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Abstract

This paper aims to study a generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation.
We perform symmetry reduction and derive exact solutions of a generalized (2+1)-dimensional
Bogoyavlensky-Konopelchenko equation. In addition, conservation laws for the underlying equation
are constructed.
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1. Introduction

The generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation is given by [1]

pt + αpxxx + 6βpxxy + 6αpxp+ 4βpyp+ 4βpx∂
−1
x py = 0, (1.1)

where α and β are non-zero arbitrary constants while p = p(t, x, y) denotes the wave profile and the
variables t, x and y represent time and space respectively. In [2], equation (1.1) with α = 0 is also
referred to as the Calogero-Bogoyavlensky-Schiff equation. Several methods for example, the Dardoux
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transformation and the inverse scattering method have been employed to solve equation (1.1). See
for example [3, 4] and references therein. The term ∂−1

x p is a spatial antiderivative of p which is
defined through the Fourier transform by the multiplier i

ξ
and ∂−1

x =
∫
dx is the inverse scattered

transformation. When substituting ∂−1
x p = u into equation (1.1) one can obtain the equivalent form

of (1.1), namely

utx + αuxxxx + 6βuxxxy + 6αuxxux + 4βuxyux + 4βuxxuy = 0. (1.2)

Motivated by recent work in [1, 5], we revisit the (2+1)-dimensional Bogoyavlensky-Konopelchenko
equation (1.1).

The objective of this work is twofold. Firstly, we seek to establish new exact solutions [6, 7, 8] of a
generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation (1.2) using the Lie symmetry
method [9, 10, 11, 12, 13, 14, 15, 16]. Thereafter, we aim to derive low-order local conservation laws
of equation (1.2) using the invariance and multiplier approach based on the well known results that
the Euler-Lagrange operator annihilates the total divergence.

2. Symmetry analysis of equation (2)

The vector field operator

X = ξ1(t, x, y, u)
∂

∂t
+ ξ2(t, x, y, u)

∂

∂x
+ ξ3(t, x, y, u)

∂

∂y
+ η(t, x, y, u)

∂

∂u
(2.1)

is a Lie point symmetry of (1.2) if

X[4]

{
utx + αuxxxx + 6βuxxxy + 6αuxxux + 4βuxyux + 4βuxxuy = 0

}∣∣∣∣
(1.2)

= 0,

where X[4] is the fourth extension of (2.1). Expanding the above equation and splitting the mono-
mials leads to linear overdetermined system of partial differential equations. These are

ξ3x = 0, ξ1x = 0, ξ1y = 0, ξ2u = 0, ξ3u = 0, ξ1u = 0, ξ2xx = 0, ηtx = 0, ηxx = 0,

ηxu = 0, ηuu = 0, ηu + ξ2x = 0, −4βηx + ξ3t = 0, 3ξ2xy − ηyu = 0,

ξ2xy − ηyu = 0, 6αηx + 4βηy − ξ2t = 0, 4βηxy + ηtu − ξ2tx = 0,

4βξ2y − 3αξ3y + 3αξ2x = 0, ξ1t − ξ3y + ηu − ξ2x = 0, βξ2y − αξ3y + αηu + 2αξ2x = 0.

Solving the above systems of partial differential equations prompt the following two cases.
Case 1. α ̸= −β
In this case equation (1.2) admits six Lie point symmetries, namely

X1 =
∂

∂t
, X2 = (−αy + 2βx)

∂

∂u
+ 8αβt

∂

∂x
+ 8β2t

∂

∂y
,

X3 = 3t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
, X4 =

α

(α + β)

∂

∂x
+

β

(α + β)

∂

∂y
,

X5 = 4p(t)β
∂

∂x
+ yp′(t)

∂

∂u
, X6 = q(t)

∂

∂u
.

Case 2. α = −β
Again equation (1.2) has six symmetries. These are

X1 =
∂

∂t
, X2 =

∂

∂y
, X3 = 3t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
,

X4 = (2x+ 3y)
∂

∂u
+ 8tβ

∂

∂y
, X5 = 4p(t)β

∂

∂x
+ yp′(t)

∂

∂u
, X6 = q(t)

∂

∂u
.
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2.1. Symmetry reductions of (1.2)

In this section we construct symmetry reductions and exact solutions of equation (1.2). Firstly,
we consider Case 1 when α ̸= −β. Here we get the following subcases.

Case 1.1.
We begin with X4 which transform (1.2) into a partial differential equation in two independent

variables. The symmetry X4 yields the following three invariants:

f = t, g = −αy − βx

β
, ϕ = u.

Using the above invariants, we then transform equation (1.2) into

ϕfg − 2αϕggϕg = 0. (2.2)

The Lie point symmetries of equation (2.2) are

Υ1 = 2fα
∂

∂g
− g

∂

∂ϕ
, Υ2 = 4f 2α

∂

∂f
+ 4fgα

∂

∂g
− g2

∂

∂ϕ
, Υ3 =

∂

∂g
,

Υ4 = g
∂

∂g
+ 2ϕ

∂

∂ϕ
Υ5 =

∂

∂f
, Υ6 = f

∂

∂f
− ϕ

∂

∂ϕ
, Υ7 = G(f)

∂

∂ϕ
.

Considering a linear combination µΥ3 +Υ5, one obtains the invariants

z =
µf − g

µ
, Ψ = ϕ

and this leads to following nonlinear ordinary differential equation

2αΨ′′(z)Ψ′(z)− µ2Ψ′′(z) = 0, (2.3)

whose solution is

Ψ(z) = C1z + C2, (2.4)

where C1 and C2 are constants of integration. Using equation (2.4) and reverting back into the
original variables, the group-invariant solution of equation (1.2) is

u(t, x, y) =
βµC1t+ αC1y − βC2x+ βµC2

βµ
. (2.5)

Case 1.2.
We now consider Υ6 and one obtains the following invariants

z = g, ψ = fϕ.

Employing these invariants, equation (2.2) reduces to the following nonlinear ordinary differential
equation

2αψ′′(z)ψ′(z) + ψ′(z) = 0. (2.6)

The solution of equation (2.6) is

ψ(z) = −1

4

z2

α
+ C1z + C2, (2.7)
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where C1 and C2 are constants. Invoking equation (2.7) and reverting back into the original variables,
the group-invariant solution of equation (1.2) is given by

u(t, x, y) =
1

4

−4αC1(αy−βx)
β

+ 4αC2 − (αy−βx)2

β2

αt
. (2.8)

Case 1.3.
We now choose Υ4 and one gets the following invariants

z = f, Ψ =
ϕ

g2

and this leads to the nonlinear ordinary differential equation

−4αΨ2(z) + Ψ′(z) = 0, (2.9)

whose solution is

Ψ(z) =
1

(−4αz + C1)
, (2.10)

where C1 an integration constant. Employing (2.10) and relapsing back into the original variables,
we get

u(t, x, y) =
(αy − βx)2

β2(−4αt+ C1)
, (2.11)

as the solution of equation (1.2).
Case 1.4.
Choosing Υ2, one obtains two invariants, namely

z =
f

g
, ψ =

1

4

4αfϕ+ g2

αf
, (2.12)

which gives the following nonlinear ordinary differential equation

zψ′′(z)ψ′(z) + 2(ψ′(z))2 = 0, (2.13)

whose solutions is

ψ(z) = C1 +
C2

z
. (2.14)

Consequently, we conclude that the solution of equation (1.2) is

u(t, x, y) =
1

4

4αC1t− 4αC2(αy−βx)
β

− (αy−βx)2

β2

αt
, (2.15)

where C1 and C2 are constants.
Case 1.5.
Taking X2, equation (1.2) transforms to a partial differential equation in two independent vari-

ables. The symmetry X2 yields the following three invariants, viz.,

f = t, g = −αy − βx

β
, ϕ =

1

16

16β2tu+ 3αy2 − 4βxy

β2t
.
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By employing the above invariants, we transform equation (1.2) into

2αfϕggϕg − fϕfg − gϕgg − ϕg = 0.

The Lie point symmetries of the above equation are

Υ1 = g
∂

∂g
+ 2ϕ

∂

∂ϕ
, Υ2 = 4α

∂

∂f
− g2

f 2

∂

∂ϕ
, Υ3 = 2f

∂

∂f
+ g

∂

∂g
,

Υ4 = f 2 ∂

∂f
+ fg

∂

∂g
, Υ5 = 2α

∂

∂g
+
g

f

∂

∂ϕ
, Υ6 = f

∂

∂g
, Υ7 =

H(f)

f 2

∂

∂ϕ
.

Now considering symmetry Υ1, one gets two invariants, namely

z = f, Ψ =
ϕ

g2

and this leads to the following nonlinear ordinary differential equation

−4αz(Ψ)2 + zΨ′(z) + 2Ψ = 0, (2.16)

whose solution is

Ψ(z) =
1

z(zC1 + 4α)
, (2.17)

where C1 is a constant of integration. As a results, we conclude that the group-invariant solution of
equation (1.2) is

u(t, x, y) = − 1

16

3αty2C1 − 4βtxyC1 − 4α2y2 + 16αβxy − 16β2x2

β2t(tC1 + 4α)
. (2.18)

Case 1.6.
We now work with Υ3 and we obtain two invariants, namely

z =
f

g2
, ψ = ϕ

and this yileds the following nonlinear ordinary differential equation

8αz3ψ′′(z)ψ′(z) + 12αz2(ψ′(z))2 + zψ′′(z) + ψ′(z) = 0, (2.19)

whose solution is

ψ(z) = − C1

−1 +
√
16αC1z + 1

− C1

1 +
√
16αC1z + 1

− C1 ln

(
1 +

√
16αC1z + 1

)
+C1 ln

(
−1 +

√
16αC1z + 1

)
+

1

8αz
+ C2, (2.20)

where C1 and C2 are arbitrary constants of integration. Thus, the group-invariant solution of equation
(1.2) is given by

u(t, x, y) =

[
− 1

(αy − βx)2
[
− 1 +

√
16αβ2C1t
(αy−βx)2

+ 1

](
1 +

√
16αβ2C1t
(αy−βx)2

+ 1

)]
×
{
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C1

(
16C1 ln

[
1 +

√
16αβ2C1t

(αy − βx)2
+ 1

]
αβ2t−

16C1 ln

[
− 1 +

√
16αβ2C1t

(αy − βx)2
+ 1

]
αβ2t+ 2α2y2

√
16αβ2C1t

(αy − βx)2
+ 1

−4αβxy

√
16αβ2C1t

(αy − βx)2
+ 1 + 2β2x2

√
16αβ2C1t

(αy − βx)2
+ 1

−16αβ2C2t+ α2y2 − 2β2x2
)}

. (2.21)

Case 1.7.
Considering the scalings symmetry X3, we convert equation (1.2) into a partial differential equa-

tion in two independent variables. This symmetry X3 yields the following three invariants, namely

f =
y

x
, g =

t

x3
, ϕ = ux.

Employing the above invariants, equation (1.2) reduces to the following nonlinear partial differential
equation

−3gϕgg − fϕfg − βf 3ϕffff − 36βfϕff + 81αg4ϕgggg + αf 4ϕffff + 1692αg2ϕgg

−27βg3ϕfggg + 96αfϕf − 324αg2(ϕg)
2 − 24βf 2(ϕf )

2 + 24βf(ϕf )
2 + 816αgϕg

−12βf 2ϕfff − 162βg2ϕfgg + 72αf 2ϕff − 186βgϕfg + 756αg3ϕggg + 16βϕϕf+

16αf 3ϕfff + 24αϕ− 24βϕf − 12αϕ2 − 4ϕg + 36βg2ϕfgϕg + 108αg3ϕfggg−
162αg3ϕgϕgg − 36αfπϕf − 144αgϕϕg + 96βgϕfϕg − 6αf 3ϕfϕff − 6αf 2ϕϕff+

8βf 2ϕfϕff + 4βfϕϕff + 12αf 3gϕfffg + 180αf 2gϕffg − 9βf 2gϕfffg + 744αfgϕfg

−90βfgϕffg + 12βgϕϕfg + 54αf 2g2ϕffgg + 648αfg2ϕfgg − 27βfg2ϕffgg−
54αg2ϕϕgg + 36βg2ϕfϕgg − 54αfg2ϕfϕgg − 108αfg2ϕgϕfg − 36αf 2gϕfϕfg−

18αf 2gϕffϕg − 36αfgϕϕfg + 36βfgϕfϕfg + 12βfgϕffϕg − 180αfgϕfϕg = 0. (2.22)

Consequently, we conclude that the group-invariant solution of equation (1.2) is

u(t, x, y) =
1

x
ϕ

(
y

x
,
t

x3

)
, (2.23)

where ϕ is any solution of equation (2.22).
Lastly, we consider Case 2 when α = −β. Here we obtain the following subcases.
Case 2.1.
Taking the linear combination of the translation symmetries Γ = X1+X2 and thereafter, solving

the characteristics equations yields the following three invariants:

f = x, g = t− y, ϕ = u.

Employing the above invariants, we transformed equation (1.2) into a partial differential equation
with two independent variables, namely

ϕfg − βϕffff − βϕfffg − 6βϕffϕf − 4βϕfgϕf − 4βϕffϕg = 0.
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The above equation admits the following Lie point symmetries

Υ1 = 4fβ
∂

∂f
+ 4gβ

∂

∂g
+ (−4βϕ+ 2f − 3g)

∂

∂ϕ
, Υ2 =

∂

∂f
, Υ3 =

∂

∂f
+

∂

∂g
, Υ4 =

∂

∂ϕ
.

Considering a linear combination of Υ3 +Υ4, one obtains the following the invariants

z = f − g, Ψ = −g + ϕ

and this leads to the following nonlinear ordinary differential equation
2βΨ′′(z)Ψ′(z)− 4βΨ′′(z)−Ψ′′(z) = 0, whose solution is Ψ(z) = 2z + 1

2
z
β
+ C1.

Consequently, we conclude that the group-invariant solution of equation (1.2) is

u(t, x, y) =
1

2

2βC1 − 2βt+ 4βx+ 2βy − t+ x+ y

β
, (2.24)

where C1 is a constant of integration.
Case 2.2.
We now choose the combination of symmetries Γ = X1 +X2. Solving the Lagrange system, we

get the following three invariants:

f = x, g = t− y, ϕ = u.

Invoking the above invariants, equation (1.2) transforms into a partial differential equation, namely
ϕfg − βϕffff − βϕfffg − 6βϕffϕf − 4βϕfgϕf − 4βϕffϕg = 0,
which possess the follow Lie point symmetries

Υ1 = 4fβα
∂

∂f
+ 4gβα

∂

∂g
+ (−βϕ+ 2f − 3g)

∂

∂ϕ
, Υ2 = α

∂

∂f
, Υ3 =

∂

∂f
+

∂

∂g
, Υ4 =

∂

∂ϕ
.

Considering Υ3, one obtains the invariants

z = f − g, ψ = ϕ

and this leads to following nonlinear ordinary differential equation
2βψ′′(z)ψ′(z)− ψ′′(z) = 0, whose solution is ψ(z) = 1

2
z
β
+ C1.

Therefore the group-invariant solution of equation (1.2) is

u(t, x, y) =
1

2

2βC1 − t+ x+ y

β
, (2.25)

where C1 is an integration constant.
Case 2.3.
Taking symmetries, Γ = X4, we get the following three invariants:

f = t, g = x, ϕ =
1

16

16βtu− 4xy − 3y2

βt
.

Using the above invariants, equation (1.2) transformed into
6βfϕggϕg + βfϕgggg − fϕfg − gϕgg − ϕg = 0.
The Lie point symmetries of the above equation are

Υ1 = 12β
∂

∂f
− g2

f 2

∂

∂ϕ
,Υ2 = 3f

∂

∂f
+ g

∂

∂g
− ϕ

∂

∂ϕ
, Υ3 = 6β

∂

∂g
+
g

f

∂

∂ϕ
,Υ4 = f

∂

∂g
,Υ5 =

R(f)

f 2

∂

∂ϕ
.
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Using Υ2, one obtains the invariants

z =
f

g3
, Ψ = gϕ

and this leads to following nonlinear ordinary differential equation

81βz5Ψ′′′′(z)− 162βz4Ψ′(z)Ψ′′(z) + 756βz4Ψ′′′(z)− 54βz3Ψ(z)Ψ′′(z)

−324βz3(Ψ′(z))2 + 1692βz3Ψ′′(z)− 144βz2Ψ(z)Ψ′(z) + 816βz2Ψ′(z)

−12βz(Ψ(z))2 − 6z2Ψ′′(z) + 24βzΨ(z)− 11zΨ′(z)−Ψ(z) = 0. (2.26)

Consequently, the group-invariant solution of equation (1.2) is

u(t, x, y) =
xy

4βt
+

3y2

16βt
+

Ψ(z)

x
, z =

t

x3
, (2.27)

where Ψ(z) is any solution of equation (2.26).
Case 2.4.
Considering the linear combination of the translation symmetries, Γ = X1 +X2 and solving the

characteristics equations, yields the following three invariants:

f = x, g = t− y, ϕ = u.

Employing the above invariants, equation (1.2) becomes
ϕfg − βϕffff − βϕfffg − 6βϕffϕf − 4βϕfgϕf − 4βϕffϕg = 0.
The Lie point symmetries of the above equation are given by

Υ1 = 4fβ
∂

∂f
+ 4gβ

∂

∂g
+ (−4βϕ+ 2f − 3g)

∂

∂ϕ
, Υ2 =

∂

∂f
,Υ3 =

∂

∂f
+

∂

∂g
, Υ4 =

∂

∂ϕ
.

Considering Υ1, one obtains the invariants

z =
f

g
, ψ =

1

8

g(8βϕ− 2f + 3g)

β

and this leads to a nonlinear ordinary differential equation, namely

8zψ′′(z)ψ′(z) + zψ′′′′(z) + 4ψ(z)ψ′′(z)− 6ψ′′(z)ψ′(z) + 8(ψ′(z))2 − ψ′′′′(z) + 4ψ′′′(z) = 0. (2.28)

Therefore we conclude that the group-invariant solution of equation (1.2) is

u(t, x, y) =
x

4β
− 3(t− y)

8β
+
ψ(z)

t− y
, z =

x

t− y
(2.29)

with ψ(z) being any solution of equation (2.28).
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3. Conservation laws

In this section we derive the low-order conservation laws of the equation (1.2) using the multiplier
approach. Here we will consider the multiplier of the second order, namely
Λ = Λ(t, x, y, u, ut, ux, uy, utx, uty, uxy, utt, uxx, uyy). The determining equation for the multiplier Λ is

δ

δu

{
(Λ)(utx + αuxxxx + 6βuxxxy + 6αuxxux + 4βuxyux + 4βuxxuy)

}
= 0.

Expanding the above equation with the aid of Maple computer algebra package prompts the following
second order multiplier Λ, namely

Λ = 4βk1(t)ux + k′1(t)y + C1ux + k2(t), (3.1)

where k1(t), k2(t) are arbitrary functions of t and β, C1 are arbitrary constants. Corresponding to
the above second order multiplier Λ, we obtain the following conservation laws

T t
1 =

1

2
ux

2,

T x
2 = −4

3
βuuxuxy + 2αu3x +

4

3
βu2xuy + 2βuxuy + αuxuxxx + 3βuyuxxx −

1

2
αu2xx

−3βuxxuxy + 3βuxuxxy + 3βuuxxxy + 2βuuxy,

T y
3 =

4

3
βuuxuxx − 2βuuxx − 3βuuxxxx;

T t
1 = ux (2βF (t)ux + F ′(t)y) ,

T x
2 = −16

3
β2uuxuxy + 8αβF (t)u3x +

16

3
β2F (t)u2xuy + 12β2uuxxxy + 8β2F (t)uuxy

+4αβF (t)uxuxxx + 12β2F (t)uxuxxy + 8β2F (t)uxuy − 2αβF (t)uxx
2 − 12β2F (t)uxxuxy

+12β2F (t)uyuxxx − 2βF ′(t)yuuxy + 3αux
2F ′(t)y + 2βF ′(t)uxuyy − 2βF ′(t)uux +

αF ′(t)yuxxx + 6βF ′(t)yuxxy + 4βF ′(t)yuy − F ′′(t)yu,

T y
3 =

2

3
βu (8βF (t)uxuxx − 12βF (t)uxx − 18βF (t)uxxxx + 3F ′(t)yuxx) ;

T t
1 = F (t)ux,

T x
2 = −2βF (t)uuxy + 3αF (t)u2x + 2βF (t)uxuy + αF (t)uxxx + 6βF (t)uxxy

+4βF (t)uy − F ′(t)u,

T y
3 = 2βF (t)uxx − 2βuuxx.

associated with C1, k1(t) and k2(t) respectively. Here we observe that due to the presence of the
arbitrary functions in the conservation laws, one can generate an infinite number of conservation
laws for equation (1.2).

4. Concluding remarks

In this paper new exact solutions and conservation laws were computed for a generalized (2+1)-
dimensional Bogoyavlensky-Konopelchenko equation (1.2). The Lie symmetry method was used to
derive exact solutions and the multiplier method was employed to compute conservation laws. The
generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation (1.2) consists of an infinite
number of local conservation laws due to the arbitrary elements embedded in the conserved quantities.
Furthermore, higher order conservation laws for a generalized (2+1)-dimensional Bogoyavlensky-
Konopelchenko equation can be derived by increasing the order of the multiplier. However, this
remains to be studied elsewhere.
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