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Abstract

In this paper, the uniform stability for the solution of integro-differential inequalities, with non-
linear control inputs and delay functions, is investigated by using some inequality estimator condi-
tions. Moreover, we apply the obtained results on the solutions of some proposed classes of integro-
differential inequalities with nonlinear control input functions as problem formulations examples.
The results show that the stability technique used in this work is efficient and robust and it can be
applied to a general class and various types of integro-differential inequalities.
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1. Introduction

Let us consider the following first order differential equation:

ẏ (t) = f (t, y(t)) , (1.1)

where the right hand side f is a continuous function in an open region J , and suppose that w(t, t0, y0)
is the unique solution of (1.1), which passes through a point (t0, y0) ∈ I ⊆ J , and it is defined in
the interval I. Let g(t) be a continuous function on the interval J , such that g (t) ≤ w (t, t0, y0) ,
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for t ∈ I
⋂
J. Under the preceding assumptions on equation (1.1), a differentiable function g satisfies

the inequality:
ġ(t)≤f (t, g(t)) (1.2)

Therefore, g is decreasing with respect to equation (1.1). Moreover, it is considered a sub-solution
to the differential equation (1.1), [13].
The theory of integro-differential inequalities has many applications in life and in various scientific
fields such as information theory, control theory, mechanics, chemistry, physics, and so on. Moreover,
it has many applications in the field of ordinary and partial differential equations of parabolic and
hyperbolic types, such as: estimating solutions of differential equations, estimating the existence
domain of solutions, estimating the difference between two solutions, studying the criteria of the
uniqueness of solutions, estimating of the error for approximate solutions, and studying the stability,
see [6, 9, 16].
Over the years, integral and integro-differential inequalities have become a major tool in the analysis
of differential and integro-differential equations. Therefore, they have been studied by many authors
[3, 4, 5, 8, 10, 13, 14]. For instance, J. Szarski [13] has presented the theoretical results and ap-
plications of some differential inequalities, G.Ladas and I. P. Stavroulakis, [10] have studied Delay
differential inequalities of first order. B. C. Dhage and S. B.Dhage, [4], have studied the differential
inequalities of nonlinear first order Volterra integro-differential Equations, T. Hara, T. Yoneyama,
and R. Miyazaki [3], have given some results on Voltera integro-differential inequality. S. Q. Hasan,
[5], has investigated some of estimators of some inequality dynamical system. The uniform stability
of nonlinear delay differential equations has been studied by A.T. Ademola, and P.O.Arawomo, [1],
also the uniform stability and exponential stability of delay integro-differential equations have been
studied by some authors, see [2, 7, 11, 12, 15, 17].

In this work, we consider the following types of integro-differential inequalities with nonlinear
control inputs and delay functions:

ẋ (t) ≤ f (t) +

∫ α(t)

0

B1 (t− τ)u1 (τ)w (x (τ)) dτ +

∫ α(t)

0

B2(t− τ)u2 (x(τ))w (x (τ)) dτ

+

∫ α(t)

0

B3 (t− τ)u3 (τ)w (x (τ)) dτ

∫ t

0

g (t, s)w (x (s)) ds,

ẋ (t) ẋ (t) ≤f (t) +

∫ α(t)

0

B1 (t− τ)u1 (τ)w (x (τ)) dτ

+

∫ α(t)

0

B2 (t− τ)u2 (τ)w (x (τ)) dτ

∫ t

0

g (t, s)w (x (s)) ds,

ẋ (t)≤

(
f1 (t)+

∫ α(t)

0

B1(t− τ)u1 (τ) w (x (τ)) dτ

)(
f2 (t) +

∫ α(t)

0

B2 (t− τ)u2 (τ)w (x (τ)) dτ

)
,

ẋ (t) ≤ f (t) +

∫ α(t)

0

B1(t− τ)u1 (τ)x (τ) dτ +

∫ α(t)

0

B2(t− τ)u2 (x(τ))x (τ) dτ

+

∫ α(t)

0

B3 (t− τ)u3 (τ)x (τ) dτ

∫ t

0

g (t, s)x (τ) ds,

where B1, B2 , B3 are nonnegative, differentiable delay functions and g ∈ C (R+, R+) ; and
∂tg ∈ C (R+, R+); and u1, u2, u3, are the control functions; and f, f1, f2, w ∈ C (R+, R+) ;
α∈C1 (R+,R+) is nondecreasing functions, t ∈ J = [0,∞] , α(t) ≤ t.
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The aim of this paper is to study and investigate the uniform stability for the solution of these types
of integro-differential inequalities, with nonlinear control inputs and delay functions. Moreover, we
apply the obtained results on some classes of integro-differential inequalities as illustrative application
examples. This paper is organized as follows, in section two, we state the main theorem and some
corollaries regarding the uniform stability for some types of integro-differential inequalities with
nonlinear control inputs and delay. As applications, some examples are given in section three. The
last section is devoted to state some conclusions one can observe based on the main results, also
some future research plans are stated in the last section.

2. The Main Results

In this section, we prove the main stability theorem and present some of its corollaries for some types
of integro-differential inequalities with nonlinear control inputs and Delay.

Theorem 2.1. Let x ∈ C1 (R+, R+) be a solution of the following differential inequality:

ẋ (t) ≤ f (t) +

∫ α(t)

0

B1 (t− τ)u1 (τ)w (x (τ)) dτ +

∫ α(t)

0

B2(t− τ)u2 (x(τ))w (x (τ)) dτ

+

∫ α(t)

0

B3 (t− τ)u3 (τ)w (x (τ)) dτ

∫ t

0

g (t, s)w (x (s)) ds , x (0) = x0 , (2.1)

where B1, B2 , B3 are nonnegative, differentiable delay functions and g ∈ C (R+, R+) ; and ∂tg ∈
C (R+, R+); and the control functions: u1, u3 ∈ L2 (R+, R+) , u2 ∈ L2

(
R+ → R+, R+

)
and f, w ∈

C (R+, R+) ; α∈C1 (R+,R+) is nondecreasing functions, t ∈ J = [0,∞] , α(t) ≤ t.

If w
(
x0 +

∫ T

0
f(s)ds

) ∫ τ

0
Q̃ (s) R̃ (s) ds < 1 , for t ≥ 0 , where

Q (t) = exp

(∫ α(t)

0

B1(t− τ)u1 (τ) dτ

)

R̃ (t) =
d

dt

(∫ α(t)

0

B2(t− τ)f1(τ)dτ +

((∫ α(t)

0

B3(t− τ)u3 (τ) dτ

)∫ t

0

g (t, s)w (x (s)) ds

))

for t ∈ J such that
w(x0+

∫ T
0 f(s)ds)Q̃(τ)

1−w(x0+
∫ T
0 f(s)ds)

∫ τ
0 Q̃(s)R̃(s)ds

∈ Dom(w−1), then

x (t) ≤ w−1

 w
(
x0 +

∫ T

0
f (s) ds

)
Q̃ (τ)

1− w
(
x0 +

∫ T

0
f (s) ds

) ∫ τ

0
Q̃ (s) R̃ (s) ds


Proof . From (2.1) and for t ∈ J , t ≥ 0 , it follows that

˙
y(t) =

∫ α(t)

0
B1(t− τ)u1 (τ)w (x (τ)) dτ +

∫ α(t)

0
B2(t− τ)u2 (x(τ))w (x (τ)) dτ

+

∫ α(t)

0

B3 (t− τ)u3 (τ)w (x (τ)) dτ

∫ t

0

g (t, s)w (x (s)) ds (2.2)
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From (2.2), we get ẋ (t) ≤ f(t)+ y (t), therefore x is non-degreasing on R+. By taking the derivative
of equation (2.2), for t ∈ J , we obtain

ẏ(t) = B1 (t− α (t)) u1 (α (t)) w (x (α (t))) α̇ (t) +

∫ α(t)

0

∂tB1 (t− τ) u1 (τ) B1w (x (τ)) dτ+

+ B2 (t− α (t)) u2 (x (α (t))) w (x (α (t))) α̇ (t) +

∫ α(t)

0

∂tB2 (t− τ) u2 (x (α (τ))) w (x (τ)) dτ

+

[
B3 (t− α (t)) u3 (x (α (t))) w (x (α (t))) α̇ (t)+∫ α(t)

0
∂tB3(t− τ)u3 (x (α (τ))) w (x (τ)) dτ

] ∫ t

0

g (t, s) w (x (s)) ds

+

∫ α(t)

0

B3 (t− τ) u3 (τ) w (x (τ)) dτ

[
g (t, s) w (x (t)) α̇ (t) +

∫ t

0

∂tg (t, s) w (x (s)) ds

]
≤w

(
x0 +

∫ t

0

f(s)ds

)(
d

dt

∫ α(t)

0

B1(t− τ)u1 (τ) dτ

)

+ w2

(
x0 +

∫ t

0

f(s)ds

)(
d

dt

∫ α(t)

0

B2(t− τ)f1(τ)dτ

)

+ w2

(
x0 +

∫ t

0

f(s)ds

)(
d

dt

∫ α(t)

0

B3(t− τ)u3 (τ) dτ

)∫ t

0

g (t, s)w (x (s)) ds

+ ≤ w

(
x0 +

∫ t

0

f (s) ds

)[
d

dt

(∫ α(t)

0

B1 (t− τ) u1 (τ) dτ

)]

+ w2

(
x0 +

∫ t

0

f(s)ds

)
d

dt

( ∫ α(t)

0
B2 (t− τ)u1 (τ) dτ+((∫ α(t)

0
B3(t− τ)u3 (τ) dτ

) ∫ t

0
g (t, s)w (x (s)) ds

) )

w

(
x0 +

∫ T

0

f (s) ds

)[
d

dt

(∫ α(t)

0

B1 (t− τ) u1 (τ) dτ

)]

w2

(
x0 +

∫ T

0

f(s)ds

)
d

dt

(∫ α(t)

0

B2(t− τ)u1(τ)dτ

+

((∫ α(t)

0

B3(t− τ)u3 (τ) dτ

)∫ t

0

g (t, s) w (x (s)) ds

))
.

Thus,

ẏ (t)

w2
(
x0 +

∫ T

0
f(s)ds

) − 1

w
(
x0 +

∫ T

0
f(s)ds

) [ d

dt

(∫ α(t)

0

B1(t− τ)u1 (τ) dτ

)]

≤ d

dt

(∫ α(t)

0

B2(t− τ)f1(τ)dτ +

((∫ α(t)

0

B3(t− τ)u3 (τ) dτ

)∫ t

0

g (t, s) w (x (s)) ds

))
Consider z (t) = 1

w[x0+
∫ T
0 f(s)ds+

∫ t
0 y(s)ds]

q̃ (t) =

∫ α(t)

0

B1(t− τ)u1 (τ) dτ
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Q (t)=exp

(∫ α(t)

0

B1(t− τ)u1 (τ) dτ

)

R̃ (t) =
d

dt

(∫ α(t)

0

B2(t− τ)f1(τ)dτ +

((∫ α(t)

0

B3(t− τ)u3 (τ) dτ

)∫ t

0

g (t, s) w (x (s)) ds

))
Thus

ż (t) + z (t)

(
d

ds
q̃ (t)

)
≥ −R̃ (t)

ż (t) eq̃(t)+z (t) eq̃(t)
(

d

dt
q̃ (t)

)
≥ −R̃ (t) eq̃(t)

d
dt

(
z (t) Q̃ (t)

)
≥ −Q̃ (t) R̃ (t) , we obtain

z (t) Q̃ (t) ≥ z (0)−
∫ t

0
Q̃ (s) R̃ (s) ds , 0≤ t ≤ T , we get that,

z (t) =
1

w
[
x0 +

∫ T

0
f(s)ds+

∫ t

0
y(s)ds

] ≥

 1

w
[
x0 +

∫ T

0
f(s)ds

] − ∫ t

0

Q̃ (s) R̃ (s) ds

 1

Q̃ (t)

=
1− w

[
x0 +

∫ T

0
f(s)ds

] ∫ t

0
Q̃ (s) R̃ (s) ds

w
[
x0 +

∫ T

0
f(s)ds

]
Q̃ (t)

For 0≤ t ≤ T . Let t=τ and since w
[
x0 +

∫ T

0
f(s)ds

] ∫ τ

0
Q̃ (s) R̃ (s) ds < 1

Then, w
[
x0 +

∫ T

0
f(s)ds+

∫ T

0
y(s)ds

]
≤ w[x0+

∫ T
0 f(s)ds]Q̃(T )

1− w[x0+
∫ T
0 f(s)ds]

∫ T
0 Q̃(s)R̃(s)ds

. Therefore,

x (t) ≤ w−1

 w
[
x0 +

∫ T

0
f(s)ds

]
Q̃ (T )

1− w
[
x0 +

∫ T

0
f(s)ds

] ∫ T

0
Q̃ (s) R̃ (s) ds.


□

Corollary 2.2. Let x ∈ C1 (R+, R+) be a solution of the following integro-differential inequality with
nonlinear control inputs and delay:

ẋ (t) ≤f (t) +

∫ α(t)

0

B1 (t− τ)u1 (τ)w (x (τ)) dτ

+

∫ α(t)

0

B2 (t− τ)u2 (τ)w (x (τ)) dτ

∫ t

0

g (t, s)w (x (s)) ds,

x (0) = x0,

where B1, B2, g, α, w, f are defined as in the integro-differential inequality (2.1) and the control

functions u1, u2 ∈ L2 (R+, R+). If w
[
x0 +

∫ T

0
f(s)ds

] ∫ τ

0
Q̃ (s) R̃ (s) ds for t ∈ R+, where

Q̃ (t) = e
∫ α(t)
0 B1(t−τ)u1(τ)dτ ,
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R̃ (t) =
d

dt

[(∫ α(t)

0

B2 (t− τ) u2 (τ) dτ

∫ t

0

g (t, s) ds

)]
,

then

x (t) ≤ w−1

 w
[
x0 +

∫ T

0
f(s)ds

]
Q̃ (τ)

1− w
[
x0 +

∫ T

0
f(s)ds

] ∫ τ

0
Q̃ (s) R̃ (s) ds

 , t ∈ J.

Corollary 2.3. Let x ∈ C1 (R+, R+) be a solution of the following integro-differential inequality
with nonlinear control inputs and delay:

ẋ (t) ≤

(
f1 (t) +

∫ α(t)

0

B1(t− τ)u1 (τ)w (x (τ)) dτ

)(
f2 (t) +

∫ α(t)

0

B2 (t− τ)u2 (τ)w (x (τ)) dτ

)
,

(2.3)
x (0) = x0,

where B1, B2,g, α,w are defined as in the integro-differential inequality (2.1); the control functions

u1, u2 ∈ L2 (R+, R+) and f1, f1 ∈ C (R+, R+) . If w
(
x0 +

∫ T

0
f1 (s) f 2 (s) ds

) ∫ t

0
Q̃ (s) R̃ (s) ds < 1

for t ∈R+, where Q̃ (t) = e
∫ α(t)
0 f2(t)B1(t−τ)u1(τ)w(x(τ))dτ+

∫ α(t)
0 f1(t)B2(t−τ)u2(τ)w(x(τ))dτ ,

R̃ (t) =
d

dt

[∫ α(t)

0

B1(t− τ)u1 (τ) w (x (τ)) dτ

∫ α(t)

0

B2 (t− τ) u2 (τ) w (x (τ)) dτ

]
,

then

x (t) ≤ w−1

 w
(
x0
∫ T

0
f1 (s) f2 (s) ds

)
Q̃ (τ)

1− w
(
x0 +

∫ T

0
f1 (s) f2 (s) ds

) ∫ τ

0
Q̃ (s) R̃ (s) ds

 , t ∈ J,

Corollary 2.4. Let x ∈ C1 (R+, R+) be a solution of the following integro-differential inequality with
nonlinear control inputs and delay:

ẋ (t) ≤ f (t) +

∫ α(t)

0

B1(t− τ)u1 (τ)x (τ) dτ +

∫ α(t)

0

B2(t− τ)u2 (x(τ))x (τ) dτ

+

∫ α(t)

0

B3 (t− τ)u3 (τ)x (τ) dτ

∫ t

0

g (t, s)x (τ) ds (2.4)

x (0) = x0,

where B1, B2, B3,g, α,w, f are defined as in the integro-differential inequality (2.1); and the control
functions: u1, u2, u3 ∈ L2 (R+, R+) .

If
(
x0 +

∫ T

0
f(s)ds

) ∫ t

0
Q̃ (s) R̃ (s) ds < 1 for t ∈R+ ,

where

Q (t)=exp

(∫ α(t)

0

B1(t− τ)u1 (τ) dτ

)

R̃ (t) =
d

dt

(∫ α(t)

0

B2 (t− τ) f1 (τ) dτ +

((∫ α(t)

0

B3 (t− τ) u3 (τ) dτ

)∫ t

0

g (t, s) w (x (s)) ds

))
then

x (t) ≤


[
x0 +

∫ T

0
f(s)ds

]
Q̃ (τ)

1−
(
x0 +

∫ T

0
f(s)ds

) ∫ τ

0
Q̃ (s) R̃ (s) ds

 ,
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3. Some Applications of Problem Formulations

The applications of uniform stability for some integro-differential inequalities with nonlinear control
inputs and delay are presented in this section.

Proposition 3.1. Consider that the assumptions of corollary 2.2 hold, x ∈ C1 (R+, R+) is a solution
of the integro-differential inequality with nonlinear control inputs and delay:

ẋ (t) ≤

(
f1 (t) +

∫ α(t)

0

B1 (t− τ)u1 (τ)x (τ) dτ

)(
f2 (t) +

∫ α(t)

0

B2(t− τ)u2 (x(τ))x (τ) dτ

)
(3.1)

If
∣∣∣x0 +

∫ t

0
f1 (s) f 2 (s) ds

∣∣∣ ≤ L1 , where L1 > 0 . Moreover,

L2 = lim
t→0

∫ t

t0

∫ α(r)

0

[f2 (t)B1 (t− s)u1 (s) ds+ f1 (t)B2(t− s)u2 (s) ds] dr < ∞

L3 = lim
t→0

∫ t

t0

∫ α(r)

0

B1 (r − s)u1 (s)x (s) ds

∫ α(r)

0

B2(r − s)u2 (x(s))x (s) dsdr,

where L2 , L3, are nonnegative constants and L1 L3e
L2 < 1. Then for t≥ 0, |x (t)| ≤ L1 eL2

1−L1 L3eL2
.

Proposition 3.2. In the proposition 3.1, if the condition:
∣∣∣x0 +

∫ t

0
f1 (s) f 2 (s) ds

∣∣∣ ≤ L1 is replaced

by ∣∣∣∣x0 +

∫ t

0

f1 (s) f 2 (s) ds

∣∣∣∣ ≤ L1e
−t on R+,

then x(t) → 0 as t → ∞

Example 3.3. Consider the following integro-differential inequality with nonlinear control inputs
and delay:

ẋ (t) ≤
∫ t

t0

B1(t− τ)u1 (τ)x (τ)dτ +

∫ t

t0

B2(t− τ)u2 (x(τ))x (τ) dτ (3.2)

where B1, B2 ∈ C(R+, R+), and the control functions: u1 ∈ L2 (R+, R+) , u2 ∈ L2
(
R+ → R+, R+

)
,

for t ≥ 0 and τ ∈ ˙C1 (R+, R+) such that τ (t) ≤ t. If α (t) = t− τ (t) is an increasing of R+ and

|B1(t)u1 (τ)x (τ)| ≤ a (t) |u1 (t)| |x (t)| , |B2(t)u2 (x(τ))x (τ)| ≤ b (t) |f1 (t)| |x (t)|2,

and

M1 =

∫ ∞

0

a (s) |u1 (s)| ds < ∞, M2 =

∫ ∞

0

b (s) |f1 (s)| ds < ∞

where M1, M2 are nonnegative constants, then the solution of (3.2) is uniformly stable on R+.

Proof . Let x(t) be the solution od (2.4) with the initial condition: x(t0) = x0, hence from (2.4) ,
we obtain

ẋ (t) ≤
∫ t

t0

B1(t− τ)u1 (τ)x (τ)dτ +

∫ t

t0

B2(t− τ)u2 (x(τ))x (τ) dτ

≤
∫ t

t0

B1(α (s))u1 (s)x (s)ds+

∫ t

t0

B2(α (s))u2 (x(s))x (s) ds
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≤
∫ α(t)

α(t0)

B1(r)u1 (α
−1 (r))x (α−1 (r))

α′ (α−1 (r))
dr +

∫ α(t)

α(t0)

B2(r)u2 (x(α
−1 (r)))x (α−1 (r))

α′ (α−1 (r))
dr,

0 ≤ t0 ≤ t ≤ ∞
So,

|x (t)| ≤
∫ α(t)

0

a(r) |u1 (α
−1 (r))| |x (α−1 (r))| dr
|α′ (α−1 (r))|

+

∫ α(t)

0

b(r)|f1 (α−1 (r))| |x(α−1 (r))|2

|α′ (α−1 (r))|
dr

Then

|x (t)| ≤

[
|x0| Q̃ (τ)

1− |x0|
∫ τ

0
Q̃ (s) R̃ (s) ds

]
,

where

Q (t)=exp

(∫ α(t)

0

a(r) |u1 (α
−1 (r))| dr

|α′ (α−1 (r))|

)
, R̃ (t) =

d

dt

(∫ α(t)

0

b(r) |f1 (α−1 (r))|
|α′ (α−1 (r))|

dr

)
From corollary2.4, we get

|x (t)| ≤

 |x0| exp
(∫ t

0
a(u) |u1 (u)| du

)
1− |x0|

∫ t

0
exp

(∫ r

0
a(u) |u1 (u)| du

)
d
dt

(∫ r

0
b(u) |f1 (u)| du

)
dr

 , 0 ≤ t0 ≤ t ≤ ∞

|x (t)| ≤

[
|x0| expM1

1− |x0|
∫ t

0
expM1

d
dt
(M2) dr

]
|x (t)| ≤ |x0| expM1

□

Example 3.4. Consider the following integro-differential inequality with nonlinear control inputs
and delay:

ẋ (t) ≤ f (t) +

∫ t

0

B1(t− τ)u1 (τ)x (τ) dτ +

∫ t

0

B2(t− τ)u2 (x(τ))x (τ) dτ

+

∫ t

0

B3 (t− τ)u3 (τ)x (τ) dτ

∫ t

0

g (t, s)x (s) ds, t ≥ 0 (3.3)

where B1, B2, g ∈ C (R+, R+), for t ≥ 0, the control functions: u1 ∈ L2 (R+, R+) , u2 ∈
L2 (R+ → R+, R+), for t ≥ 0 and τ ∈ ˙C1 (R+, R+) such that τ (t) ≤ t. If α (t) = t − τ (t) is
an increasing of R+ and

|B1(t)u1 (τ)x (τ)| ≤ a (t) |u1 (t)| |x (t)| , |B2(t)u2 (x(τ))x (τ)| ≤ b (t) |f1 (t)| |x (t)|2,

|B3 (t)u3 (τ)x (τ)| ≤ c (t) |u3 (t)| |x (t)| and |g (t, s)x (s)| ≤ d (s) |x (s)| ,

M1 =

∫ ∞

0

a (t) |u1 (t)| ds < ∞ , M2 =

∫ ∞

0

b (t) |u2 (t)| ds < ∞

M3 =
∫∞
0

c (t) |u3 (t)| ds < ∞ , M4 =
∫∞
0

d (t) ds < ∞ and M5 =
∫∞
0

f(s)ds, where M1, M2 ,
M3,M4 and M5 are nonnegative constants, then the solution of (3.3) is uniformly stable on R+.
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Proof . Let x(t) be the solution of (3.3) with the initial condition: x(t0) = x0, hence from (3.3),
x (t) satisfies

ẋ (t) ≤ f (t) +

∫ t

0

B1(t− τ)u1 (τ)x (τ) dτ +

∫ t

0

B2(t− τ)u2 (x(τ))x (τ) dτ

+

∫ t

0

B3 (t− τ)u3 (τ)x (τ) dτ

∫ t

0

g (t, s)x (s) ds, t ≥ 0

˙
= f (t) +

∫ t

t0

B1(α (s))u1 (s)x (s)ds+

∫ t

t0

B2(α (s))u2 (x(s))x (s) ds

+

∫ t

t0

B3 (α (s))u3 (s)x (s) dτ

∫ t

0

g (t, s)x (s) ds

= f(t) +

∫ α(t)

α(t0)

B1(r)u1 (α
−1 (r))x (α−1 (r))

α′ (α−1 (r))
dr +

∫ α(t)

α(t0)

B2(r)u2 (x(α
−1 (r)))x (α−1 (r))

α′ (α−1 (r))
dr

+

∫ α(t)

α(t0)

B3(r)u3 (α
−1 (r))x (α−1 (r))

α′ (α−1 (r))
dr

∫ t

0

g (t, s)x (s) ds

≤
˙

|f (t)|+
∫ α(t)

α(t0)

a(r) |u1 (α−1 (r))| |x (α−1 (r))| dr
|α′ (α−1 (r))|

+

∫ α(t)

α(t0)

b(r) |f1 (α−1 (r))| |x (α−1 (r))| dr
|α′ (α−1 (r))|

+

∫ α(t)

α(t0)

c(r) |u3 (α
−1 (r))| |x (α−1 (r))| dr
|α′ (α−1 (r))|

∫ t

0

d(s) |x (s)| ds.

From Corollary 2.4, we have that

x (t) ≤


[
x0 +

∫ T

0
f(s)ds

]
Q̃ (τ)

1−
(
x0 +

∫ T

0
f(s)ds

) ∫ τ

0
Q̃ (s) R̃ (s) ds

 ,

where

Q (t)=exp

(∫ α(t)

0

a(r) |u1 (α
−1 (r))| |x (α−1 (r))| dr
|α′ (α−1 (r))|

)
and

R̃ (t) =
d

dt

(∫ α(t)

0

b(r) |f1 (α−1 (r))| dr
|α′ (α−1 (r))|

+

(∫ α(t)

0

c(r) |u3 (α
−1 (r))| dr

|α′ (α−1 (r))|

∫ t

0

d(s)ds

))
.

Then

|x (t)| ≤

[
|x0|+

∣∣∣∫ t

0
f(s)ds

∣∣∣] Q̃ (t)

1−
[
|x0|+

∣∣∣∫ t

0
f(s)ds

∣∣∣] ∫ t

0
Q̃ (s) R̃ (s) ds

≤

[
|x0|+

∣∣∣∫ t

0
f(s)ds

∣∣∣] exp(∫ t

0
a (s) |u1 (s)| ds

)
1− |x0|+

∣∣∣∫ t

0
f(s)ds

∣∣∣ ∫ t

0
d
dt

[∫ r

0
b (s) |f1 (s)| ds+

∫ r

0
c (s) |u3 (s)| ds

∫ t

0
d(s)ds

]
exp

(∫ r

0
a (s) |u1 (s)| ds

)
dr

≤

[
|x0|+

∣∣∣∫ t

0
f(s)ds

∣∣∣] eM1

1−
[
|x0|+

∣∣∣∫ t

0
f(s)ds

∣∣∣] ∫ t

0
d
dt
[M2 +M3M4] eM1dr

≤ [|x0|+M5] e
M1

□
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4. Conclusions and Future Plans

In this work, firstly, we have studied and investigated the uniform stability for the solution of some
types of integro-differential inequalities with nonlinear control inputs and delay functions. Secondly,
we have applied the obtained results on some classes of integro-differential inequalities as illustrative
application examples. The results show that the stability technique used in this work is efficient and
robust and it can be applied to a general class and various types of integro-differential inequalities.
As future research plans, one may study the existence-domain of solutions, uniqueness of solutions,
and stability for some classes of fractional order integro-differential inequality. As well as, we may be
concerned with introducing some classes of stochastic integro-differential inequality and investigating
their theoretical properties such as the existence of solutions and stability.
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