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Abstract

Let Pn be the class of all complex polynomials of degree at most n. Recently Rather et. al.[ On
the zeros of certain composite polynomials and an operator preserving inequalities, Ramanujan J.,
54(2021) 605–612. https://doi.org/10.1007/s11139-020-00261-2] introduced an operator N :

Pn → Pn defined by N [P ](z) :=
∑k

j=0 λj
(
nz
2

)j P (j)(z)
j!

, k ≤ n where λj ∈ C, j = 0, 1, 2, . . . , k are such

that all the zeros of φ(z) =
∑k

j=0

(
n
j

)
λjz

j lie in the half plane |z| ≤
∣∣z − n

2

∣∣ and established certain
sharp Bernstein-type polynomial inequalities. In this paper, we prove some more general results
concerning the operator N : Pn → Pn preserving inequalities between polynomials. Our results not
only contain several well known results as special cases but also yield certain new interesting results
as special cases.
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1. Introduction

Polynomial inequalities have been investigated for quite some time and have important appli-
cations in all those mathematical models whose solutions lead to the problem of valuing how large
or small the maximum modulus of the derivative of an algebraic polynomial can be in terms of the
maximum modulus and degree of that polynomial. Polynomial inequalities are also fundamental for
the proofs of many inverse theorems in polynomial approximation theory, which is concerned with
approximating unknown or complicated functions by polynomials. In the first place, this concept of
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best approximation was introduced in Mathematics mainly by the work of the famous mathemati-
cian Chebyshev(1821-1894), who studied some properties of polynomial with least deviation from
given continuous function. He introduced the polynomials known today as Chebyshev polynomials
of first kind, which appear prominently in various extremal problems concerned with polynomial.
Historically, the questions relating to approximations by polynomials have given rise to some of the
interesting problems in Mathematics and engendered extensive research over the past millennium.

2. Preliminaries

Before we state some of the fundamental results in this circle of ideas, we first have a look at the
symbols and notations which will be used throughout this paper.

We shall use Pn to denote the vector space of all polynomials of degree at most n over the
field C of complex numbers. By Pn, we shall be referring to the class of all complex polynomials
P (z) =

∑n
j=0 ajz

j of degree exactly n. For any c ∈ C, the linear function taking z 7→ cz, will be
denoted by σc. We shall also be denoting by ψ the function which maps z 7→ zn. Further we shall
use ◦ to denote the usual composition of functions. Thus, in this notation, for any complex function
F : C 7−→ C, the function F ◦ σR is defined as F ◦ σR(z) := F (σR(z)) = F (Rz), for z ∈ C.

For P ∈ Pn, we have

max
|z|=1
|P ′(z)| ≤ nmax

|z|=1
|P (z)| (2.1)

and

max
|z|=R>1

|P (z)| ≤ Rn max
|z|=1
|P (z)| (2.2)

Inequality (2.1) is due to S.Bernstein [5] (see also[12, 8]), whereas inequality (2.2) is a simple con-
sequence of the maximum modulus principle [9, p.346]. Aziz and Rather [4] generalized inequalities
(2.1) and (2.2) by proving if P ∈ Pn, then for every β with |β| ≤ 1, R > 1 and |z| ≥ 1,

|P (Rz)− βP (z)| ≤ |Rn − β||z|n max
|z|=1
|P (z)|, (2.3)

which clearly includes inequalities (2.1) and (2.2) as special cases. For P ∈ Pn having all its zeros
in |z| ≤ 1, Aziz and Dawood [3] proved that

min
|z|=1
|P ′(z)| ≥ nmin

|z|=1
|P (z)| (2.4)

and

min
|z|=R>1

|P (z)| ≥ Rn min
|z|=1
|P (z)|. (2.5)

Equality in (2.1), (2.2),(2.3), (2.4) and (2.5) holds for polynomial P (z) = γzn, γ 6= 0. If we restrict
ourselves to the class of polynomials P ∈ Pn having no zero in |z| < 1, then the inequalities (2.1)
and (2.2) can be significantly improved and their right hand side can be respectively replaced by

max
|z|=1
|P ′(z)| ≤ n

2
max
|z|=1
|P (z)| (2.6)
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and

max
|z|=R>1

|P (z)| ≤ Rn + 1

2
max
|z|=1
|P (z)| (2.7)

Inequality (2.6) was conjectured by Erdös and verified by Lax [6], while inequality (2.7) is due to
Ankeny and Rivlin [1]. Aziz and Rather [4] used (2.3) to prove that if P ∈ Pn has no zero in |z| < 1,
then for every β with |β| ≤ 1 and R > 1,

|P (Rz)− βP (z)| ≤ |R
n − β||z|n + |1− β|

2
max
|z|=1
|P (z)|, for |z| ≥ 1. (2.8)

Inequality (2.8) is a compact generalization of inequalities (2.6) and (2.7).

Recently Rather et. al., [11], studied the comparative position of the zeros of a polynomial which is
derived by the ’composition’ of two polynomials and obtained the following result:

Theorem 2.1. If all the zeros of polynomial f(z) of degree n lie in |z| ≤ r and if all the zeros of
the polynomial

g(z) = λ0 +

(
n

1

)
λ1z + · · ·+

(
n

k

)
λkz

k, k ≤ n

lie in |z| ≤ s|z − σ|, s > 0 and σ ∈ Cr {0}, then the polynomial

h(z) = λ0f(z) + λ1f
′(z)

(σz)

1!
+ · · ·+ λkf

(k)(z)
(σz)k

k!

has all its zeros in |z| ≤ rmax(1, s).

As an application of above result, they [11] introduced a linear operator N : Pn → Pn, defined by

N [P ](z) :=
k∑
j=0

λj

(nz
2

)j P (j)(z)

j!
, (2.9)

where λj ∈ C, j = 0, 1, 2, . . . , k are such that all the zeros of

φ(z) =
k∑
j=0

(
n

j

)
λjz

j, k ≤ n

lie in the half plane |z| ≤
∣∣z − n

2

∣∣ and established various new Bernstein type polynomial inequalities.

3. Main Results

In this paper, we prove some more general results concerning the operator N : Pn → Pn preserving
inequalities between polynomials. Our results not only contain several well known results as special
cases but also yield certain new interesting results as special cases. We begin by proving the following
result:
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Theorem 3.1. If f ∈ Pn has all its zeros in |z| ≤ 1 and P ∈ Pn is such that

|P (z)| ≤ |f(z)| for |z| = 1,

then for every α ∈ C with |α| ≤ 1, R > 1 and |z| ≥ 1,

|N [P ◦ σR](z)− αN [P ](z)| ≤ |N [f ◦ σR](z)− αN [f ](z)|. (3.1)

The result is sharp and equality in (3.1) holds for P (z) = eiβf(z), β ∈ R.

Many sharp results can be derived from Theorem 3.1. Here we mention few of these.
Setting f(z) = Mzn where M = max|z|=1 |P (z)| in Theorem 3.1, we obtain the following result.

Corollary 3.2. If P ∈ Pn, then for |α| ≤ 1, R > 1 and |z| ≥ 1,

|N [P ◦ σR](z)− αN [P ](z)| ≤ |Rn − α||N [ψ](z)|max
|z|=1
|P (z)|, (3.2)

The result is sharp and equality in (3.2) holds for P (z) = λzn, λ 6= 0, λ ∈ R.

Next taking λi = 0 ∀ i < k and λk 6= 0 in Corollary 3.2, it follows that if P ∈ Pn, then for
|α| ≤ 1, R > 1 and |z| ≥ 1,

|RkP (k)(Rz)− αP (k)(z)| ≤ n!

(n− k)!
|Rn − α||z|n−k max

|z|=1
|P (z)|. (3.3)

Remark 3.3. For k = 0, inequality (3.3) reduces to inequality (2.3).

On the other hand, if we choose P (z) = mzn in Theorem 3.1 where m = min|z|=1 |f(z)|, we obtain
the following result.

Corollary 3.4. If f(z) is polynomial of degree n having all its zeros in |z| ≤ 1, then for |α| ≤ 1, R >
1 and |z| ≥ 1, we have

|N [f ◦ σR](z)− αN [f ](z)| ≥ |Rn − α||N [ψ](z)|m, (3.4)

The result is sharp as shown by polynomial f(z) = λzn, λ 6= 0, λ ∈ R.
Setting λi = 0 ∀ i < k and λk 6= 0, inequality (3.4) yields

|Rkf (k)(Rz)− αf (k)(z)| ≥ n!

(n− k)!
|Rn − α||z|n−km, (3.5)

which for k = 0, leads to

|f(Rz)− αf(z)| ≥ |Rn − α||z|n min
|z|=1
|f(z)|. (3.6)

Remark 3.5. On taking α = 0, inequality (3.6) reduces to inequality (2.5).

Next we present the following result for the class of polynomials having no zero inside the unit circle.
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Theorem 3.6. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for α ∈ C with |α| ≤ 1, R > 1 and |z| ≥ 1

|N [P ◦ σR](z)− αN [P ](z)| ≤ 1

2

(
|Rn − α||N [ψ](z)|+ |1− α||λ0|

)
M, (3.7)

where M = max|z|=1 |P (z)|. The result is best possible and equality in (3.7) holds for P (z) = azn +
b, |a| = |b| 6= 0.

Remark 3.7. For k = 0 inequality (3.7) reduces to inequality (2.8) which includes inequalities (2.6)
and (2.7) as special cases.

Further, if we set λi = 0 ∀ i < k and λk 6= 0 in Theorem 3.6, we get the following result.

Corollary 3.8. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for |α| ≤ 1, R > 1 and |z| ≥ 1

|RkP (k)(Rz)− αP (k)(z)| ≤ n!

2(n− k)!

(
|Rn − α||z|n−k

)
M.

Taking in particular k = 1, we get

|RP ′(Rz)− αP ′(z)| ≤ n

2

(
|Rn − α||z|n−1

)
M.

A polynomial P ∈ Pn is said be self-inversive if P (z) = P ?(z) where P ?(z) := znP (1/z). It is known
[10] that the inequality (2.6) also holds if P ∈ Pn is self-inversive polynomial. In this direction we
prove the following result:

Theorem 3.9. If P ∈ Pn is a self-inversive polynomial, then for every α ∈ C with |α| ≤ 1, R > 1
and |z| ≥ 1,

|N [P ◦ σR](z)− αN [P ](z)| ≤ 1

2

(
|Rn − α||N [ψ](z)|+ |1− α||λ0|

)
M, (3.8)

where M = max|z|=1 |P (z)|. Equality in (3.8) holds for P (z) = zn + 1.

Remark 3.10. By taking λi = 0 ∀ i < k and λk 6= 0 we get the following inequality which contains
a result due to O’hara and Rodriguez [10] as a special case.

|RkP (k)(Rz)− αP (k)(z)| ≤ n!

2(n− k)!

(
|Rn − α||z|n−k

)
M.

4. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma follows from
Theorem 2.1.

Lemma 4.1. If all the zeros of a polynomial P (z) of degree n lie in |z| ≤ r, then all the zeros of
N [P ](z) also lie in |z| ≤ r.

Lemma 4.2. If P ∈ Pn and P (z) has all zeros in |z| ≤ 1, then for R > 1 and |z| = 1,

|P (Rz)| > |P (z)|.
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The proof of above Lemma is simple, we omit the details.

Lemma 4.3. If P ∈ Pn has all its zeros in |z| ≥ 1, then for every α ∈ C with |α| ≤ 1 and R > 1,

|N [P ◦ σR](z)− αN [P ]|(z) ≤ |N [P ∗ ◦ σR](z)− αN [P ∗](z)|, (4.1)

where P ∗(z) = znP
(
1/z
)
. The result is best possible and equality in (4.1) holds for P (z) = zn + 1.

Proof . Since P ∈ Pn has all its zeros in |z| ≥ 1, therefore in view of [12, Lemma 11.5.2], it follows
that for every γ ∈ C with |γ| > 1, the polynomial F (z) = P (z)− γP ∗(z) has all its zeros in |z| ≤ 1.
Applying Lemma 4.2 to the polynomial F (z), we conclude that for R > 1,

|F (z)| < |F (Rz)| for |z| = 1.

Using Rouche’s Theorem it follows that for every α ∈ C with |α| ≤ 1 that all the zeros of polynomial
g(z) = F (Rz) − αF (z) lie in |z| < 1. Invoking Lemma 4.1 with s = 1, t = n/2 and noting that the
operator N is linear, it follows that for |α| ≤ 1, |γ| > 1 and R > 1, all the zeros of the polynomial

G(z) = N [g](z)

= (N [P ◦ σR](z)− αN [P ](z))− γ(N [P ∗ ◦ σR](z)− αN [P ∗](z))
(4.2)

lie in |z| < 1. This implies

|N [P ◦ σR](z)− αN [P ](z)| ≤ |N [P ∗ ◦ σR](z)− αN [P ∗](z)|, for |z| ≥ 1. (4.3)

If inequality (4.3) is not true, then for some point z = z0 with |z0| ≥ 1 we have

|N [P ◦ σR](z0)− αN [P ](z0)| > |N [P ∗ ◦ σR](z0)− αN [P ∗](z0)|.

Since all zeros of P ∗(z) lie in |z| ≤ 1, therefore it follows (as in the case of F (z)) that all the
zeros of P ∗(Rz) − αP ∗(z) lie in |z| < 1. Applying Lemma 4.1, it follows that all the zeros of
N [P ∗ ◦ σR](z)− αN [P ∗](z) lie in |z| < 1, so that N [P ∗ ◦ σR](z0)− αN [P ∗](z0) 6= 0. Taking

γ =
N [P ◦ σR](z0)− αN [P ](z0)

N [P ∗ ◦ σR](z0)− αN [P ∗](z0)

and noting that γ is well defined complex number with |γ| > 1, with this choice of γ in equation
(4.2), it follows that G(z0) = 0, |z0| ≥ 1, which is contradiction to the fact that all the zeros of G(z)
lie in |z| < 1. This completes the proof of Lemma (4.3). �

Finally we need the following lemma.

Lemma 4.4. If P ∈ Pn, then for every α ∈ C with |α| ≤ 1, R > 1 and |z| ≥ 1,

|N [P ◦ σR](z)− αN [P ](z)|+ |N [P ∗ ◦ σR](z)− αN [P ∗](z)|
≤
(
|Rn − α||N [ψ](z)|+ |1− α||λ0|

)
M,

(4.4)

where M = max|z|=1 |P (z)|, P ∗(z) = znP
(
1/z
)
.



Inequalities for an operator 437

Proof . Since |P (z)| ≤M for |z| = 1, hence by Rouche’s Theorem it follows that for µ ∈ C, |µ| > 1,
F (z) = P (z) − µM has all zeros in |z| ≥ 1. Applying Lemma (4.3) to F (z), it follows that α ∈
C, |α| ≤ 1, R > 1 and |z| ≥ 1,

|N [F ◦ σR](z)− αN [F ](z)| ≤ |N [F ∗ ◦ σR](z)− αN [F ∗](z)|, (4.5)

where F ∗(z) = znF
(
1/z
)

= P ∗(z) − µznM. Hence for α, µ ∈ C with |µ| > 1, |α| ≤ 1, R > 1 and
|z| ≥ 1, we obtain

|N [P ◦ σR](z)− αN [P ](z)− µ(1− α)λ0M |
≤ |N [P ∗ ◦ σR](z)− αN [P ∗](z)− µ(Rn − α)N [ψ](z)M |.

(4.6)

Choosing argument of µ such that

|N [P ∗ ◦ σR](z)− αN [P ∗](z)− µ(Rn − α)N [ψ](z)M |
= |µ||Rn − α||N [ψ](z)|M − |N [P ∗ ◦ σR](z)− αN [P ∗](z)|,

which is possible by inequality (3.2), we obtain from (4.6) that for |µ| > 1, |α| ≤ 1, R > 1 and
|z| ≥ 1,

|N [P ◦ σR](z)− αN [P ](z)|+ |N [P ∗ ◦ σR](z)− αN [P ∗](z)|
≤ |µ|(|Rn − α||N [ψ](z)|+ |1− α||λ0|)M.

Letting |µ| → 1, we get inequality (4.4). This completes the proof of lemma 4.4. �

5. Proof of the Theorems

Proof .[Proof of Theorem 3.1] By hypothesis f(z) is a polynomial of degree n having all zeros in
|z| ≤ 1 and P ∈ Pn such that

|P (z)| ≤ |f(z)| for |z| = 1. (5.1)

If zk is a zero of f(z) of multiplicity tk on the unit circle |z| = 1, then it is evident from (5.1) that
zk is also a zero of P (z) of multiplicity at least tk. Let f1(z) =

∏
zk∈X

(z − zk)tk where X = {zk ∈ C :

f(zk) = 0, |zk| = 1}. Then from (5.1), we have∣∣∣∣P (z)

f1(z)

∣∣∣∣ ≤ ∣∣∣∣ f(z)

f1(z)

∣∣∣∣ for |z| = 1.

By Rouche’s theorem for every γ ∈ C with |γ| > 1, the polynomial u(z) = P (z)−γf(z)
f1(z)

has n −
∑
tk

zeros in |z| < 1. Since the polynomial f1(z) has
∑
tk zeros on |z| = 1, the polynomial g(z) =

u(z)f1(z) = P (z)−γf(z) has all the n zeros in |z| ≤ 1. Applying Lemma 4.2 to the polynomial g(z),
it follows that for R > 1 and |z| = 1,

|g(z)| < |g(Rz)|.

Since all the zeros of g(Rz) lie in |z| ≤ 1/R < 1, therefore by Rouche’s Theorem all the zeros of the
polynomial

T (z) = g(Rz)− αg(z)
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lie in |z| < 1 for every α ∈ C with |α| ≤ 1. Using Lemma 4.1 with s = 1, t = n/2 and noting that the
operator N is linear, it follows that for |α| ≤ 1, |γ| > 1 and R > 1, all the zeros of the polynomial

N [T ](z) = N [g ◦ σR](z)− αN [g](z)

= (N [P ◦ σR](z)− αN [P ](z))− γ(N [f ◦ σR](z)− αN [f ](z)) (5.2)

lie in |z| < 1. This implies,

|N [P ◦ σR](z)− αN [P ](z)| ≤ |N [f ◦ σR](z)− αN [f ](z)| for |z| ≥ 1. (5.3)

For if (5.3) is not true, then there exists a point z0 with |z0| ≥ 1, such that

|N [P ◦ σR](z0)− αN [P ](z0)| > |N [f ◦ σR](z0)− αN [f ](z0)|,

Since all zeros of f(z) lie in |z| ≤ 1, therefore it follows (as in the case of g(z)) that all the zeros of
f(Rz) − αf(z) lie in |z| < 1. Applying Lemma 4.1, it follows that all the zeros of N [f ◦ σR](z) −
αN [f ](z) lie in |z| < 1, so that N [f ◦ σR](z0)− αN [f ](z0) 6= 0. Taking

γ =
N [P ◦ σR](z0)− αN [P ](z0)

N [f ◦ σR](z0)− αN [f ](z0)

and noting that γ is a well defined complex number with |γ| > 1 and with this choice of γ, from
(5.2), we get N [T ](z0) = 0, |z0| ≥ 1. This contradicts the fact that all the zeros of N [T ](z) lie in
|z| < 1 and thus establishes (5.3). This completes the proof of Theorem 3.1. �

Proof .[Proof of Theorem 3.6] Since P ∈ Pn, having all its zeros in |z| ≥ 1, therefore from Lemma
4.3 and Lemma 4.4 it follows that for |α| ≤ 1, R > 1 and |z| ≥ 1,

2|N [P ◦ σR](z)− αN [P ](z)|
≤ |N [P ◦ σR](z)− αN [P ](z)|+ |N [P ∗ ◦ σR](z)− αN [P ∗](z)|
≤
(
|Rn − α||N [ψ](z)|+ |1− α||λ0|

)
M,

which is equivalent to inequality (3.7). This completes the proof of Theorem 3.6. �

Proof .[Proof of Theorem 3.9] Since P ∈ Pn is a self-inversive polynomial, therefore,

P (z) = P ∗(z) ∀ z ∈ C,

this gives,

|N [P ◦ σR](z)− αN [P ](z)| = |N [P ∗ ◦ σR](z)− αN [P ∗](z)| ∀ z ∈ C.

Combining this with Lemma 4.4, we get for |α| ≤ 1, R > 1 and |z| ≥ 1,

2|N [P ◦ σR](z)− αN [P ](z)|
= |N [P ◦ σR](z)− αN [P ](z)|+ |N [P ∗ ◦ σR](z)− αN [P ∗](z)|
≤
(
|Rn − α||N [ψ](z)|+ |1− α||λ0|

)
M,

which is equivalent to inequality (3.8) and completes the proof of Theorem 3.9. �
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