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Abstract

This study is devoted to introducing a computational technique based on Bernstein polynomials
to solve variable order fractional optimal control problems (VO-FOCPs). This class of problems
generated by dynamical systems describe with variable order fractional derivatives in the Caputo
sense. In the proposed method, the Bernstein operational matrix of the fractional variable-order
derivatives will be derived. Then, this matrix is used to obtain an approximate solution to mentioned
problems. With the use of Gauss-Legendre quadrature rule and the mentioned operational matrix,
the considered VO-FOCPs are reduced to a system of equations that are solved to get approximate
solutions. The obtained results show the accuracy of the numerical technique.
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Operational matrix.
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1. Introduction

In recent years, fractional calculus (FC) has been used by scientist and researchers to development
mathematical models of real-world phenomena [1, 13, 27]. Moreover, the concept of VO fractional
operator recently has been introduced in [21]. Many phenomena in science such as engineering and
mathematical physics problems have been modeled using VO differential equations [7, 18, 21, 22,
28, 30, 31, 32, 34, 36, 37]. VO derivative is a novel and extended of arbitrary order derivative that
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might be stated in terms of space, time or more variables. Many dynamical processes may be better
described using VO fractional derivatives. These new operators are more prospect and practical
than the classical fractional ones because of their advantage of the memory property. So, the VO
fractional differential equations (VO-FDEs) are receiving more important that need a solution.

Therefore, various research have been offered to obtain numerical solution of VO-FDEs [3, 4, 5,
6, 8, 9, 11, 12, 14, 20, 33, 35, 38, 41].

Fractional optimal control problems (FOCPs) have bben investigated by different type of frac-
tional derivatives, such as the Riemann-Liouville and Caputo fractional derivatives. Also, to solve
FOCPs, various methods are used [2, 10, 19, 23, 24, 25, 26, 29, 39]. Similarly, variable-order (VO)
fractional optimal control problems (VO-FOCPs) might be investigated by different type of variable-
order fractional derivatives, such as Caputo, Riemann-Liouville or Atangana-Baleanu derivatives. In
these problems, VO-FDEs is considered as VO-FOCPs to describe the dynamics system. So far, few
numerical methods presented to solve the mentioned problems [15, 16, 17, 40].
In this work, we use the Bernstein polynomials (BPs) to introduce a numerical technique for solvin
the following type of VO-FOCPs:

min J =

∫ 1

0

χ(t, x(t), u(t))dt, (1.1)

under

c
0D

α(t)
t x(t) = ρ(t, x(t)) + a(t)u(t), m− 1 < α(t) ≤ m, m ∈ N, (1.2)

and the initial conditions:

x(0) = b0, x
′(0) = b1, · · · , x(m−1)(0) = bm−1, (1.3)

where a(t) ̸= 0 and χ are smooth and c
0D

α(t)
t x(t) is α(t) order caputo derivative. Here, we use BPs

to obtain numerical solutin of the VO-FOCPs.
We expand the the VO fractional derivative of state variable x(t) by using the BPs. Then using

operational matrix of VO fractional integral we achieve a nonlinear algebraic equation with unknown
coefficients which will be determined

The rest of this study is organized as follows: In Section 2, we present a brief review of VO
calculus, BPs and the VO operational matrix. The proposed scheme is presented in Section 3, to
obtain numerical solution of VO-FOCPs. In Section 4, we investigate the efficiency and applicability
of the given technique by few numerical examples. Finally, in Section 5 the conclusion is summarized.

2. Preliminaries

Here, we briefly review definitions of the VO fractional operators [5, 6, 7]. Then for VO fractional
integral we obtain operational matrix based on BPs.

2.1. VO fractional calculus

Definition 2.1. The α(t)-order integral is defined by

0I
α(t)
t f(t) =

1

Γ(α(t))

∫ t

0

f(τ)

(t− τ)1−α(t)
dτ.
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Definition 2.2. The α(t)-order Caputo derivative is given by

c
0D

α(t)
t f(t) =


1

Γ(m−α(t))

∫ t

0
(t− τ)m−α(t)−1f (m)(τ)dτ, m− 1 < α(t) < m,

dmf(t)
dtm

, α(t) = m, m ∈ N.

For the the above definitions, we have the following properties:

c
0D

α(t)
t f(t) = 0I

m−α(t)
t

dmf(t)

dtm
, m− 1 < α(t) ≤ m,

c
0D

α(t)
t tw =


Γ(w+1)

Γ(w−α(t)+1)
tw−α(t), m− 1 < α(t) ≤ m, w ≥ m,

0, w < m.

2.2. Bernstein polynomials

The BPs of degree j are defined on the interval [0, 1] as [19]:

Bj,n(t) =

(
n

j

)
tj(1− t)n−j, 0 ≤ j ≤ n.

The above polynomials can be rewritten as

Bj,n(t) =

(
n

j

)
tj(1− t)n−j =

(
n

j

)
tj

(
n−j∑
k=0

(−1)k
(
n− j

k

)
tk

)

=

n−j∑
k=0

(−1)k
(
n

j

)(
n− j

k

)
tj+k; j = 0, 1, 2, . . . , n.

We present the BPs in the matrix form as follow:

ϕ(t) = ATn(t), (2.1)

where ϕ(t) = [B0,n(t), B1,n(t), · · · , Bn,n(t)]
T , Tn = [1, t, . . . , tn]T and A is a matrix:

A =


(−1)0

(
n
0

)
(−1)1

(
n
0

)(
n−0
1−0

)
. . . (−1)n−0

(
n
0

)(
n−0
n−0

)
. . .

...
0 (−1)i

(
n
i

)
. . . (−1)n−i

(
n
i

)(
n−i
n−i

)
...

. . . . . .
...

0 . . . 0 (−1)n
(
n
n

)

 ,

and |A| = Πn
i=0

(
n
i

)
, so it is easy to see that A is invertible.

2.3. Approximation of function

A function h(t) ∈ L2[0, 1], it might be approximated be BPs as:

h(t) =
n∑

j=0

cjBj,n = CTϕ(t),
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here
CT ⟨ϕ, ϕ⟩ = ⟨h, ϕ⟩, (2.2)

where ⟨ϕ, ϕ⟩ is called dual matrix of ϕ which is indicated by Q, we have

⟨h, ϕ⟩ =
∫ 1

0

h(t)ϕ(t)Tdt = [⟨h,B0,n⟩, ⟨h,B1,n⟩, . . . , ⟨h,Bn,n⟩],

and

⟨ϕ, ϕ⟩ = Q =

∫ 1

0

ϕ(t)ϕ(t)Tdt. (2.3)

In view of (2.2) and (2.3), we have

CT =

(∫ 1

0

h(t)ϕ(t)Tdt

)
Q−1,

Here CT = [c0, c1, . . . , cn] is called Bernstein coefficients.

2.4. Operational matrix of VO fractional integration

order α(t) We can be approximated the variable order fractional integral by BPs as

0I
α(t)
t ϕ(t) ≃ Iα(t)ϕ(t),

where Iα(t) is operational matrix for VO fractional integral. By replacing Eq. (2.1) instead of ϕ(t),
we can construct Iα(t) as follow:

0I
α(t)
t ϕ(t) = 0I

α(t)
t ATn(t) = A 0I

α(t)
t Tn(t).

It yields

0I
α(t)
t ϕ(t) = A

[
Γ(1)

Γ(α(t) + 1)
tα(t)

Γ(2)

Γ(α(t) + 2)
tα(t)+1 · · · Γ(n)

Γ(α(t) + n+ 1)
tα(t)+n

]T

= A


Γ(1)

Γ(α(t)+1)
tα(t) 0 . . . 0

0 Γ(2)
Γ(α(t)+2)

tα(t) . . . 0
...

...
. . . 0

0 0 . . . Γ(n+1)
Γ(α(t)+n+1)

tα(t)



1
t
...
tn


= AWA−1ϕ(t),

that

W =


Γ(1)

Γ(α(t)+1)
tα(t) 0 . . . 0

0 Γ(2)
Γ(α(t)+2)

tα(t) . . . 0
...

...
. . . 0

0 0 . . . Γ(n+1)
Γ(α(t)+n+1)

tα(t)

 ,

consequently, operational matrix of VO fractional integral of Bernstein polynomials can be con-
structed as:

Iα(t) = AWA−1.
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3. The Method

In this section, we present a computational technique to obtain numerical solution of VO-FOCPs
(2.2). First, in the Eq. (1.2), we focus to calculate the control variable u(t) . In this regard, we
replace the resultant u(t) into (1.1), which yields

min J =

∫ 1

0

χ

(
t, x(t),

1

a(t)
(c0D

α(t)
t x(t)− ρ(t, x(t)))

)
dt. (3.1)

Now we approximate c
0D

α(t)
t x(t) in terms of the BPs to solve the above-mentioned problem as:

c
0D

α(t)
t x(t) ≃ XTϕ(t), (3.2)

where XT is an unknown vector as following

XT = [x1, · · · , xn].

We obtain the following relation by using operational matrix, the moment property of the VO
fractional integral and initial conditions:

x(t) ≃ XT Iα(t)ϕ(t) +
m−1∑
i=0

bi
ti

i!
.

Assume that

m−1∑
i=0

bi
ti

i!
≃ BTϕ(t).

Therefore we get

x(t) ≃ (XT Iα(t) +BT )ϕ(t). (3.3)

By replacing Eqs. (3.2) and (3.3) into Eq. (3.1), we have an unconstrained optimization problem:

min J[X] =

∫ 1

0

χ

(
t, (XT Iα(t) +BT )ϕ(t),

1

a(t)
(XTϕ(t)− ρ(t, (XT Iα(t) +BT )ϕ(t)))

)
dt.

we achieve

min J[X] =

∫ 1

0

χn(t,X)dt. (3.4)

We can compute the numerical solution of the above equation (3.4) by using Gauss-Legendre quadra-
ture rule as

J[X] =
1

2

ℓ∑
j=1

ωjχn(
τj + 1

2
, X),

where {ωj}ℓj=1 are the corresponding Christoffel numbers and {τj}ℓj=1 are the nodes of Gauss-
Legendre. We obtain the necessary conditions for the extremum as

∂J[X]

∂xi

= 0, i = 1, · · · , n. (3.5)

Finally by calculating system (3.5), we can obtain the desired optimal solution. Consequently we
can calculate x(t) from the Eq. (3.3).
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4. Test examples

In this section, we apply the proposed method in Section 3 to obtain numerical solution of few
examples.

Example 1. We consider the following VO-FOCP:

min J[X] =
1

2

∫ 1

0

[
x2(t) + u2(t)

]
dt,

subject to the dynamical system

c
0D

α(t)
t x(t) = −x(t) + u(t), 0 < α(t) ≤ 1,

with the I.C.
x(0) = 1.

For this problem, the exact solutions of x(t) and u(t) when α(t) = 1 are given as

x(t) = cosh(
√
2t) + β sinh(

√
2t),

u(t) = (1 +
√
2β) cosh(

√
2t) + (

√
2 + β) sinh(

√
2t),

where,

β = −cosh(
√
2) +

√
2 sinh(

√
2)√

2 cosh(
√
2) + sinh(

√
2)

≃ −0.98.

Now, we solve the above problem by the presented method with n = 3 for the following VOs

α1(t) = 1− 0.05t, α4(t) = 0.95 + 0.04 sin t,

α2(t) = 1− 0.15t, α5(t) = 0.85 + 0.04 sin t,

α3(t) = 1− 0.25t, α6(t) = 0.75 + 0.04 sin t.

Figs. 1 and 2 demonstrate the numerical results for the state variable x(t) and control variable u(t)
for some variable orders α(t) with n = 3respectively.
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Figure 1: Numerical solutions of x(t) for various values of α(t) for Example 1.
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Figure 2: Numerical solutions of u(t) in Example 1 for various values of α(t) .

Example 2. Consider VO-FOCP problem is given as:

min J[X] =
1

2

∫ 1

0

[
(x(t)− tα(t))2 + (u(t)− tα(t) − Γ(α(t) + 1))2

]
dt,

under the variable order fractional dynamical system

c
0D

α(t)
t x(t) = −x(t) + u(t), 0 < α(t) ≤ 1,

and the initial condition is given by
x(0) = 0.

For this problem, the values u(t) = tα(t) + Γ(α(t) + 1) and x(t) = tα(t) are the minimizing solutions
for the control and state variables, respectively, and the performance index J[X] has the minimum
value of 0. The above problem is now solved by the presented technique with n = 4 and n = 8 for
the following VOs

α1(t) = 0.95− 0.25 sin t,

α2(t) = 0.75− 0.25 sin t,

α3(t) = 0.55− 0.25 sin t.

The numerical solutions for the state variable x(t) and the control variable u(t) with some variable
orders α(t) and n = 3 are compared in Fig. 3. The approximate values of the performance index J
with n = 3 and different values of α(t) are reported in Table 1. Also, for various values of α(t), n,
Table 2 compares the absolute errors of x(t) and u(t) .

Table 1: The approximate values of J at different choices of α(t) where n = 3 for Example 2.

α(t) J
α1(t) 3.33408× 10−5

α2(t) 4.92959× 10−6

α3(t) 2.64258× 10−7
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Figure 3: The state and control variables (left and right, respectively) with different values of α(t) and n = 3
for Example 2.

Table 2: The absolute errors x(t) and u(t) with different values of α(t), n for Example 2.
ex eu

t α1(t) α2(t) α3(t) α1(t) α2(t) α3(t)
0.1 2.16193× 10−4 2.61456× 10−4 1.39036× 10−4 2.94412× 10−3 1.12052× 10−3 9.18998× 10−5

0.3 2.77463× 10−3 1.71445× 10−3 2.75113× 10−4 3.60358× 10−3 1.42273× 10−3 4.11697× 10−5

0.5 6.44952× 10−3 3.11097× 10−3 2.38837× 10−5 3.81326× 10−3 1.43818× 10−3 2.29627× 10−4

0.7 9.6158× 10−3 3.74622× 10−3 6.07569× 10−4 3.68555× 10−3 1.52123× 10−3 3.3346× 10−4

0.9 1.1687× 10−2 3.75459× 10−3 1.3259× 10−3 2.07634× 10−3 9.76752× 10−4 4.02544× 10−4

Example 3. Finally, consider the following VO-FOCP:

min J[X] =

∫ 1

0

[
et
(
x(t)− 1 + t− t4

)2
+ (t2 + 1)

(
u(t) + t4 + 1− t− 24 Γ(4− α(t))

Γ(5− α(t))

)2
]
dt,

subject to the variable order fractional dynamical system

c
0D

α(t)
t x(t) = x(t) + u(t), 1 < α(t) ≤ 2,

and the initial conditions
x(0) = −x′(0) = 1.

In this problem, the minimizing solutions for the control and state variables are u(t) = 24Γ(4−α(t))
Γ(5−α(t))

−
t4 + t − 1 and x(t) = 1 − t + t4. Now we solve the above problem by the presented technique with
n = 3 for the following VOs

α1(t) = 1.95− 0.01t2, α4(t) = 1.5,

α2(t) = 1.95 + 0.05t2, α5(t) = 1.5 +
cos2(t)et

2

60
,

α3(t) = 1.95 + 0.15t2, α6(t) = 1.5− cos(t)

40
.

For the state variable x(t) and control variable u(t), the behavior of the numerical solutions are
plotted in Figs. 4 and 5 for some different values of α(t). The approximate values of the performance
index J with n = 6 and different values of α(t) are presented in Table 3. The absolute errors for x(t)
and u(t) are listed in Table 4 and 5 respectively for the various α(t).
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Figure 4: The result obtained of x(t) and u(t) (left and right, respectively) with various values of α(t) when
n = 3 for Example 3.
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Figure 5: The result obtained of x(t) and u(t) (left and right, respectively) with various values of α(t) when
n = 6 for Example 3.

Table 3: The approximate values of J at different choices of α(t) where n = 6 for Example 3.

α(t) J
α1(t) 1.78909× 10−5

α2(t) 4.51859× 10−4

α3(t) 4.15617× 10−3

α4(t) 1.38712× 10−3

α5(t) 1.86238× 10−6

α6(t) 3.32223× 10−6

Table 4: The absolute errors of x(t) when n = 6 for Example 3.
t α1(t) α2(t) α3(t) α4(t) α5(t) α6(t)
0.1 1.74459× 10−5 8.9255× 10−5 2.81288× 10−4 1.97715× 10−4 2.34129× 10−5 7.77156× 10−5

0.3 1.23087× 10−4 6.36534× 10−4 2.06031× 10−3 6.13259× 10−4 1.09893× 10−4 3.59669× 10−4

0.5 1.16221× 10−4 6.43910× 10−4 2.41061× 10−3 1.71158× 10−4 2.11404× 10−4 5.22689× 10−4

0.7 8.23214× 10−4 4.01755× 10−3 1.12622× 10−2 3.26721× 10−3 1.13484× 10−4 21398× 10−4

0.9 4.73353× 10−3 2.36688× 10−3 7.08222× 10−2 9.01625× 10−3 3.123243× 10−3 3.69785× 10−3



764 Ansari, Jafai, Farahmand Rad

Table 5: The absolute errors of u(t) with n = 6 for Example 3.
t α1(t) α2(t) α3(t) α4(t) α5(t) α6(t)
0.1 2.72617× 10−5 1.37901× 10−2 4.3473× 10−2 6.58226× 10−3 1.00962× 10−3 2.74918× 10−3

0.3 1.83846× 10−3 9.38169× 10−3 3.02168× 102 6.99660× 10−3 7.28313× 10−4 2.05295× 10−3

0.5 1.03098× 10−3 5.43587× 10−3 1.81322× 10−2 2.61349× 10−2 4.51044× 10−4 1.43165× 10−3

0.7 4.49031× 10−4 2.38228× 10−3 8.38128× 10−3 4.05599× 10−2 2.82732× 10−4 7.98673× 10−4

0.9 3.46879× 10−5 3.32401× 10−4 1.42755× 10−3 4.29872× 10−2 1.86392× 10−5 2.62964× 10−4

5. Conclusion

In this paper, we considered the solutions of VOFOCPs by using BPs. First, we constructed
the operational matrix of the VO fractional integral based on BPs. Then using the mentioned
matrix and Gauss-Legendre quadrature rule, the given equation has been transformed into a system
of algebraic equations. With solving this system, we obtained the optimal solution of considered
problems. Furthermore, some examples are presented to show the accuracy with this method.
For computations, the Mathematica was used in this article.
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