis was per-
formed to obtain the probability of a structural failure pf for the dental filling by using the analysis
technique D-Vin copula referred to in Section (2).

3.2. Experiment description
To evaluate the effect of mouthwash on the light- cured composite filling material, this is through

the extent to which the surface hardness and dimensional accuracy (thickness and diameter) are
affected by the mouthwash.

Accordingly, the Nano hybrid light-cured composite resin dental filling material were prepared
according to ISO/ASTM D2240 standardization [5], with the dimension of 12(±0.02) mm in diameter
and 3(±0.02)mm thickness, for a sample (n = 50). Each filling cured according to the manufacturer’s
instruction using the light-cure unit (Ivoclar-Vivadent, Germany) for 40 seconds on each filling surface
side and kept it without finishing in distilled water for 24 hours before starting the treatment with
mouthwash treatment. The G.U.M (Alcohol-free) mouthwash (Ivohealth, South Africa) was selected
for this study. The prepared fillings that were kept in distilled water for 24h immersed in G.U.M
mouthwash of 1ml for 2min/day for 4 weeks (28 days±2h), then the treated fillings re-cured for 40
seconds.

3.3. Analysis of the experiment data
In this part, the data obtained for the surface hardness and the accuracy of the geometric di-

mensions (thickness and diameter) of the filling are analyzed after conducting the experiment. To
analysis the experiment data, represent the hardness and geometric dimensions of dental filling with
the following random variables:

Diameter is X1, Hardness is X2 , Thickness is X3.
The data is analyzed to learn the general features of the data which include descriptive statistics,

and the type of distribution that the data follow
where the results of the analysis of sample (n=50) for three variables, that the three variables

have a Weibull distribution with shape parameter αi and scale parameter βi , designed as
Xi ∼ Weibull(αi, βi) , i = 1, 2, 3, as shown in Table 1, which also shows the information of the

random variables. In addition, the results of the analysis using the Pearson correlation coefficient
showed that there are strong positive correlation between the variables as shown in Table 2.

Table 1: Probability distribution and information of the random variables to experience dental filling
Variables Distribution Mean Standard

deviation
Skewness Kurtosis

X1 Weibull (152.5824,11.6386) 11.5966 0.08905 -0.427 -0.263
X2 Weibull (21.5805, 91.6015) 89.3296 5.08127 -0.554 -0.289
X3 Weibull (11.9043, 2.4480) 2.350 0.21719 -0.060 -0.349
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Table 2: The value of correlations coefficient ρij between random variables

ρij X1 X2 X3

X1 1 0.815 0.919
X2 0.815 1 0.829
X3 0.919 0.829 1

3.4. Structural reliability analysis
In this section, the structural reliability is analyzed to obtain the probability of a structural

failure pf for the dental filling. In the structural reliability analysis, the performance function G(X)
must first be determined for the basic design variables, in this research, the basic random variables
(Diameter X1, Hardness X2, Thickness X3) are formulated by using the following performance
function

G (X) =
3∑

i=1

Xi −
3∑

i=1

MXi
(3.1)

then, to obtain the probability of a structural failure pf , the technique referred to in Section (2)
were used, the Table (2) showed that there is a multidimensional correlation between the variables
involved in the design studied, where that techniques work to remove the correlation statistically
and standardized the space of variables, then the analysis performed. The computational work was
carried out by using the MATLAB program.
The analysis results listed in Table (3) were obtained, and interpreted as follows:

Initially in D-vine copula technique, for this experiment a three-dimensional D-vine model of was
built as a section (1.2.2. ), since all variables follow a Weibull distribution, and after studying the
types of copulas, the copula suitable is the Clayton for building the joint distributions, accordingly, for
all the copulas required in construction the D-vine model the Clayton was adopted. The parameters
of the copula functions were estimated and their values were (θ12 = 1.052 , θ13 = 1.0995 , θ13/2 =
0.9640 ).

The analysis was carried out according to the algorithm in section (2.1.3.2.2), the results were
that the reliability index is β = 0.2744 and the probability of structural failure is pf =0.3919.

Table 3: The results of the analysis techniques

Technique Most probability point (MPP)
(y1, y2, y3)

Reliability
index β

Probability of
structural
failure pf

D-vine
copula

0.0278, -0.0323, -0.2711 0.2744 0.3919

4. Conclusions

1. The concept of structural reliability analysis has become pervasive in all applied fields as long
as it is included in the quality of the work presented, and therefore when applying structural
reliability by using D-Vine copula technique in this research and calculating the probability of
structural failure, it gave an indicator based on it, was the clarify the extent of the impact of
dental filling with MGU mouthwash in laboratory experiments.
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2. Within the limits of the current study, it can be concluded that mouthwashes have shown an
effect on dental fillings according to the material from which they are made and the laboratory
operating conditions through the indicator of the probability of structural failure, but despite
this it is considered an acceptable percentage and it can be worked on clinically in the future
and resume the research on that
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