Int. J. Nonlinear Anal. Appl.
Volume 12, Special Issue, Winter and Spring 2021, 709-718
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.5413

Conservation laws and exact solutions of a generalized $(2+1)$-dimensional Bogoyavlensky-Konopelchenko equation

T.J. Podile ${ }^{\mathrm{a}}$, B. Muatjetjeja ${ }^{\mathrm{a}, \mathrm{b}}, ~ A . R . ~ A d e m ~{ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Departement of Mathematical Sciences, North-West University Private Bag X 2046 Mmabatho 2735, Republic of South Africa
${ }^{b}$ Department of Mathematics Faculty of Science, University of Botswana Private Bag 22, Gaborone, Botswana
${ }^{\text {c D Department of Mathematical Sciences, University of South Africa, UNISA 0003, Republic of South Africa }}$

(Communicated by Hossein Jafari)

Abstract

This paper aims to study a generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation. We perform symmetry reduction and derive exact solutions of a generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation. In addition, conservation laws for the underlying equation are constructed.

Keywords: Symmetry reduction, Exact solutions, Conservation laws
2010 MSC: 35G20; 35C05; 35C07

1. Introduction

The generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation is given by [1]

$$
\begin{equation*}
p_{t}+\alpha p_{x x x}+6 \beta p_{x x y}+6 \alpha p_{x} p+4 \beta p_{y} p+4 \beta p_{x} \partial_{x}^{-1} p_{y}=0 \tag{1.1}
\end{equation*}
$$

where α and β are non-zero arbitrary constants while $p=p(t, x, y)$ denotes the wave profile and the variables t, x and y represent time and space respectively. In [2], equation (1.1) with $\alpha=0$ is also referred to as the Calogero-Bogoyavlensky-Schiff equation. Several methods for example, the Dardoux

[^0]transformation and the inverse scattering method have been employed to solve equation (1.1). See for example [3, 4] and references therein. The term $\partial_{x}^{-1} p$ is a spatial antiderivative of p which is defined through the Fourier transform by the multiplier $\frac{i}{\xi}$ and $\partial_{x}^{-1}=\int d x$ is the inverse scattered transformation. When substituting $\partial_{x}^{-1} p=u$ into equation (1.1) one can obtain the equivalent form of (1.1), namely
\[

$$
\begin{equation*}
u_{t x}+\alpha u_{x x x x}+6 \beta u_{x x x y}+6 \alpha u_{x x} u_{x}+4 \beta u_{x y} u_{x}+4 \beta u_{x x} u_{y}=0 . \tag{1.2}
\end{equation*}
$$

\]

Motivated by recent work in [1, 5], we revisit the (2+1)-dimensional Bogoyavlensky-Konopelchenko equation (1.1).

The objective of this work is twofold. Firstly, we seek to establish new exact solutions [6, 7, 8] of a generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation (1.2) using the Lie symmetry method [9, 10, 11, 12, 13, 14, 15, 16]. Thereafter, we aim to derive low-order local conservation laws of equation (1.2) using the invariance and multiplier approach based on the well known results that the Euler-Lagrange operator annihilates the total divergence.

2. Symmetry analysis of equation (2)

The vector field operator

$$
\begin{equation*}
\mathbf{X}=\xi^{1}(t, x, y, u) \frac{\partial}{\partial t}+\xi^{2}(t, x, y, u) \frac{\partial}{\partial x}+\xi^{3}(t, x, y, u) \frac{\partial}{\partial y}+\eta(t, x, y, u) \frac{\partial}{\partial u} \tag{2.1}
\end{equation*}
$$

is a Lie point symmetry of (1.2) if

$$
\left.\mathbf{X}^{[4]}\left\{u_{t x}+\alpha u_{x x x x}+6 \beta u_{x x x y}+6 \alpha u_{x x} u_{x}+4 \beta u_{x y} u_{x}+4 \beta u_{x x} u_{y}=0\right\}\right|_{\sqrt{1.2]}}=0
$$

where $\mathbf{X}^{[4]}$ is the fourth extension of 2.1 . Expanding the above equation and splitting the monomials leads to linear overdetermined system of partial differential equations. These are

$$
\begin{aligned}
& \xi_{x}^{3}=0, \xi_{x}^{1}=0, \xi_{y}^{1}=0, \xi_{u}^{2}=0, \xi_{u}^{3}=0, \xi_{u}^{1}=0, \xi_{x x}^{2}=0, \eta_{t x}=0, \eta_{x x}=0 \\
& \eta_{x u}=0, \eta_{u u}=0, \eta_{u}+\xi_{x}^{2}=0,-4 \beta \eta_{x}+\xi_{t}^{3}=0,3 \xi_{x y}^{2}-\eta_{y u}=0 \\
& \xi_{x y}^{2}-\eta_{y u}=0,6 \alpha \eta_{x}+4 \beta \eta_{y}-\xi_{t}^{2}=0,4 \beta \eta_{x y}+\eta_{t u}-\xi_{t x}^{2}=0 \\
& 4 \beta \xi_{y}^{2}-3 \alpha \xi_{y}^{3}+3 \alpha \xi_{x}^{2}=0, \xi_{t}^{1}-\xi_{y}^{3}+\eta_{u}-\xi_{x}^{2}=0, \beta \xi_{y}^{2}-\alpha \xi_{y}^{3}+\alpha \eta_{u}+2 \alpha \xi_{x}^{2}=0 .
\end{aligned}
$$

Solving the above systems of partial differential equations prompt the following two cases.
Case 1. $\alpha \neq-\beta$
In this case equation (1.2) admits six Lie point symmetries, namely

$$
\begin{aligned}
& \mathbf{X}_{1}=\frac{\partial}{\partial t}, \mathbf{X}_{2}=(-\alpha y+2 \beta x) \frac{\partial}{\partial u}+8 \alpha \beta t \frac{\partial}{\partial x}+8 \beta^{2} t \frac{\partial}{\partial y}, \\
& \mathbf{X}_{3}=3 t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}-u \frac{\partial}{\partial u}, \mathbf{X}_{4}=\frac{\alpha}{(\alpha+\beta)} \frac{\partial}{\partial x}+\frac{\beta}{(\alpha+\beta)} \frac{\partial}{\partial y}, \\
& \mathbf{X}_{5}=4 p(t) \beta \frac{\partial}{\partial x}+y p^{\prime}(t) \frac{\partial}{\partial u}, \quad \mathbf{X}_{6}=q(t) \frac{\partial}{\partial u} .
\end{aligned}
$$

Case 2. $\alpha=-\beta$
Again equation (1.2) has six symmetries. These are

$$
\begin{aligned}
& \mathbf{X}_{1}=\frac{\partial}{\partial t}, \mathbf{X}_{2}=\frac{\partial}{\partial y}, \mathbf{X}_{3}=3 t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}-u \frac{\partial}{\partial u} \\
& \mathbf{X}_{4}=(2 x+3 y) \frac{\partial}{\partial u}+8 t \beta \frac{\partial}{\partial y}, \mathbf{X}_{5}=4 p(t) \beta \frac{\partial}{\partial x}+y p^{\prime}(t) \frac{\partial}{\partial u}, \mathbf{X}_{6}=q(t) \frac{\partial}{\partial u} .
\end{aligned}
$$

2.1. Symmetry reductions of (1.2)

In this section we construct symmetry reductions and exact solutions of equation (1.2). Firstly, we consider Case 1 when $\alpha \neq-\beta$. Here we get the following subcases.

Case 1.1.

We begin with \mathbf{X}_{4} which transform (1.2) into a partial differential equation in two independent variables. The symmetry $\mathbf{X}_{\mathbf{4}}$ yields the following three invariants:

$$
f=t, \quad g=-\frac{\alpha y-\beta x}{\beta}, \quad \phi=u .
$$

Using the above invariants, we then transform equation (1.2) into

$$
\begin{equation*}
\phi_{f g}-2 \alpha \phi_{g g} \phi_{g}=0 . \tag{2.2}
\end{equation*}
$$

The Lie point symmetries of equation (2.2) are

$$
\begin{gathered}
\mathbf{\Upsilon}_{\mathbf{1}}=2 f \alpha \frac{\partial}{\partial g}-g \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{2}}=4 f^{2} \alpha \frac{\partial}{\partial f}+4 f g \alpha \frac{\partial}{\partial g}-g^{2} \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{3}}=\frac{\partial}{\partial g}, \\
\mathbf{\Upsilon}_{\mathbf{4}}=g \frac{\partial}{\partial g}+2 \phi \frac{\partial}{\partial \phi} \quad \mathbf{\Upsilon}_{\mathbf{5}}=\frac{\partial}{\partial f}, \quad \mathbf{\Upsilon}_{\mathbf{6}}=f \frac{\partial}{\partial f}-\phi \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{7}}=G(f) \frac{\partial}{\partial \phi} .
\end{gathered}
$$

Considering a linear combination $\mu \Upsilon_{\mathbf{3}}+\Upsilon_{5}$, one obtains the invariants

$$
z=\frac{\mu f-g}{\mu}, \quad \Psi=\phi
$$

and this leads to following nonlinear ordinary differential equation

$$
\begin{equation*}
2 \alpha \Psi^{\prime \prime}(z) \Psi^{\prime}(z)-\mu^{2} \Psi^{\prime \prime}(z)=0 \tag{2.3}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
\Psi(z)=C_{1} z+C_{2}, \tag{2.4}
\end{equation*}
$$

where C_{1} and C_{2} are constants of integration. Using equation (2.4) and reverting back into the original variables, the group-invariant solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=\frac{\beta \mu C_{1} t+\alpha C_{1} y-\beta C_{2} x+\beta \mu C_{2}}{\beta \mu} . \tag{2.5}
\end{equation*}
$$

Case 1.2.

We now consider $\boldsymbol{\Upsilon}_{\mathbf{6}}$ and one obtains the following invariants

$$
z=g, \quad \psi=f \phi
$$

Employing these invariants, equation (2.2) reduces to the following nonlinear ordinary differential equation

$$
\begin{equation*}
2 \alpha \psi^{\prime \prime}(z) \psi^{\prime}(z)+\psi^{\prime}(z)=0 . \tag{2.6}
\end{equation*}
$$

The solution of equation (2.6) is

$$
\begin{equation*}
\psi(z)=-\frac{1}{4} \frac{z^{2}}{\alpha}+C_{1} z+C_{2} \tag{2.7}
\end{equation*}
$$

where C_{1} and C_{2} are constants. Invoking equation (2.7) and reverting back into the original variables, the group-invariant solution of equation (1.2) is given by

$$
\begin{equation*}
u(t, x, y)=\frac{1}{4} \frac{-\frac{4 \alpha C_{1}(\alpha y-\beta x)}{\beta}+4 \alpha C_{2}-\frac{(\alpha y-\beta x)^{2}}{\beta^{2}}}{\alpha t} . \tag{2.8}
\end{equation*}
$$

Case 1.3.

We now choose $\Upsilon_{\mathbf{4}}$ and one gets the following invariants

$$
z=f, \quad \Psi=\frac{\phi}{g^{2}}
$$

and this leads to the nonlinear ordinary differential equation

$$
\begin{equation*}
-4 \alpha \Psi^{2}(z)+\Psi^{\prime}(z)=0 \tag{2.9}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
\Psi(z)=\frac{1}{\left(-4 \alpha z+C_{1}\right)}, \tag{2.10}
\end{equation*}
$$

where C_{1} an integration constant. Employing (2.10) and relapsing back into the original variables, we get

$$
\begin{equation*}
u(t, x, y)=\frac{(\alpha y-\beta x)^{2}}{\beta^{2}\left(-4 \alpha t+C_{1}\right)}, \tag{2.11}
\end{equation*}
$$

as the solution of equation 1.2 .

Case 1.4.

Choosing $\Upsilon_{\mathbf{2}}$, one obtains two invariants, namely

$$
\begin{equation*}
z=\frac{f}{g}, \quad \psi=\frac{1}{4} \frac{4 \alpha f \phi+g^{2}}{\alpha f}, \tag{2.12}
\end{equation*}
$$

which gives the following nonlinear ordinary differential equation

$$
\begin{equation*}
z \psi^{\prime \prime}(z) \psi^{\prime}(z)+2\left(\psi^{\prime}(z)\right)^{2}=0, \tag{2.13}
\end{equation*}
$$

whose solutions is

$$
\begin{equation*}
\psi(z)=C_{1}+\frac{C_{2}}{z} . \tag{2.14}
\end{equation*}
$$

Consequently, we conclude that the solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=\frac{1}{4} \frac{4 \alpha C_{1} t-\frac{4 \alpha C_{2}(\alpha y-\beta x)}{\beta}-\frac{(\alpha y-\beta x)^{2}}{\beta^{2}}}{\alpha t}, \tag{2.15}
\end{equation*}
$$

where C_{1} and C_{2} are constants.

Case 1.5.

Taking $\mathbf{X}_{\mathbf{2}}$, equation (1.2) transforms to a partial differential equation in two independent variables. The symmetry $\mathbf{X}_{\mathbf{2}}$ yields the following three invariants, viz.,

$$
f=t, \quad g=-\frac{\alpha y-\beta x}{\beta}, \quad \phi=\frac{1}{16} \frac{16 \beta^{2} t u+3 \alpha y^{2}-4 \beta x y}{\beta^{2} t} .
$$

By employing the above invariants, we transform equation (1.2) into

$$
2 \alpha f \phi_{g g} \phi_{g}-f \phi_{f g}-g \phi_{g g}-\phi_{g}=0
$$

The Lie point symmetries of the above equation are

$$
\begin{aligned}
& \mathbf{\Upsilon}_{\mathbf{1}}=g \frac{\partial}{\partial g}+2 \phi \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{2}}=4 \alpha \frac{\partial}{\partial f}-\frac{g^{2}}{f^{2}} \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{3}}=2 f \frac{\partial}{\partial f}+g \frac{\partial}{\partial g}, \\
& \mathbf{\Upsilon}_{\mathbf{4}}=f^{2} \frac{\partial}{\partial f}+f g \frac{\partial}{\partial g}, \quad \mathbf{\Upsilon}_{\mathbf{5}}=2 \alpha \frac{\partial}{\partial g}+\frac{g}{f} \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{6}}=f \frac{\partial}{\partial g}, \quad \mathbf{\Upsilon}_{\mathbf{7}}=\frac{H(f)}{f^{2}} \frac{\partial}{\partial \phi} .
\end{aligned}
$$

Now considering symmetry Υ_{1}, one gets two invariants, namely

$$
z=f, \quad \Psi=\frac{\phi}{g^{2}}
$$

and this leads to the following nonlinear ordinary differential equation

$$
\begin{equation*}
-4 \alpha z(\Psi)^{2}+z \Psi^{\prime}(z)+2 \Psi=0 \tag{2.16}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
\Psi(z)=\frac{1}{z\left(z C_{1}+4 \alpha\right)}, \tag{2.17}
\end{equation*}
$$

where C_{1} is a constant of integration. As a results, we conclude that the group-invariant solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=-\frac{1}{16} \frac{3 \alpha t y^{2} C_{1}-4 \beta t x y C_{1}-4 \alpha^{2} y^{2}+16 \alpha \beta x y-16 \beta^{2} x^{2}}{\beta^{2} t\left(t C_{1}+4 \alpha\right)} \tag{2.18}
\end{equation*}
$$

Case 1.6.

We now work with $\Upsilon_{\mathbf{3}}$ and we obtain two invariants, namely

$$
z=\frac{f}{g^{2}}, \quad \psi=\phi
$$

and this yileds the following nonlinear ordinary differential equation

$$
\begin{equation*}
8 \alpha z^{3} \psi^{\prime \prime}(z) \psi^{\prime}(z)+12 \alpha z^{2}\left(\psi^{\prime}(z)\right)^{2}+z \psi^{\prime \prime}(z)+\psi^{\prime}(z)=0 \tag{2.19}
\end{equation*}
$$

whose solution is

$$
\begin{align*}
\psi(z)= & -\frac{C_{1}}{-1+\sqrt{16 \alpha C_{1} z+1}}-\frac{C_{1}}{1+\sqrt{16 \alpha C_{1} z+1}}-C_{1} \ln \left(1+\sqrt{16 \alpha C_{1} z+1}\right) \\
& +C_{1} \ln \left(-1+\sqrt{16 \alpha C_{1} z+1}\right)+\frac{1}{8 \alpha z}+C_{2}, \tag{2.20}
\end{align*}
$$

where C_{1} and C_{2} are arbitrary constants of integration. Thus, the group-invariant solution of equation (1.2) is given by

$$
\left.u(t, x, y)=\left[-\frac{1}{(\alpha y-\beta x)^{2}\left[-1+\sqrt{\frac{16 \alpha \beta^{2} C_{1} t}{(\alpha y-\beta x)^{2}}+1}\right]\left(1+\sqrt{\frac{16 \alpha \beta^{2} C_{1} t}{(\alpha y-\beta x)^{2}}+1}\right.}\right)\right] \times\{
$$

$$
\begin{align*}
& C_{1}\left(16 C_{1} \ln \left[1+\sqrt{\frac{16 \alpha \beta^{2} C_{1} t}{(\alpha y-\beta x)^{2}}+1}\right] \alpha \beta^{2} t-\right. \\
& 16 C_{1} \ln \left[-1+\sqrt{\frac{16 \alpha \beta^{2} C_{1} t}{(\alpha y-\beta x)^{2}}+1}\right] \alpha \beta^{2} t+2 \alpha^{2} y^{2} \sqrt{\frac{16 \alpha \beta^{2} C_{1} t}{(\alpha y-\beta x)^{2}}+1} \\
& -4 \alpha \beta x y \sqrt{\frac{16 \alpha \beta^{2} C_{1} t}{(\alpha y-\beta x)^{2}}+1}+2 \beta^{2} x^{2} \sqrt{\frac{16 \alpha \beta^{2} C_{1} t}{(\alpha y-\beta x)^{2}}+1} \\
& \left.\left.-16 \alpha \beta^{2} C_{2} t+\alpha^{2} y^{2}-2 \beta^{2} x^{2}\right)\right\} . \tag{2.21}
\end{align*}
$$

Case 1.7.

Considering the scalings symmetry $\mathbf{X}_{\mathbf{3}}$, we convert equation (1.2) into a partial differential equation in two independent variables. This symmetry $\mathbf{X}_{\mathbf{3}}$ yields the following three invariants, namely

$$
f=\frac{y}{x}, \quad g=\frac{t}{x^{3}}, \quad \phi=u x .
$$

Employing the above invariants, equation (1.2) reduces to the following nonlinear partial differential equation

$$
\begin{array}{r}
-3 g \phi_{g g}-f \phi_{f g}-\beta f^{3} \phi_{f f f f}-36 \beta f \phi_{f f}+81 \alpha g^{4} \phi_{g g g g}+\alpha f^{4} \phi_{f f f f}+1692 \alpha g^{2} \phi_{g g} \\
-27 \beta g^{3} \phi_{f g g g}+96 \alpha f \phi_{f}-324 \alpha g^{2}\left(\phi_{g}\right)^{2}-24 \beta f^{2}\left(\phi_{f}\right)^{2}+24 \beta f\left(\phi_{f}\right)^{2}+816 \alpha g \phi_{g} \\
-12 \beta f^{2} \phi_{f f f}-162 \beta g^{2} \phi_{f g g}+72 \alpha f^{2} \phi_{f f}-186 \beta g \phi_{f g}+756 \alpha g^{3} \phi_{g g g}+16 \beta \phi \phi_{f}+ \\
16 \alpha f^{3} \phi_{f f f}+24 \alpha \phi-24 \beta \phi_{f}-12 \alpha \phi^{2}-4 \phi_{g}+36 \beta g^{2} \phi_{f g} \phi_{g}+108 \alpha g^{3} \phi_{f g g g}- \\
162 \alpha g^{3} \phi_{g} \phi_{g g}-36 \alpha f \pi \phi_{f}-144 \alpha g \phi \phi_{g}+96 \beta g \phi_{f} \phi_{g}-6 \alpha f^{3} \phi_{f} \phi_{f f}-6 \alpha f^{2} \phi \phi_{f f}+ \\
8 \beta f^{2} \phi f \phi_{f f}+4 \beta f \phi \phi_{f f}+12 \alpha f^{3} g \phi_{f f f g}+180 \alpha f^{2} g \phi_{f f g}-9 \beta f^{2} g \phi_{f f f g}+744 \alpha f g \phi_{f g} \\
-90 \beta f g \phi_{f f g}+12 \beta g \phi \phi_{f g}+54 \alpha f^{2} g^{2} \phi_{f f g g}+648 \alpha f g^{2} \phi_{f g g}-27 \beta f g^{2} \phi_{f f g g}- \\
54 \alpha g^{2} \phi \phi_{g g}+36 \beta g^{2} \phi_{f} \phi_{g g}-54 \alpha f g^{2} \phi_{f} \phi_{g g}-108 \alpha f g^{2} \phi_{g} \phi_{f g}-36 \alpha f^{2} g \phi_{f} \phi_{f g}- \\
18 \alpha f^{2} g \phi_{f f} \phi_{g}-36 \alpha f g \phi \phi_{f g}+36 \beta f g \phi_{f} \phi_{f g}+12 \beta f g \phi_{f f} \phi_{g}-180 \alpha f g \phi_{f} \phi_{g}=0 . \tag{2.22}
\end{array}
$$

Consequently, we conclude that the group-invariant solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=\frac{1}{x} \phi\left(\frac{y}{x}, \frac{t}{x^{3}}\right), \tag{2.23}
\end{equation*}
$$

where ϕ is any solution of equation (2.22).
Lastly, we consider Case 2 when $\alpha=-\beta$. Here we obtain the following subcases.

Case 2.1.

Taking the linear combination of the translation symmetries $\boldsymbol{\Gamma}=\mathbf{X}_{\mathbf{1}}+\mathbf{X}_{\mathbf{2}}$ and thereafter, solving the characteristics equations yields the following three invariants:

$$
f=x, \quad g=t-y, \quad \phi=u .
$$

Employing the above invariants, we transformed equation (1.2) into a partial differential equation with two independent variables, namely

$$
\phi_{f g}-\beta \phi_{f f f f}-\beta \phi_{f f f g}-6 \beta \phi_{f f} \phi_{f}-4 \beta \phi_{f g} \phi_{f}-4 \beta \phi_{f f} \phi_{g}=0 .
$$

The above equation admits the following Lie point symmetries

$$
\mathbf{\Upsilon}_{\mathbf{1}}=4 f \beta \frac{\partial}{\partial f}+4 g \beta \frac{\partial}{\partial g}+(-4 \beta \phi+2 f-3 g) \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{2}}=\frac{\partial}{\partial f}, \mathbf{\Upsilon}_{\mathbf{3}}=\frac{\partial}{\partial f}+\frac{\partial}{\partial g}, \quad \mathbf{\Upsilon}_{\mathbf{4}}=\frac{\partial}{\partial \phi} .
$$

Considering a linear combination of $\mathbf{\Upsilon}_{\mathbf{3}}+\mathbf{\Upsilon}_{\mathbf{4}}$, one obtains the following the invariants

$$
z=f-g, \quad \Psi=-g+\phi
$$

and this leads to the following nonlinear ordinary differential equation
$2 \beta \Psi^{\prime \prime}(z) \Psi^{\prime}(z)-4 \beta \Psi^{\prime \prime}(z)-\Psi^{\prime \prime}(z)=0$, whose solution is $\Psi(z)=2 z+\frac{1}{2} \frac{z}{\beta}+C_{1}$.
Consequently, we conclude that the group-invariant solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=\frac{1}{2} \frac{2 \beta C_{1}-2 \beta t+4 \beta x+2 \beta y-t+x+y}{\beta}, \tag{2.24}
\end{equation*}
$$

where C_{1} is a constant of integration.

Case 2.2.

We now choose the combination of symmetries $\boldsymbol{\Gamma}=\mathbf{X}_{\mathbf{1}}+\mathbf{X}_{\mathbf{2}}$. Solving the Lagrange system, we get the following three invariants:

$$
f=x, \quad g=t-y, \quad \phi=u
$$

Invoking the above invariants, equation (1.2) transforms into a partial differential equation, namely $\phi_{f g}-\beta \phi_{f f f f}-\beta \phi_{f f f g}-6 \beta \phi_{f f} \phi_{f}-4 \beta \phi_{f g} \phi_{f}-4 \beta \phi_{f f} \phi_{g}=0$,
which possess the follow Lie point symmetries

$$
\mathbf{\Upsilon}_{\mathbf{1}}=4 f \beta \alpha \frac{\partial}{\partial f}+4 g \beta \alpha \frac{\partial}{\partial g}+(-\beta \phi+2 f-3 g) \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{2}}=\alpha \frac{\partial}{\partial f}, \mathbf{\Upsilon}_{\mathbf{3}}=\frac{\partial}{\partial f}+\frac{\partial}{\partial g}, \quad \mathbf{\Upsilon}_{\mathbf{4}}=\frac{\partial}{\partial \phi} .
$$

Considering $\Upsilon_{\mathbf{3}}$, one obtains the invariants

$$
z=f-g, \quad \psi=\phi
$$

and this leads to following nonlinear ordinary differential equation
$2 \beta \psi^{\prime \prime}(z) \psi^{\prime}(z)-\psi^{\prime \prime}(z)=0$, whose solution is $\psi(z)=\frac{1}{2} \frac{z}{\beta}+C_{1}$.
Therefore the group-invariant solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=\frac{1}{2} \frac{2 \beta C_{1}-t+x+y}{\beta} \tag{2.25}
\end{equation*}
$$

where C_{1} is an integration constant.

Case 2.3.

Taking symmetries, $\boldsymbol{\Gamma}=\mathbf{X}_{\mathbf{4}}$, we get the following three invariants:

$$
f=t, \quad g=x, \quad \phi=\frac{1}{16} \frac{16 \beta t u-4 x y-3 y^{2}}{\beta t} .
$$

Using the above invariants, equation (1.2) transformed into
$6 \beta f \phi_{g g} \phi_{g}+\beta f \phi_{g g g g}-f \phi_{f g}-g \phi_{g g}-\phi_{g}=0$.
The Lie point symmetries of the above equation are

$$
\mathbf{\Upsilon}_{\mathbf{1}}=12 \beta \frac{\partial}{\partial f}-\frac{g^{2}}{f^{2}} \frac{\partial}{\partial \phi}, \mathbf{\Upsilon}_{\mathbf{2}}=3 f \frac{\partial}{\partial f}+g \frac{\partial}{\partial g}-\phi \frac{\partial}{\partial \phi}, \mathbf{\Upsilon}_{\mathbf{3}}=6 \beta \frac{\partial}{\partial g}+\frac{g}{f} \frac{\partial}{\partial \phi}, \mathbf{\Upsilon}_{\mathbf{4}}=f \frac{\partial}{\partial g}, \mathbf{\Upsilon}_{\mathbf{5}}=\frac{R(f)}{f^{2}} \frac{\partial}{\partial \phi}
$$

Using $\Upsilon_{\mathbf{2}}$, one obtains the invariants

$$
z=\frac{f}{g^{3}}, \quad \Psi=g \phi
$$

and this leads to following nonlinear ordinary differential equation

$$
\begin{align*}
& 81 \beta z^{5} \Psi^{\prime \prime \prime \prime}(z)-162 \beta z^{4} \Psi^{\prime}(z) \Psi^{\prime \prime}(z)+756 \beta z^{4} \Psi^{\prime \prime \prime}(z)-54 \beta z^{3} \Psi(z) \Psi^{\prime \prime}(z) \\
& -324 \beta z^{3}\left(\Psi^{\prime}(z)\right)^{2}+1692 \beta z^{3} \Psi^{\prime \prime}(z)-144 \beta z^{2} \Psi(z) \Psi^{\prime}(z)+816 \beta z^{2} \Psi^{\prime}(z) \\
& -12 \beta z(\Psi(z))^{2}-6 z^{2} \Psi^{\prime \prime}(z)+24 \beta z \Psi(z)-11 z \Psi^{\prime}(z)-\Psi(z)=0 . \tag{2.26}
\end{align*}
$$

Consequently, the group-invariant solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=\frac{x y}{4 \beta t}+\frac{3 y^{2}}{16 \beta t}+\frac{\Psi(z)}{x}, \quad z=\frac{t}{x^{3}}, \tag{2.27}
\end{equation*}
$$

where $\Psi(z)$ is any solution of equation (2.26).

Case 2.4.

Considering the linear combination of the translation symmetries, $\boldsymbol{\Gamma}=\mathbf{X}_{\mathbf{1}}+\mathbf{X}_{\mathbf{2}}$ and solving the characteristics equations, yields the following three invariants:

$$
f=x, \quad g=t-y, \quad \phi=u .
$$

Employing the above invariants, equation (1.2) becomes
$\phi_{f g}-\beta \phi_{f f f f}-\beta \phi_{f f f g}-6 \beta \phi_{f f} \phi_{f}-4 \beta \phi_{f g} \phi_{f}-4 \beta \phi_{f f} \phi_{g}=0$.
The Lie point symmetries of the above equation are given by

$$
\mathbf{\Upsilon}_{\mathbf{1}}=4 f \beta \frac{\partial}{\partial f}+4 g \beta \frac{\partial}{\partial g}+(-4 \beta \phi+2 f-3 g) \frac{\partial}{\partial \phi}, \quad \mathbf{\Upsilon}_{\mathbf{2}}=\frac{\partial}{\partial f}, \mathbf{\Upsilon}_{\mathbf{3}}=\frac{\partial}{\partial f}+\frac{\partial}{\partial g}, \quad \mathbf{\Upsilon}_{\mathbf{4}}=\frac{\partial}{\partial \phi} .
$$

Considering $\boldsymbol{\Upsilon}_{\mathbf{1}}$, one obtains the invariants

$$
z=\frac{f}{g}, \quad \psi=\frac{1}{8} \frac{g(8 \beta \phi-2 f+3 g)}{\beta}
$$

and this leads to a nonlinear ordinary differential equation, namely

$$
\begin{equation*}
8 z \psi^{\prime \prime}(z) \psi^{\prime}(z)+z \psi^{\prime \prime \prime \prime}(z)+4 \psi(z) \psi^{\prime \prime}(z)-6 \psi^{\prime \prime}(z) \psi^{\prime}(z)+8\left(\psi^{\prime}(z)\right)^{2}-\psi^{\prime \prime \prime \prime}(z)+4 \psi^{\prime \prime \prime}(z)=0 . \tag{2.28}
\end{equation*}
$$

Therefore we conclude that the group-invariant solution of equation (1.2) is

$$
\begin{equation*}
u(t, x, y)=\frac{x}{4 \beta}-\frac{3(t-y)}{8 \beta}+\frac{\psi(z)}{t-y}, \quad z=\frac{x}{t-y} \tag{2.29}
\end{equation*}
$$

with $\psi(z)$ being any solution of equation (2.28).

3. Conservation laws

In this section we derive the low-order conservation laws of the equation (1.2) using the multiplier approach. Here we will consider the multiplier of the second order, namely
$\Lambda=\Lambda\left(t, x, y, u, u_{t}, u_{x}, u_{y}, u_{t x}, u_{t y}, u_{x y}, u_{t t}, u_{x x}, u_{y y}\right)$. The determining equation for the multiplier Λ is

$$
\frac{\delta}{\delta u}\left\{(\Lambda)\left(u_{t x}+\alpha u_{x x x x}+6 \beta u_{x x x y}+6 \alpha u_{x x} u_{x}+4 \beta u_{x y} u_{x}+4 \beta u_{x x} u_{y}\right)\right\}=0 .
$$

Expanding the above equation with the aid of Maple computer algebra package prompts the following second order multiplier Λ, namely

$$
\begin{equation*}
\Lambda=4 \beta k_{1}(t) u_{x}+k_{1}^{\prime}(t) y+C_{1} u_{x}+k_{2}(t), \tag{3.1}
\end{equation*}
$$

where $k_{1}(t), k_{2}(t)$ are arbitrary functions of t and β, C_{1} are arbitrary constants. Corresponding to the above second order multiplier Λ, we obtain the following conservation laws

$$
\begin{aligned}
T_{1}^{t}= & \frac{1}{2} u_{x}{ }^{2}, \\
T_{2}^{x}= & -\frac{4}{3} \beta u u_{x} u_{x y}+2 \alpha u_{x}^{3}+\frac{4}{3} \beta u_{x}^{2} u_{y}+2 \beta u_{x} u_{y}+\alpha u_{x} u_{x x x}+3 \beta u_{y} u_{x x x}-\frac{1}{2} \alpha u_{x x}^{2} \\
& -3 \beta u_{x x} u_{x y}+3 \beta u_{x} u_{x x y}+3 \beta u u_{x x x y}+2 \beta u u_{x y}, \\
T_{3}^{y}= & \frac{4}{3} \beta u u_{x} u_{x x}-2 \beta u u_{x x}-3 \beta u u_{x x x x} ; \\
T_{1}^{t}= & u_{x}\left(2 \beta F(t) u_{x}+F^{\prime}(t) y\right), \\
T_{2}^{x}= & -\frac{16}{3} \beta^{2} u u_{x} u_{x y}+8 \alpha \beta F(t) u_{x}^{3}+\frac{16}{3} \beta^{2} F(t) u_{x}^{2} u_{y}+12 \beta^{2} u u_{x x x y}+8 \beta^{2} F(t) u u_{x y} \\
& +4 \alpha \beta F(t) u_{x} u_{x x x}+12 \beta^{2} F(t) u_{x} u_{x x y}+8 \beta^{2} F(t) u_{x} u_{y}-2 \alpha \beta F(t) u_{x x}^{2}-12 \beta^{2} F(t) u_{x x} u_{x y} \\
& +12 \beta^{2} F(t) u_{y} u_{x x x}-2 \beta F^{\prime}(t) y u u_{x y}+3 \alpha u_{x}^{2} F^{\prime}(t) y+2 \beta F^{\prime}(t) u_{x} u_{y} y-2 \beta F^{\prime}(t) u u_{x}+ \\
& \alpha F^{\prime}(t) y u_{x x x}+6 \beta F^{\prime}(t) y u_{x x y}+4 \beta F^{\prime}(t) y u_{y}-F^{\prime \prime}(t) y u, \\
T_{3}^{y}= & \frac{2}{3} \beta u\left(8 \beta F(t) u_{x} u_{x x}-12 \beta F(t) u_{x x}-18 \beta F(t) u_{x x x x}+3 F^{\prime}(t) y u_{x x}\right) ; \\
T_{1}^{t}= & F(t) u_{x}, \\
T_{2}^{x}= & -2 \beta F(t) u u_{x y}+3 \alpha F(t) u_{x}^{2}+2 \beta F(t) u_{x} u_{y}+\alpha F(t) u_{x x x}+6 \beta F(t) u_{x x y} \\
& +4 \beta F(t) u_{y}-F^{\prime}(t) u, \\
T_{3}^{y}= & 2 \beta F(t) u_{x x}-2 \beta u u_{x x} .
\end{aligned}
$$

associated with $C_{1}, k_{1}(t)$ and $k_{2}(t)$ respectively. Here we observe that due to the presence of the arbitrary functions in the conservation laws, one can generate an infinite number of conservation laws for equation (1.2).

4. Concluding remarks

In this paper new exact solutions and conservation laws were computed for a generalized (2+1)dimensional Bogoyavlensky-Konopelchenko equation (1.2). The Lie symmetry method was used to derive exact solutions and the multiplier method was employed to compute conservation laws. The generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation (1.2) consists of an infinite number of local conservation laws due to the arbitrary elements embedded in the conserved quantities. Furthermore, higher order conservation laws for a generalized ($2+1$)-dimensional BogoyavlenskyKonopelchenko equation can be derived by increasing the order of the multiplier. However, this remains to be studied elsewhere.

References

[1] S.S. Ray, On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation, Comput. Math. Appl. 74(6) (2017) 1158-1165.
[2] K. Toda, S. J Yu, A study of the construction of equations in (2+1)dimensions, Inverse Prob. 17(4) (2001) 1053-1060.
[3] O. I. Bogoyavlenskii, Overturning solitons in new two dimensional integrable equation, Math. USSR-Izvest. 34(2) (1990) 245-259.
[4] F. Calogero, A method to generate solvable nonlinear evolution equation, Lett. Nuovo Cim. 14(12 (1975) 443-447.
[5] M.A. Abdulwahhab, Comment on the paper "On the conservation laws by Lie symmetry analysis for (2+1)dimensional (2+1)-dimensions Bogoyavlensky-Konopelchenko equation in wave propagation" by S. Saha Ray, Comput. Math. Appl. 75(12) (2018) 4300-4304.
[6] S. Bendaas and N. Alaa, Periodic wave shock solutions of Burgers equation, a news approach, Int. J. Nonlinear Anal. Appl. 10(1) (2019) 119-129.
[7] E. Shivanian and S. Abbasbandy, Multiple solutions of a nonlinear reactive transport model using least square pseudo-spectral collocation method, Int. J. Nonlinear Anal. Appl. 9(2) (2018) 47-57.
[8] M. Golchian, M. Gachpazan and S. H. Tabasi, A new approach for computing the exact solutions of DAEs in generalized Hessenberg forms, Int. J. Nonlinear Anal. Appl. 11(1) (2020) 199-206.
[9] H. Stephani, Differential Equations: Their Solutions Using Symmetries, Cambridge University Press, Cambridge, 1989.
[10] G. Bluman, S. Kumei, Symmetries and Differential Equation, vol. 81, Springer-Verlag, New York, 1989.
[11] P. Olver, Applications of Lie Groups to Differential Equations, vol.107, Springer-Verlag, New York, 1986.
[12] L.D. Moleleki, B. Muatjetjeja, A.R. Adem, Solution and conservation laws of a (3+1)-dimensional ZakharovKuznetsov equation, Nonlinear Dyn. 87(4) (2017) 2187-2192.
[13] L. D. Moleleki, Solution and conservation laws of a generalized 3D Kawahara equation, The European Physical Journal Plus 133(12) (2018), 496.
[14] J.C. Camacho, M. Rosa, M.L. Gandarias and M.S. Bruzon, Classical symmetries, travelling wave solutions and conservation laws of a generalized Fornberg-Whitham equation, J. Comput. Appl. Math. 318 (2017) 149-155.
[15] A.R. Adem, X. Lü, Travelling wave solutions of a two-dimensional generalized Sawada-Kotera equation, Nonlinear Dyn. 84(2) (2016) 915-922.
[16] D. Mothibi, Conservation laws for Ablowitz-Kaup-Newell-Segur equation, AIP Conf. Proc. 1738 (2016) 480102.

[^0]: *Corresponding author
 Email addresses: thebeetsile.j.podile@gmail.com (T.J. Podile), muatjetjejab@ub.ac.bw (B. Muatjetjeja), ademar@unisa.ac.za (A.R. Adem)

