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Abstract

In this research, we analyze the existence of solution for some nonlinear functional integral equations
using the techniques of measures of noncompactness and the Petryshyn’s fixed point theorem in
Banach space. The results obtained in this paper cover many existence results obtained by numerous
authors under some weaker conditions. We also give an example satisfying the conditions of our main
theorem but not satisfying the conditions described by other authors.
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1. Introduction

The concept of a measure of noncompactness was introduced for the first time by Kuratowski
[22] in 1930. The theory of measure of noncompactness and densifying operators has applications in
general topology, geometry of Banach spaces, and the theory of integral equations and differential
equations. Nonlinear integral equations have arisen in many branches of science [12, 17] such as
in the theory of optimal control, mathematical physics, population dynamics, economics etc. [30,
7, 20, 3, 39, 28, 9]. Recently, there have been several successful attempt to apply the concept of
measure of noncompactness in the study of the existence of solutions of nonlinear integral equations
[37, 36, 38, 1, 2, 13, 25, 31, 27]. In this paper, we present and prove a new existence theorem for
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solution of nonlinear functional integral equations which contains several functional integral equations
as a special case and is in the following form:

x(t) =

(
q(t) + f(t, x(α1(t)), x(α2(t))) + F

(
t, x(τ1(t)), x(τ2(t)),

∫ ϕ(t)

0

u(t, s, x(θ1(s)))ds
))

×
(
g(t, x(β1(t)), x(β2(t))) +G

(
t, x(υ1(t)), x(υ2(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
))
, t ∈ Ia = [0, a].

(1.1)

Numerous authors have carried out some successful efforts to solve many functional integral equations
by applying Darbo condition which is a powerful tool to study these equations [1, 2, 13, 25, 31, 27, 32,
33, 16, 4, 24, 14, 15]. For the existence of solutions of integral equation (1.1), we use the Petryshyn
fixed point theorem [35] (instead of Darbo’s theorem) that has been analyzed as a generalization of
Darbo’s fixed theorem [5]. The existence result proved in this paper generalizes several ones obtained
earlier by other authors (cf. [25, 31, 27, 32, 33, 16, 4, 24, 14, 15, 10, 34, 23], for example). The idea of
using the Petryshyn fixed point theorem in order to investigate the existence of solution of nonlinear
functional integral equations for the first time was introduced in [21] by Kazemi et al. The following
statements describe the main reasons why we use Eq. (1.1) and what is the excellence of our work:
The first is that the conditions in many papers will be simplified. The second reason is that this
paper unifies the relevant work in this field. The next reason is that bounded condition (H3) of
Theorem 3.1, shows that the ”sublinear condition” that has been discussed in several literature (see
e.g. (C6) below and [25, 16, 10, 34, 23, 26, 8]) have not a significant role.
The paper is organized as five sections including the introduction. In Section 2, we introduce some
preliminaries and use them to obtain our aims in Section 3. Section 3 is devoted to state and prove
existence theorem for equations involving condensing operators using the Petryshyn’s fixed point
theorem. In Section 4, we provide some examples that verifies the applications of these kind of
nonlinear functional-integral equations in nonlinear analysis. Finally Section 5, concludes the paper.

2. Preliminaries

Throughout the paper, we have the following assumptions:

• E: Real Banach space;

• B̄r: Closed ball with center 0 and radius r ;

• ∂B̄r: Sphere in E around 0 with radius r > 0;

• ConvM : Convex hull of a subset M of E;

• ConvM̄ : Closed convex hull of a set M ;

• mE: Set of all bounded subsets of E;

• nE: Set of all relatively compact subsets of E.

Definition 2.1 ([22]). If M is a bounded subset of a Banach space E, let α(M) denote the (Ku-
ratowski) measure of noncompactness of M , that is,

α(M) = inf{ε > 0 : M may be covered by finitely many sets of diameter ≤ ε}. (2.1)

Other measures of noncompactness were introduced by Gol’denšte˘ın.
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Definition 2.2 ([18]). The Hausdorff (or ball) measure of noncompactness

µ(M) = inf{ε > 0 : there exists a finite ε-net for M in E}, (2.2)

where by a finite ε-net for M in E we mean, as usual, a set {d1, d2, ..., dm} ⊂ E such that the
balls Bε(E; d1), Bε(E; d2), ..., Bε(E; dm) over M . These measures of noncompactness are mutually
equivalent in the sense that

µ(M) ≤ α(M) ≤ 2µ(M)

for any bounded set M ⊂ E.

It is easy to see that the following basic results hold for any measure of noncompactness

Theorem 2.3 ([35]). Let E be a Banach space, λ ∈ R and M,N ∈ mE bounded. Then

(i) µ(M) = 0 if and only if M ∈ nE;

(ii) M ⊆ Y implies µ(M) ≤ µ(N) ;

(iii) µ(M̄) = µ(ConvM) = µ(M);

(iv) µ(M ∪N) = max{µ(M), µ(N)};
(v) µ(λM) =| λ | µ(M), where λM = {λm : m ∈M,λ ∈ R};
(vi) µ(M +N) ≤ µ(M) + µ(N), where M +N = {m+ n : m ∈M,n ∈ N}.

In what follows, we focus on the Banach space E = C([0, a],R) consisting of all real-valued functions
and continuous on the interval [0, a]. The space C[0, a] is equipped with the standard norm

‖x‖ = sup{|x(t)| : t ∈ [0, a]}.

Let M be a nonempty bounded subset of E = C([0, a],R) and for u ∈ M, ε > 0, the modulus of
continuity ω(u, ε) is given by:

ω(u, ε) = sup{|u(x)− u(y)| : |x− y| ≤ ε, x, y ∈ [0, a]}.

Further,
ω(M, ε) = sup{ω(u, ε), u ∈M}, ω0(M) = lim

ε→0
ω(M, ε)

It may be shown [6] that ω0(M) is regular measure of noncompactness in C[a, b].

Theorem 2.4 ([18]). On the space C[0, a], the measures of noncompactness (2.2) is equivalent to

µ(M) = lim
ε→0

sup
u∈M

ω(u, ε) = ω0(M) (2.3)

for all bounded sets M ⊂ C[0, a].

For our purpose we use equation (2.3) in the rest of the paper. Closely associated with the measures
of noncompactness is the concept of k-set contraction.

Definition 2.5. [29] Let Γ : E → E be a continuous mapping of E. Γ is called a k-set contraction
if for all B ⊂ E with B bounded, Γ(B) is bounded and β(ΓB) ≤ kβ(B), 0 < k < 1. if

β(ΓB) < β(B), for all β(B) > 0,

then Γ is called densifying or condensing map. A k-set contraction with k ∈ (0, 1), is densifying, but
converse is not true.



454 Manochehr Kazemi

Theorem 2.6 ([35], see also [40]). Assume that Γ : B̄r → E be a densifying mapping which sat-
isfying the boundary condition,

If Γ(x) = kx, for some x in ∂Br then k ≤ 1, (2.4)

then the set of fixed points of Γ in B̄r is nonempty. This is known by Petryshyn’s fixed point theorem.

This property allows us to characterize solution of the integral Eq. (1.1) and will be used in the next
section.

3. Main results

In this section, we will study the existence of the nonlinear functional Eq. (1.1) for x ∈ C[0, a]
under the following assumptions:

(H1) x, q ∈ C(Ia,R), f, g ∈ C(Ia×R×R,R), F,G ∈ C(Ia×R×R×R,R), u ∈ C(Ia×[0, B]×R,R), v ∈
C(Ia × Ia × R,R) ,
Also,
the functions αi, τi, βi, υi, θi : Ia → Ia, i = 1, 2 and ϕ : Ia → R+ are continuous such that
ϕ(t) ≤ B, k = sup |q(t)| for each t ∈ Ia;

(H2) There exist nonnegative constants c, c′, k, k′, 2c+ 2k, 2c′ + 2k′ < 1, such that
|f(t, x1, x2)− f(t, x̄1, x̄2)| ≤ c(|x1 − x̄1|+ |x2 − x̄2|);
|g(t, x1, x2)− g(t, x̄1, x̄2)| ≤ c′(|x1 − x̄1|+ |x2 − x̄2|);
|F (t, x1, x2, x3)− F (t, x̄1, x̄2, x̄3)| ≤ k(|x1 − x̄1|+ |x2 − x̄2|+ |x3 − x̄3|);
|G(t, x1, x2, x3)−G(t, x̄1, x̄2, x̄3)| ≤ k′(|x1 − x̄1|+ |x2 − x̄2|+ |x3 − x̄3|);

(H3) (Bounded condition) There exists r0 ≥ 0 such that the following bounded condition is satisfied
sup{(k + A1 +B1)× (A2 +B2)} ≤ r0,
where,
A1 = sup{|f(t, x1, x2)| : for all t ∈ Ia , and x1, x2 ∈ [−r0, r0]}.
B1 = sup{|F (t, x1, x2, x3)| : for all t ∈ Ia , and x1, x2 ∈ [−r0, r0],−M1B ≤ x3 ≤M1B}.
M1 = sup{|u(t, s, x)| : for all t ∈ Ia, s ∈ [0, B], , and x ∈ [−r0, r0]}.
A2 = sup{|g(t, x1, x2)| : for all t ∈ Ia , and x1, x2 ∈ [−r0, r0]}.
B2 = sup{|G(t, x1, x2, x3)| : for all t ∈ Ia , and x1, x2 ∈ [−r0, r0],−M2a ≤ x3 ≤M2a}.
M2 = sup{|v(t, s, x)| : for all t, s ∈ Ia , and x ∈ [−r0, r0]}.

Theorem 3.1. Under the hypothesis (H1)-(H3), Eq. (1.1) has at least one solution in the Banach
space E = C(Ia).

Proof .To prove this result using Theorem 2.6 as our main tool. Let the operators P,Q : Br0 → E
and Ω are defined on the x such as Ωx = (Px)× (Qx), where,

Px(t) =

(
q(t) + f(t, x(α1(t)), x(α2(t))) + F

(
t, x(τ1(t)), x(τ2(t)),

∫ ϕ(t)

0

u(t, s, x(θ1(s)))ds
))

(3.1)

Qx(t) =

(
t, g(x(β1(t)), x(β2(t))) +G

(
t, x(υ1(t)), x(υ2(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
))
, (3.2)
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for t ∈ Ia.
Now, we show that the operator P is continuous on the ball Br0 . To do this, consider ε > 0 and take
arbitrary x, y ∈ Br0 such that ‖ x− y ‖≤ ε. Then for t ∈ Ia, we get

|(Px)(t)− (Py)(t)|

= |
(
q(t) + f(t, x(α1(t)), x(α2(t))) + F

(
t, x(τ1(t)), x(τ2(t)),

∫ ϕ(t)

0

u(t, s, x(θ1(s)))ds
))

−
(
q(t) + f(t, y(α1(t)), y(α2(t))) + F

(
t, y(τ1(t)), y(τ2(t)),

∫ ϕ(t)

0

u(t, s, y(θ1(s)))ds
))
|

≤ c(|x(α1(t)− y(α1(t)|+ |x(α2(t)− y(α2(t)|)

+ |F
(
t, x(τ1(t)), x(τ2(t)),

∫ ϕ(t)

0

u(t, s, x(θ1(s)))ds
)

− F
(
t, y(τ1(t)), y(τ2(t)),

∫ ϕ(t)

0

u(t, s, y(θ1(s)))ds
)
|

≤ c(|x(α1(t)− y(α1(t)|+ |x(α2(t)− y(α2(t)|)
+ k(|x(τ1(t)− y(τ1(t)|+ |x(τ2(t)− y(τ2(t)|)

+ k

∫ ϕ(t)

0

|u(t, s, x(θ1(s)))− u(t, s, y(θ1(s))))ds|

≤ (2c+ 2k)‖x− y‖+ kBω(u, ε)

and similarly, we have

|(Qx)(t)− (Qy)(t)|

=

∣∣∣∣(q(t) + g(t, x(β1(t)), x(β2(t))) +G
(
t, x(υ1(t)), x(υ2(t)),

∫ a

0

v(t, s, x(θ1(s)))ds
))

−
(
q(t) + g(t, y(β1(t)), y(β2(t))) +G

(
t, y(υ1(t)), y(υ2(t)),

∫ a

0

v(t, s, y(θ1(s)))ds
))∣∣∣∣

≤ c′(|x(β1(t)− y(β1(t)|+ |x(β2(t)− y(β2(t)|)

+ |G
(
t, x(υ1(t)), x(υ2(t)),

∫ a

0

v(t, s, x(θ1(s)))ds
)

− G
(
t, y(υ1(t)), y(υ2(t)),

∫ a

0

v(t, s, y(θ1(s)))ds
)
|

≤ c′(|x(β1(t)− y(β1(t)|+ |x(β2(t)− y(β2(t)|) + k′(|x(υ1(t)− y(υ1(t)|

+ |x(υ2(t)− y(υ2(t)|) + k′
∫ a

0

|v(t, s, x(θ1(s)))− v(t, s, y(θ1(s))))ds|

≤ (2c′ + 2k′)‖x− y‖+ k′Bω(v, ε)

where for ε > 0 we define

ω(u, ε) = sup{|u(t, s, x)− u(t, s, y)| : t ∈ Ia, s ∈ [0, B], x, y ∈ [−r0, r0], ‖x− y‖ ≤ ε}
ω(v, ε) = sup{|v(t, s, x)− v(t, s, y)| : t, s ∈ Ia, x, y ∈ [−r0, r0], ‖x− y‖ ≤ ε}

Since we know that u = u(t, s, x) and v = v(t, s, x) are uniformly continuous on the subset [0, a] ×
[0, B] × R and [0, a] × [0, a] × R , respectively, we infer that ω(u, ε) → 0 and ω(v, ε) → 0 as ε → 0.
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Thus, the above estimates show that the operator P,Q are continuous on Br0 . Hence, Ω is also
continuous on Br0 .
Further, we prove that P and Q satisfy the densifying condition with respect to the measure µ in
the ball Br0 . To do this, we choose a fixed arbitrary ε > 0 . Let us take x ∈ M and M is bounded
subset of E, t1, t2 ∈ Ia such that without loss of generality we may assume that ϕ(t1) ≤ ϕ(t2) with
t2 − t1 ≤ ε, we obtain

|(Px)(t2)− (Px)(t1)|

= |
(
q(t2) + f(t2, x(α1(t2)), x(α2(t2))) + F

(
t2, x(τ1(t2)), x(τ2(t2)),

∫ ϕ(t2)

0

u(t2, s, x(θ1(s)))ds
))

−
(
q(t1) + f(t1, x(α1(t1)), x(α2(t1))) + F

(
t1, x(τ1(t1)), x(τ2(t1)),

∫ ϕ(t1)

0

u(t1, s, x(θ1(s)))ds
))

≤ ω(q, ε) + |f(t2, x(α1(t2)), x(α2(t2))− f(t2, x(α1(t1)), x(α2(t1))|
+ |f(t2, x(α1(t1)), x(α2(t1))− f(t1, x(α1(t1)), x(α2(t1))|

+ |F
(
t2, x(τ1(t2)), x(τ2(t2)),

∫ ϕ(t2)

0

u(t2, s, x(θ1(s)))ds
)

− F
(
t2, x(τ1(t1)), x(τ2(t1)),

∫ ϕ(t1)

0

u(t1, s, x(θ1(s)))ds
)
|

+ |F
(
t2, x(τ1(t1)), x(τ2(t1)),

∫ ϕ(t1)

0

u(t1, s, x(θ1(s)))ds
)

− F
(
t1, x(τ1(t1)), x(τ2(t1)),

∫ ϕ(t1)

0

u(t1, s, x(θ1(s)))ds
)
|

≤ ω(q, ε) + c(|x(α1(t)− y(α1(t)|+ |x(α2(t)− y(α2(t)|) + ω1(f, ε)

+ k(|x(τ1(t)− y(τ1(t)|+ |x(τ2(t)− y(τ2(t)|)

+ k|
∫ ϕ(t2)

0

u(t2, s, x(θ1(s)))ds−
∫ ϕ(t1)

0

u(t1, s, x(θ1(s)))ds|+ ω1(F, ε)

≤ ω(q, ε) + c(ω(x, ω(α1, ε)) + ω(x, ω(α2, ε))) + ω1
r0

(f, ε) + k(ω(x, ω(τ1, ε)) + ω(x, ω(τ2, ε)))

+ k

∫ ϕ(t1)

0

|u(t2, s, x(θ1(s)))− u(t1, s, x(θ1(s)))|ds+ k

∫ ϕ(t2)

ϕ(t1)

|u(t2, s, x(θ1(s)))|ds+ ω1
r0

(F, ε)

≤ ω(q, ε) + c(ω(x, ω(α1, ε)) + ω(x, ω(α2, ε))) + ω1
r0

(f, ε) + k(ω(x, ω(τ1, ε)) + ω(x, ω(τ2, ε)))

+ kBω(u, ε) + kM1ω(ϕ, ε) + ω1
r0

(F, ε)

Similarly,

|(Qx)(t2)− (Qx)(t1)| =∣∣(g(t2, x(β1(t2)), x(β2(t2))) +G
(
t2, x(υ1(t2)), x(υ2(t2)),

∫ a

0

v(t2, s, x(θ2(s)))ds
))

−
(
g(t1, x(β1(t1)), x(β2(t1))) +G

(
t1, x(υ1(t1)), x(υ2(t1)),

∫ a

0

v(t1, s, x(θ1(s)))ds
))∣∣

≤ c′(ω(x, ω(β1, ε)) + ω(x, ω(β2, ε))) + ω1
r0

(g, ε)

+ k′(ω(x, ω(υ1, ε)) + ω(x, ω(υ2, ε))) + k′aω(u, ε) + ω1
r0

(G, ε)
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Let:

ω(q, ε) = sup{|q(t)− q(t̄)| : |t− t̄| ≤ ε, t, t̄ ∈ Ia},
ω1
r0

(u, ε) = sup{|u(t, s, x)− u(t̄, s, x)| : |t− t̄| ≤ ε, t ∈ Ia, s ∈ [0, B] x ∈ [−r0, r0]},
ω1
r0

(v, ε) = sup{|v(t, s, x)− v(t̄, s, x)| : |t− t̄| ≤ ε, t, s ∈ Ia, x ∈ [−r0, r0]},
ω1
r0

(f, ε) = sup{|f(t, x1, x2)− f(t̄, x1, x2)| : |t− t̄| ≤ ε, t ∈ Ia, x1, x2 ∈ [−r0, r0]},
ω1
r0

(g, ε) = sup{|g(t, x1, x2)− g(t̄, x1, x2)| : |t− t̄| ≤ ε, t ∈ Ia, x1, x2 ∈ [−r0, r0],
ω1
r0

(ϕ, ε) = sup{|ϕ(t)− ϕ(t̄)| : |t− t̄| ≤ ε, t, t̄ ∈ Ia,
ω1
r0

(F, ε) = sup{F (t, x1, x2, x3)− F (t̄, x1, x2, x3)| : |t− t̄| ≤ ε, t ∈ Ia, x1, x2 ∈ [−r0, r0],
−M1B ≤ x3 ≤M1B}

ω1
r0

(G, ε) = sup{G(t, x1, x2, x3)−G(t̄, x1, x2, x3)| : |t− t̄| ≤ ε, t ∈ Ia, x1, x2 ∈ [−r0, r0],
−M2a ≤ x3 ≤M2a}

Then using above relation we obtain the estimate

ω(Px, ε) ≤ ω(q, ε) + c(ω(x, ω(α1, ε)) + ω(x, ω(α2, ε))) + ω1
r0

(f, ε) + k(ω(x, ω(τ1, ε))

+ ω(x, ω(τ2, ε))) + kBω(u, ε) + kM1ω(ϕ, ε) + ω1
r0

(F, ε)

and

ω(Qx, ε) ≤ c′(ω(x, ω(β1, ε)) + ω(x, ω(β2, ε))) + ω1
r0

(g, ε) + k′(ω(x, ω(υ1, ε))

+ ω(x, ω(υ2, ε))) + k′aω(u, ε) + ω1
r0

(G, ε)

Taking limit as ε→ 0, we have
µ(PM) ≤ (2c+ 2k)µ(M).

Also,
µ(QM) ≤ (2c′ + 2k′)µ(M).

This means Ω is a densifying map. Finally, investigation of condition (2.4) is remained. Suppose
x ∈ ∂B̄r0 . If Γx = kx then we have kr0 = k‖x‖ = ‖Ωx‖ and by condition (H3) we concluded that

|Ωx(t)| =
∣∣∣∣(q(t) + f(t, x(α1(t)), x(α2(t))) + F

(
t, x(τ1(t)), x(τ2(t)),

∫ ϕ(t)

0

u(t, s, x(θ1(s)))ds
))

×
(
t, g(x(β1(t)), x(β2(t))) +G

(
t, x(υ1(t)), x(υ2(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
))∣∣∣∣ ≤ r0,

for all t ∈ Ia, hence ‖Ωx‖ ≤ r0, so this shows k ≤ 1. The proof is complete. �

Corollary 3.2. [27] Assume that

(C1) q ∈ C(Ia,R) with q = sup |q(t)| <∞, t ∈ Ia.
(C2) f, g ∈ C([0, a]× R× R,R) and F,G ∈ C([0; a]× R× R× R,R).
(C3) There exists the continuous functions aj : [0, a]→ [0, a], for j = 1, 2,...,10 such that

|f(t, x1, x2)− f(t, x̄1, x̄2)| ≤ a1(t)|x1 − x̄1|+ a2(t)|x2 − x̄2|;
|g(t, x1, x2)− g(t, x̄1, x̄2)| ≤ a3(t)|x1 − x̄1|+ a4(t)|x2 − x̄2|;
|F (t, x1, z1, x2)− F (t, x̄1, z̄1, x̄2)| ≤ a5(t)|x1 − x̄1|+ a6(t)|z1 − z̄1|+ a7(t)|x2 − x̄2|;
|G(t, x1, z1, x2)−G(t, x̄1, z̄1, x̄2)| ≤ a8(t)|x1 − x̄1|+ a9(t)|z1 − z̄1|+ a10(t)|x2 − x̄2|;
for all t ∈ Ia and x1, x̄1, x2, x̄2, x̄2, z1, z̄1 ∈ R.



458 Manochehr Kazemi

(C4) The functions u = u(t, s, x(θ1(s))) and v = v(t, s, x(θ2(s))) are continuously from the set
[0, a]× [0, a]×R into R. Moreover, the functions α2, τ2, β2, υ2, θ1 and θ2 transform continuously
the interval [0, a] into itself.

(C5) There exists a nonnegative constant K such that K = max{aj(t)|t ∈ [0, a]} for j = 1, 2, ..., 10.

(C6) (Sublinear condition) There exist the constants ξ and η such that:
|u(t, s, x)| ≤ ξ + η|x|,
|v(t, s, x)| ≤ ξ + η|x|
for all t, s ∈ [0, a] and x ∈ R,

(C7) there exist nonnegative constants l,m such that
|g(t, 0, 0)| ≤ l,
|g(t, 0, 0)| ≤ l,
|F (t, 0, 0, 0)| ≤ m,
|G(t, 0, 0, 0)| ≤ m,
for all t ∈ [0, a].

(C8) 4bc < 1, aη > 1, b = 4K +Kaη, c = k + l +Kaξ +m.

Then the equation

x(t) =

(
q(t) + f(t, x(t), x(α2(t))) + F

(
t, x(t), x(τ2(t)),

∫ t

0

u(t, s, x(θ1(s)))ds
))

×
(
g(t, x(t), x(β2(t))) +G

(
t, x(t), x(υ2(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
))
, t ∈ Ia = [0, a]. (3.3)

has at least one solution in the Banach space E = C(Ia).

Proof . Setting α1(t) = τ1(t) = β1(t) = υ1(t) = ϕ(t) = t, Eq. (1.1) is reduces to the Eq. (3.3).
It is check that (H 2 ) is conducted by (C3 ). Now we prove that (H3) is also holds. Setting
M1 = ξ + ηr0,M2 = ξ + ηr0, then we get

|x(t)| = |
(
q(t) + f(t, x(t), x(α2(t))) + F

(
t, x(t)), x(τ2(t)),

∫ t

0

u(t, s, x(θ1(s)))ds
))

×
(
g(t, x(t), x(β2(t))) +G

(
t, x((t)), x(υ2(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
))

≤
(
k + f(t, x(t), x(α2(t)))− f(t, 0, 0)|+ |f(t, 0, 0)|

+ F
(
t, x(t)), x(τ2(t)),

∫ t

0

u(t, s, x(θ1(s)))ds
)
− F (t, 0, 0, 0)|+ |F (t, 0, 0, 0)|

)
×
(
g(t, x(t), x(β2(t)))− g(t, 0, 0)|+ |g(t, 0, 0)|

+G
(
t, x(t)), x(υ2(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
)
−G(t, 0, 0, 0)|+ |G(t, 0, 0, 0)|

)
≤
(
k + a1(t)|x(t)|+ a2(t)|x(α2(t))|+ l + a3(t)|x(t)|

+ a6(t)

∫ t

0

u(t, s, x(θ1(s)))ds
)

+ a7(t)|x(τ2(t))|+m

)
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×
(
a3(t)|x(t)|+ a4(t)|x(β2(t))|+ l + a8(t)|x(t)|

+ a9(t)

∫ a

0

u(t, s, x(θ2(s)))ds
)

+ a10(t)|x(υ2(t))|+m

)
≤
(
k + 4K‖x‖+ l +Ka(ξ + η‖x‖) +m

)
.
(
4K‖x‖+ l +Ka(ξ + η‖x‖) +m

)
≤
(
(4K +Kaη)‖x‖+ k + l +Kaξ +m

)2
≤
(
b‖x‖+ c

)2
for all t ∈ Ia. Hence, r0 in (H3) is real number that satisfies

sup
t∈Ia
|x(t)| ≤

(
br0 + c

)2 ≤ r0. (3.4)

The inequality (3.4), has a solution in [r1, r2], where

r1 =
1− 2bc−

√
1− 4bc

2b2
,

r2 =
1− 2bc+

√
1− 4bc

2b2
.

Under the assumption (C8), we know that 1 −
√

1− 4bc < 1, so r0 = r1 is a positive real number.
Now, the desired result obtained from Theorem 3.1. �

Corollary 3.3. [32] Assume that

(K1) F,G ∈ C(I × R× R,R) and There exist positive constants k and k′ such that
|F (t, x1, x)− F (t, x2, x)| ≤ k|x1 − x2|,
|G(t, x1, x)−G(t, x2, x)| ≤ k|x1 − x2|,
|F (t, x, x1)− F (t, x, x2)| ≤ k′|x1 − x2|,
|G(t, x, x1)−G(t, x, x2)| ≤ k′|x1 − x2|,
for all x, x1, x2, x, x1, x2 ∈ R, t ∈ I = [0, 1],

(K2) u, v ∈ C(I × I × R,R) and there exist nonnegative constants αi, βi, pi; (i = 1, 2) such that
|u(t, s, x)| ≤ α1 + β1|x|p1 , |v(t, s, x)| ≤ α2 + β2|x|p2 for all t, s ∈ I and x ∈ R,

(K3) ϕ, τ1, υj, θj ∈ C(I, I) for j = 1, 2,

(K4) (kα1 +m1)m2 > 0, where m1 and m2 are the constants such that
|F (t, 0, 0)| ≤ m1, |G(t, 0, 0)| ≤ m2 for all t ∈ I,

(K5) [k(α1 + β1) +m1 + k′][k(α2 + β2) +m2 + k′] < 1,

(K6) k′[(α1 + α2 + β1 + β2) +m1 +m2 + 2k′] + kM [k(α1 + β1) +m1 + k′] < 1,

where M is the nonnegative constant such that |v(t, s, x)| ≤M for all t, s ∈ I and x ∈ [−1, 1].
Then the equation

x(t) = F

(
t,

∫ ϕ(t)

0

u(t, s, x(θ1(t))ds, x(τ1(t))

)
×G
(
t, x(υ1(t))

∫ 1

0

v(t, s, x(θ2(t))ds, x(υ2(t)))

)
, t ∈ [0, 1],

(3.5)
has at least one solution in the Banach space E = C(Ia).

Proof . It can be verified that if q(t) = f(t, x1, x2) = g(t, x1, x2) = 0, F (t, x1, x2, x3) = F (t, x1, x3)
and G(t, x1, x2, x3) = G(t, x1x3, x2) , then Eq. (1.1) is reduces to the Eq. (3.5) for a=1.
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It is easy to cheek that (H2) is concluded by (K1). Now we show that (H3) is also holds. Suppose
that ‖x‖ ≤ r0, r0 > 0 and setting M1 = α1 + β1r

p1
0 ,M2 = α2 + β2r

p2
0 , then we have

|x(t)| =
∣∣∣∣F(t,∫ ϕ(t)

0

u(t, s, x(θ1(t))ds, x(τ1(t))

)
×G

(
t, x(υ1(t))

∫ 1

0

v(t, s, x(θ2(t))ds, x(υ2(t)))

)∣∣∣∣
≤
(
|F
(
t,

∫ ϕ(t)

0

u(t, s, x(θ1(t))ds, x(τ1(t))
)
− F (t, 0, x(τ1(t)))|+ |F (t, 0, x(τ1(t))|

)
×
(
|G
(
t, x(υ1(t))

∫ 1

0

v(t, s, x(θ2(t))ds, x(υ2(t)))
)
−G(t, 0, x(υ2(t)))|+ |G(t, 0, x(υ2(t))|

)
≤
(
k

∫ ϕ(t)

0

|v(t, s, x(γ1(s)))|ds+m1 + k′|x(α(t))|
)

×
(
k

∫ 1

0

|u(t, s, x(γ1(s)))|ds+m2 + k′|x(β(t))|
)

≤
(
k(α1 + β1)‖x(t)‖p1 +m1 + k′‖x‖

)(
k‖x‖(α2 + β2)‖x(t)‖p2 +m2 + k′‖x‖

)
Hence, r0 in (H3) is real number that satisfies(

k(α1 + β1)r
p1
0 +m1 + k′r0

)(
kr0(α2 + β2)r

p2
0 +m2 + k′r0

)
≤ r0

Similar argument as in the first paragraph of the proof of [32, Theorem 3.1] shows that this inequality
has a solution in (0, 1). The proof is complete. �

Remark 3.4. Like the similar argument as the above two corollaries, one can easily prove that
Theorem 2 of [25], Theorem 5 of [31], Theorem 3 of [16],Theorem 3 of [24], Theorem 3.1 of [10],
Theorem 3 of [34], Theorem 3 of [23], Theorem 3.2 of [26] and Theorem 2 of [8] can be obtained
from Theorem 3.1.

4. Applications

In this section, we give some examples of classical integral and functional equations considered
in the applied problems of nonlinear analysis which are particular cases of equation (1.1).

• If q(t) = g(t, x1, x2) = 0, f(t, x1, x2) = f1(t, x1), α1(t) = ϕ(t) = t, F (t, x1, x2, x3) = p(t, x1, x3),
G(t, x1, x2, x3) = q(t, x1, x3), then equation (1.1) is in the following form which was studied in [16].

x(t) =

(
f1(t, x(t)) + p

(
t, x(τ1(t)),

∫ t

0

u(t, s, x(θ1(s)))ds
))
×
(
q
(
t, x(υ1(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
))
.

• For q(t) = f(t, x1, x2) = g(t, x1, x2) = 0, θ1(s) = θ2(s) = s, ϕ(t) = t, F (t, x1, x2, x3) = p(t, x1, x3),
G(t, x1, x2, x3) = q(t, x1, x3), we obtain the following nonlinear functional-integral equation studied
in [23, 8].

x(t) =

(
p
(
t, x(τ1(t)),

∫ t

0

u(t, s, x(s)ds
))
×
(
q
(
t, x(υ1(t)),

∫ a

0

v(t, s, x(s))ds
))
.

• q(t) = f(t, x1, x2) = g(t, x1, x2) = 0, a = 1, F (t, x1, x2, x3) = p(t, x1, x3), G(t, x1, x2, x3) = q(t, x1, x3),
then we get the following functional-integral equation studied in [32].

x(t) =

(
p
(
t, x(τ1(t)),

∫ ϕ(t)

0

u(t, s, x(θ1(s)))ds
))
×
(
q
(
t, x(υ1(t)),

∫ 1

0

v(t, s, x(θ2(s)))ds
))
.
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• If q(t) = f(t, x1, x2) = g(t, x1, x2) = 0, ϕ(t) = t, F (t, x1, x2, x3) = p(t, x1, x3),
G(t, x1, x2, x3) = q(t, x1, x3), then equation (1.1) has the following form as in the paper [10].

x(t) =

(
p
(
t, x(τ1(t)),

∫ t

0

u(t, s, x(θ1(s)))ds
))
×
(
q
(
t, x(υ1(t)),

∫ a

0

v(t, s, x(θ2(s)))ds
))
.

• If q(t) = g(t, x1, x2) = 0, f(t, x1, x2) = f1(t, x1), α1(t) = ϕ(t) = θ1(t) = t, F (t, x1, x2, x3) =
p(t, x1, x3),
G(t, x1, x2, x3) = 1, then equation (1.1) has the following form as in the paper [25].

x(t) = f1(t, x(t)) + p
(
t, x(τ1(t)),

∫ t

0

u(t, s, x(s))ds
)
.

• If q(t) = g(t, x1, x2) = 0, f(t, x1, x2) = f1(t, x1), ϕ(t) = t, F (t, x1, x2, x3) = p(t, x1)x3,
G(t, x1, x2, x3) = 1, then equation (1.1) has the following form as in the paper [31].

x(t) = f1(t, x(α1(t))) + p
(
t, x(τ1(t)))

∫ ϕ(t)

0

u(t, s, x(θ1(s))ds.

• Moreover, if q(t) = f(t, x1, x2) = 0, g(t, x1, x2) = 1, υ1(t) = θ2(t) = t, F (t, x1, x2, x3) = 1,

G(t, x1, x2, x3) = 1 + x1x3, and v(t, s, x) = tφ(s)x
t+s

, then equation (1.1) has the following form

x(t) = 1 + x(t)

∫ a

0

t

t+ s
φ(s)x(s)ds.

The above equation is the famous quadratic integral equation of Chandrasekhar type [11] which
is applied in the theories of radiative transfer, neutron transport and kinetic energy of gases (see
[11, 3, 19, 27, 20]).

Now, we present some examples of functional integral equations to illustrate the usefulness of our
results and consequently, see the existence of its solutions by using Theorem 3.1.

Example 4.1. Consider the following nonlinear Volterra integral equation

x(t) =

(
1

3
te−t +

tsin(x(
√
t))

3(1 + t)
+

1

3(et + 3 sin(|x(t3)|))

∫ t3

0

(s cos(tx(
√
s)) +

3

2
t ln(1 + x(

√
s))ds

)
×
(

1

2(et2 + | cos(|x(t2)|))

∫ 1

0

[(
t

1 + t+ s
)sin(

x(1− s)
1 + x(s− 1)

) +
x(s− 1)

2
]ds

)
, t ∈ [0, 1] (4.1)

Eq. (4.1) is a special case of Eq. (1.1). Here f : [0, 1] × R × R → R, F,G : [0, 1] × R × R × R →
R, α1, τ1, β3, θ, θ1, θ2 : [0, 1] → [0, 1], u, v : [0, 1] × [0, 1] × R → R and comparing (4.1) with eq. (1.1),
we obtain

α1(t) = θ1(t) =
√
t, τ1 = ϕ = t3, a = 1, υ1(t) = t2, θ2(t) = 1− t, for all t ∈ [0, 1],
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q(t) =
1

3
te−t, f(t, x1, x2) =

t

3(1 + t)
sin(x1), g = 0,

F (t, x1, x2, z) =
z

3(et + 3 sin(x1))
, z =

∫ t3

0

(s cos(tx(
√
s)) +

3

2
t ln(1 + x(

√
s))ds,

G(t, x1, x2, w) =
w

2(et2 + | cos(x1)|
, w =

∫ 1

0

[(
t

1 + t+ s
)sin(

x(1− s)
1 + x(s− 1)

) +
x(s− 1)

2
]ds,

u(t, s, θ1(s)) = (s cos(tx(
√
s)) +

3

2
t ln(1 + x(

√
s)), |u(t, s, x)| ≤ 1 +

3

2
|x|

v(t, s, θ2(s)) = (
t

1 + t+ s
)sin(

x(1− s)
1 + x(s− 1)

) +
x(s− 1)

2
, |v(t, s, x)| ≤ 1

2
+

1

2
|x|

Now, we examine the solution in C[0, 1]. It is easy to prove that these functions satisfy the as-
sumptions (H1) and (H2). We show that (H3) also holds. Suppose that ‖x‖ ≤ r0, r0 > 0, then we
have

|x(t)| = |
(

1

3
te−t +

tsin(x(
√
t))

3(1 + t)
+

1

3(et + 3 sin(|x(t3)|))

∫ t3

0

(s cos(tx(
√
s)) +

3

2
t ln(1 + x(

√
s))ds

)
×
(

1

2(et2 + | cos(|x(t2)|))

∫ 1

0

[(
t

1 + t+ s
)sin(

x(1− s)
1 + x(s− 1)

) +
x(s− 1)

2
]ds

)
| ≤ r0,

for all t ∈ Ia. Hence (H3) holds if,

(
1

2
r0 + 1)(

1

2
+

1

4
r0) ≤ r0.

This shows that r0 = 2. Hence, from Theorem 3.1 equation (4.1) has at least one solution in Banach
space C[0, 1].

Example 4.2. Consider the following nonlinear integral equation

x(t) =

(
t2

6 + 6t2
ln(1 + |x(t3)|+ t

4

∫ t

0

(t sin(x(
√
s)) + arctan(

|x(
√
s))|

1 + |x(
√
s)|

)ds

)
×
(

1

4
cos(x(1− t)) +

1

3

∫ 1

0

[e−3t
2

(et + t cos(s) + sin(
x(s)

1 + x(s)
]ds

)
, t ∈ [0, 1]. (4.2)

Here,
α1(t) = t3, θ1(t) =

√
t, ϕ = θ1(t) = t, a = 1, β1(t) = 1− t, for all t ∈ [0, 1],

q(t) = 0, f(t, x1, x2) =
t2

6 + 6t2
ln(1 + |x1|), g(t, x1, x2) =

1

4
cos(x1),

F (t, x1, x2, z) =
tz

4
, z =

∫ t

0

(t sin(x(
√
s)) + arctan(

|x(
√
s)|

1 + |x(
√
s)|

)ds,

G(t, x1, x2, w) =
tw

3
, w =

∫ 1

0

[e−3t
2

(et + t cos(s) + sin(
x(s)

1 + x(s)
]ds,

u(t, s, θ1(s)) = t sin(x(
√
s)) + arctan(

|x(
√
s)|

1 + |x(
√
s|

), |u(t, s, x)| ≤ 1 + |x|

v(t, s, θ2(s)) = e−3t
2

(et + t cos(s) + sin(
x(s)

1 + x(s)
), |v(t, s, x)| ≤ e+ 2
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for all t ∈ [0, 1].
Now, we can see that these functions satisfy the assumptions (H1) and (H2). We check that (H3)
also holds. Suppose that ‖x‖ ≤ r0, r0 > 0, then we have

|x(t)| = |
(

t2

6 + 6t2
ln(1 + |x(t3)|+ t

4

∫ t

0

(t sin(x(
√
s)) + arctan(

|x(
√
s)|

1 + |x(
√
s)|

)ds

)
×
(

1

4
cos(x(1− t)) +

1

3

∫ 1

0

[e−3t
2

(et + t cos(s) + sin(
x(s)

1 + x(s)
]ds

)
| ≤ r0,

for all t ∈ [0, 1]. Hence (H3) holds if,

(
1

6
+

1

4
(1 + r0))(

1

4
+

1

3
(e+ 2)) ≤ r0.

. Hence, (H3) holds if r0 ≥ 1.8946. Hence, from Theorem 3.1 equation (4.3) has at least one solution
in Banach space [0, 1].

Example 4.3. Consider the following nonlinear integral equation

x(t) =

(
et

2 + t
sin(x(t)) +

1

2 + t2

∫ √t
0

(
√

1 + |x(
√
s)|+ ts)(1 + cos(s))

4 + s2
ds

)
×
(
e−t +

1

5 + t3

∫ 1

0

(sin(
√
t))(
√

1 + |x(
√
s)|)

1 + s+ ln(1 + s)
ds

)
, t ∈ [0, 1]. (4.3)

Here,
α1(t) = t, θ1(t) =

√
t, ϕ = θ2(t) =

√
t, a = 1, for all t ∈ [0, 1],

q(t) = 0, f(t, x1, x2) =
et

2 + t
sin(x1), g(t, x1, x2) = e−t,

F (t, x1, x2, z) =
z

2 + t2
, z =

∫ √t
0

(
√

1 + |x(
√
s)|+ ts)(1 + cos(s))

4 + s2
ds,

G(t, x1, x2, w) =
w

5 + t3
, w =

∫ 1

0

(sin(
√
t))(
√

1 + |x(
√
s)|)

1 + s+ ln(1 + s)
ds,

u(t, s, θ1(s)) =
(
√

1 + |x(
√
s)|+ ts)(1 + cos(s))

4 + s2
, |u(t, s, x)| ≤ 1

2

√
1 + |x|

v(t, s, θ2(s)) =
(sin(
√
t))(
√

1 + |x(
√
s)|)

1 + s+ ln(1 + s)
, |v(t, s, x)| ≤

√
1 + |x|

for all t ∈ [0, 1].
Now, we can see that these functions satisfy the assumptions (H1) and (H2). We check that (H3)
also holds. Suppose that ‖x‖ ≤ r0, r0 > 0, then we have

|x(t)| = |
(

et

2 + t
sin(x(t)) +

1

2 + t2

∫ √t
0

(
√

1 + |x(
√
s)|+ ts)(1 + cos(s))

4 + s2
ds

)
×
(
e−t +

1

5 + t3

∫ 1

0

(sin(
√
t))(
√

1 + |x(
√
s)|)

1 + s+ ln(1 + s)
ds

)
ds| ≤ r0,
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for all t ∈ Ia. Hence (H3) holds if,

(
1

2
+

1

4

√
1 + r0)(1 +

1

5

√
1 + r0) ≤ r0.

This shows that r0 = 1.1147. Hence, from Theorem 3.1 equation (4.3) has at least one solution in
Banach space [0, 1]. Since there is no constants α1, β1, α2 and β2 satisfying the inequalities (Sublinear
condition)

|u(t, s, x)| ≤ α1 + β1|x|,
|v(t, s, x)| ≤ α2 + β2|x|

for all t, s ∈ Ia and x ∈ R, the results in [25], [27], [10] and [26] are inapplicable to the integral
equation (4.3).

5. Conclusion and Perspective

In this paper, we have discussed about the existence of the solutions of nonlinear functional-
integral equations in Banach algebra by using a strategy which is different from other authors ap-
proach [2, 13, 25, 31, 27, 32, 33, 16, 4, 24, 14, 15, 10, 34, 23]. The advantage of Theorem 2.6 among
the others (Darbo and Schauder fixed point theorems) lies in that in applying the theorem, one does
not need to verify the involved operator maps a closed convex subset onto itself. Also in future, the
researchers can acheive solvability of infinite systems of the Eq. (1.1) and the existence of solution
of implicit fractional integral equations or implicit fractional differential equations using Petryshyn’s
Fixed point theorem with numerical methods in different function spaces. Further, condition (2.4)
deals with the eigenvalue of nonlinear operator Γ which the author hope that this can be constitute
to further study in this field of research.
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