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equation with variable-exponent nonlinearities and
arbitrary initial energy level

Mohammad Shahrouzia

aDepartment of Mathematics, Jahrom University, Jahrom, Iran, P.O.Box: 74137-66171

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we consider the nonlinear r(x)−Laplacian Lamé equation

utt −∆eu− div
(
|∇u|r(x)−2∇u

)
+ |ut|m(x)−2ut = |u|p(x)−2u

in a smoothly bounded domain Ω ⊆ Rn, n ≥ 1, where r(.), m(.) and p(.) are continuous and
measurable functions. Under suitable conditions on variable exponents and initial data, the blow-up
of solutions is proved with negative initial energy as well as positive.
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1. Introduction and preliminaries

In this paper, we consider the following initial boundary problem:

utt −∆eu− div
(
|∇u|r(x)−2∇u

)
+ |ut|m(x)−2ut = |u|p(x)−2u, x ∈ Ω t > 0 (1.1)

u(x, t) =
∂u

∂ν
(x, t) = 0, x ∈ ∂Ω t > 0 (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)
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where Ω ⊂ Rn(n ≥ 1) is a bounded domain. ∆e denotes the elasticity operator, which is the
differential operator defined by

∆eu = µ∆u+ (λ+ µ)∇(div u),

λ and µ are the Lamé constants which satisfy the following conditions

µ > 0, λ+ µ ≥ 0.

Here, r(.), m(.) and p(.) are given measurable functions on Ω such that:

2 < r1 ≤ r(x) ≤ r2

2 < m1 ≤ m(x) ≤ m2 (1.4)

2 < p1 ≤ p(x) ≤ p2

with
r1 := essinfx∈Ωr(x), r2 := esssupx∈Ωr(x),

m1 := essinfx∈Ωm(x), m2 := esssupx∈Ωm(x),

p1 := essinfx∈Ωp(x), p2 := esssupx∈Ωp(x).

Study of interaction between source terms and damping terms has attracted the attention of many
mathematicians in the case of constant exponents. But less is know about the case of variable
exponents. Modeling of some physical phenomena such as flows of electro-rheological fluids, filtration
processes in porous media, and image processing produces equation with variable exponents.
In the case of constant exponent, the following equation

utt −∆u+ g(ut) = f(u) (1.5)

in a bounded domain Ω, with smooth boundary, was considered at a large scale. When g(ut) =
|ut|m−2ut and f(u) = |u|p−2u, firstly, Levine [13] discussed (5) for m = 2 and established blow-up
result for solutions with negative initial energy. For more information about the equation (1.5), we
refer the reader to [3, 12, 15, 19, 20, 22].
In case of variable exponent, Messaoudi and Talahmeh [16] investigated problem (1.1)-(1.3) without
elasticity term i.e. λ = µ = 0. They proved the blow-up of solutions under sufficient conditions on
m, p, r and the initial data.
Shahrouzi [21] studied the solution behaviour of the following viscoelastic equation with variable-
exponent nonlinearities

utt −∆u− div(|∇u|m(x)∇u) +

∫ t

0

g(t− τ)∆u(τ)dτ + h(x, t, u,∇u) + βut = |u|p(x)u,

and proved general decay of solutions for appropriate initial data and when h(x, t, u,∇u) ≡ 0. Also,
the blow up of solutions has been proved with positive initial energy and suitable conditions on datas
when β = 0. For more results regarding this matter, we refer the reader to the review paper [17].
On the other hand, equations with elasticity operator has attracted considerable attention in recent
years, where diverse types of dissipative mechanisms have been introduced and several stability and
boundedness results have been obtained. Bchatnia and Guesmia [5] considered the elasticity system
in 3-dimension bounded domain with infinite memories and proved that system is well-possed and
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stable. Moreover, they established solutions converge to zero at infinity in terms of the growth of
the infinite memories. Li and Bao [14] investigated a memory-type elasticity problem and obtained
global existence and the general energy decay of solutions by using perturbed energy method. (see
also [4, 6])
Recently, Antontsev et al. [2] considered the following nonlinear plate (or beam) Petrovsky equation
with strong damping and source terms with variable exponents:

utt + ∆2 −∆ut + |ut|p(x)−2ut = |u|q(x)−2u.

By using the Banach contraction mapping principle they obtained local weak solutions, under suitable
assumptions on the variable exponents p(.) and q(.). Also, they proved that the solution is global if
p(.) ≥ q(.) and if p(.) < q(.) then there exists a solution with negative initial energy that blows up
in finite time.(see also [18])

Motivated by the aforementioned works, in this paper, we try to extend the results of [16] to an
elasticity equation. Indeed, by using different method we provide the sufficient conditions on variable
exponents and initial data for the blow up of solutions of the problem (1.1)-(1.3) with negative initial
energy as well as positive.

Throughout this paper we recall some notations and functionals. We denote by ‖.‖q the Lq-norm
over Ω . In particular, the L2-norm is denoted ‖.‖ in Ω and ‖.‖Γi in Γi. Also (., .) denotes the usual
L2-inner product. In order to study problem (1.1)-(1.3), we need some theories about Lebesgue
and Sobolev spaces with variable-exponents (for detailed, see [7, 8, 9, 10, 11]). Let p(x) ≥ 1 and
measurable, we assume that

C+(Ω) = {h|h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},

h+ = max
Ω

h(x), h− = min
Ω
h(x) for any h ∈ C(Ω),

Lp(x)(Ω) =
{
u| u is a measurable real − valued function,

∫
Ω

|u(x)|p(x)dx <∞
}
.

We equip the Lebesgue space with a variable exponent, Lp(x)(Ω), with the following Luxembourg-type
norm

‖u‖p(x) := inf
{
λ > 0

∣∣∣ ∫
Ω

|u(x)

λ
|p(x)dx ≤ 1

}
.

The variable-exponent Lebesgue Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) such that ∇u exists and |∇u| ∈ Lp(x)(Ω)}.

This space is a Banach space with respect to the norm ‖u‖W 1,p(x)(Ω) = ‖u‖p(x) + ‖∇u‖p(x). Further-

more, let W
1,p(x)
0 (Ω) be the closure of C∞0 (Ω) in W 1,p(x)(Ω). The dual of W

1,p(x)
0 (Ω) is defined as

W−1,p′(x)(Ω), by the same way as the usual Sobolev spaces, where 1
p(x)

+ 1
p′(x)

= 1.
If we define

p∗(x) =

{
essinfx∈Ω

Np(x)
(N−p(x))

, p+ < N

∞, p+ ≥ N,

then we have

Lemma 1.1. [7, 11] Let Ω be a bounded domain in Rn then for any measurable bounded exponent
p(x) we have
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(i) W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable Banach spaces;

(ii) if q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the imbedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is
compact and continuous;
(iii) if p(x) is uniformly continuous in Ω then there exists a constant C > 0, such that

‖u‖p(x) ≤ C‖∇u‖p(x) ∀u ∈ W 1,p(x)
0 (Ω).

By (iii) of Lemma 1.1, we know that the space W
1,p(x)
0 (Ω) has an equivalent norm given by

‖u‖W 1,p(x)(Ω) = ‖∇u‖p(x).
At this point, we state the local existence of solutions for the problem (1.1)-(1.3), that can be
established employing the Galerkin method as in [1].

Theorem 1.2. (Local existence) Let u0 ∈ W
1,r(.)
0 (Ω), u1 ∈ L2(Ω) and assume that the exponents

r(.), m(.) and p(.) satisfy conditions (1.4) then problem (1.1)-(1.3) has a unique weak solution such
that

u ∈ L∞
(

(0, T ),W
1,r(.)
0 (Ω) ∩H2(Ω)

)
, u1 ∈ L∞

(
(0, T ), L2(Ω)

)
,

utt ∈ L∞
(

(0, T ),W
−1,r′(.)
0 (Ω)

)
,

where 1
r(.)

+ 1
r′(.)

= 1.

The energy function related with problem (1.1)-(1.3) is given by

E(t) =
1

2
(‖ut‖2 + µ‖∇u‖2 + (λ+ µ)

∫
Ω

|div u|2dx) +

∫
Ω

|∇u|r(x)

r(x)
dx−

∫
Ω

|u|p(x)

p(x)
dx, (1.6)

Lemma 1.3. (Monotonicity of energy) Let u be a local solution of (1.1)-(1.3) and satisfy the con-
ditions of Theorem 1.2. Then the energy functional along the solution satisfies

E ′(t) = −
∫

Ω

|ut|m(x)dx ≤ 0. (1.7)

Proof . By multiplying equation (1.1) by ut and integrating over Ω, using integration by parts,
we obtain (1.7) for any regular solution. This equality remains valid for weak solutions by a simple
density argument. �

2. Blow up result with negative initial energy level

In this section we prove the blow up of solutions with negative initial energy and suitable condi-
tions on variable exponents. This result reads as follows:

Theorem 2.1. Let the assumption of Theorem 1.2 be satisfied and assume that µ sufficiently large
and

r2 ≤ m2 ≤ min{p1,
Kε

Kε+ σ − 1
}, (2.1)

where σ,K and ε are constants such that Kε
2
< 1−σ < 1. Then for E(0) < 0, the solution of problem

(1.1)-(1.3) blows up in a finite time.
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Proof . To prove the blow-up result, let H(t) = −E(t):

H(t) =

∫
Ω

|u|p(x)

p(x)
dx− 1

2
(‖ut‖2 + µ‖∇u‖2 + (λ+ µ)

∫
Ω

|div u|2dx)−
∫

Ω

|∇u|r(x)

r(x)
dx, (2.2)

therefore we have for negative initial energy, H(t) ≥ 0 and

H(t) ≤
∫

Ω

|u|p(x)

p(x)
dx ≤ 1

p1

∫
Ω

|u|p(x)dx. (2.3)

Now, define for sufficiently small ε > 0 and σ < 1

ψ(t) = H1−σ(t) + ε

∫
Ω

uutdx, (2.4)

by differentiation we get

ψ′(t) = (1− σ)H−σ(t)H ′(t) + ε‖ut‖2 + ε

∫
Ω

uuttdt

= (1− σ)H−σ(t)H ′(t) + ε‖ut‖2 − εµ‖∇u‖2 − ε(µ+ λ)

∫
Ω

|div u|2dx

− ε
∫

Ω

|∇u|r(x)dx− ε
∫

Ω

u|ut|m(x)−2utdx+ ε

∫
Ω

|u|p(x)dx. (2.5)

At this point, we derive from (2.2) that

ψ′(t) = (1− σ)H−σ(t)H ′(t) + εm2H(t) + εµ(
m2

2
− 1)‖∇u‖2 + ε(1 +

m2

2
)‖ut‖2

+ε(µ+ λ)(
m2

2
− 1)

∫
Ω

|div u|2dx+ εm2

∫
Ω

|∇u|r(x)

r(x)
dx− εm2

∫
Ω

|u|p(x)

p(x)
dx

− ε
∫

Ω

|∇u|r(x)dx− ε
∫

Ω

u|ut|m(x)−2utdx+ ε

∫
Ω

|u|p(x)dx. (2.6)

Using the conditions of functions r(.) and p(.), deduce from (2.6)

ψ′(t) ≥ (1− σ)H−σ(t)H ′(t) + εm2H(t) + εµ(
m2

2
− 1)‖∇u‖2 + ε(1 +

m2

2
)‖ut‖2

+ε(µ+ λ)(
m2

2
− 1)

∫
Ω

|div u|2dx+ ε(
m2

r2

− 1)

∫
Ω

|∇u|r(x)dx

+ ε(1− m2

p1

)

∫
Ω

|u|p(x)dx− ε
∫

Ω

u|ut|m(x)−2utdx. (2.7)

On the other hand, by using the Young’s inequality we have for any δ > 0∫
Ω

u|ut|m(x)−1dx ≤
∫

Ω

δm(x)

m(x)
|u|m(x)dx+

∫
Ω

m(x)− 1

m(x)
δ−

m(x)
m(x)−1 |ut|m(x)dx

≤ δm1

m1

∫
Ω

|u|m(x)dx+ (
m2

m2 − 1
)δ
− m2
m2−1

∫
Ω

|ut|m(x)dx. (2.8)
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Let c∗ be the best constant of embedding H1
0 ↪→ Lm(.)(Ω), then we have∫

Ω

|u|m(x)dx ≤ max{‖u‖m1

m(x), ‖u‖
m2

m(x)} ≤ max{cm1
∗ ‖∇u‖m1 , cm2

∗ ‖∇u‖m2}

≤ max{cm1
∗ ‖∇u‖m1−2, cm2

∗ ‖∇u‖m2−2}‖∇u‖2 ≤ C‖∇u‖2. (2.9)

Combining (2.8) with (2.9), we get (δ = 1)∫
Ω

u|ut|m(x)−1dx ≤ C

m1

‖∇u‖2 + (
m2

m2 − 1
)

∫
Ω

|ut|m(x)dx. (2.10)

By applying (2.10) into (2.7), we easily get

ψ′(t) ≥ (1− σ)H−σ(t)H ′(t) + εm2H(t) + ε
[
µ(
m2

2
− 1)− C

m1

]
︸ ︷︷ ︸

I1

‖∇u‖2

+ε (1 +
m2

2
)︸ ︷︷ ︸

I2

‖ut‖2 + ε(µ+ λ) (
m2

2
− 1)︸ ︷︷ ︸
I3

∫
Ω

|div u|2dx+ ε (
m2

r2

− 1)︸ ︷︷ ︸
I4

∫
Ω

|∇u|r(x)dx

+ ε (1− m2

p1

)︸ ︷︷ ︸
I5

∫
Ω

|u|p(x)dx− ε( m2

m2 − 1
)

∫
Ω

|ut|m(x)dx. (2.11)

Thanks to (1.7) and definition of H(t), we have for appropriate constant K (K < 2
ε
)

−
∫

Ω

|ut|m(x)dx = E ′(t) = −H ′(t) ≥ −KH−σ(t)H ′(t),

substituting this inequality into (2.11) to obtain

ψ′(t) ≥
[
(1− σ)− εK(

m2

m2 − 1
)
]
H−σ(t)H ′(t) + εβ

[
H(t) + ‖ut‖2 + ‖∇u‖2

+(λ+ µ)

∫
Ω

|div u|2dx+

∫
Ω

|∇u|r(x)dx+

∫
Ω

|u|p(x)dx
]

≥ εβ
[
H(t) + ‖ut‖2 + ‖∇u‖2 + (λ+ µ)

∫
Ω

|div u|2dx

+

∫
Ω

|∇u|r(x)dx+

∫
Ω

|u|p(x)dx
]
, (2.12)

where (2.1) has been used and
β = min{I1, I2, I3, I4, I5}.

Finally, inequality (2.12) implies that ψ(t) ≥ ψ(0) > 0 ∀t ≥ 0.
Suppose that C is a generic constant, by using the Hölder and Young inequalities, we have

|
∫

Ω

uutdx|
1

1−σ ≤ C(‖u‖
1

1−σ
p1 ‖ut‖

1
1−σ ) ≤ C(‖u‖p1p1 + ‖ut‖2 +H(t)). (2.13)
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Combining (2.13) with (2.4), we obtain for some ξ > 0

ψ
1

1−σ (t) =
[
H1−σ(t) + ε

∫
Ω

uutdx
] 1

1−σ ≤ 2
1

1−σ

(
H(t) + ε

1
1−σ |

∫
Ω

uutdx|
1

1−σ

)
≤ C(‖u‖p1p1 + ‖ut‖2 +H(t)) ≤ ξ−1ψ′(t),

therefore
ψ′(t) ≥ ξψ

1
1−σ (t). (2.14)

Integrating (2.14) from 0 to t, we deduce

ψ
σ

1−σ (t) ≥ 1

ψ−
σ

1−σ (0)− ξσt
1−σ

.

This shows that solutions blow up in finite time t∗ = 1−σ
ξσψ

σ
1−σ (0)

, and proof of Theorem 2.1 has been

completed. �

3. Blow up result with positive initial energy level

In this section we shall prove that the solutions of (1.1)-(1.3) blow up in a finite time when
variable exponents satisfy appropriate conditions and initial energy is positive. To prove this result,
we assumed that:
(B1)

2(1 +
C

µm1

) < r2 ≤ p1,
m2

m2 − 1
≤ 2

√
r2 + 2

2r2
2C

[µ(
r2 − 2

2
)− C

m1

].

Our main result in this section reads in the following theorem:

Theorem 3.1. Suppose that the assumptions of Theorem 1.2 and (B1) hold. Moreover, E(0) >
0(maybe large enough) is a given initial energy level. If we choose initial data u0, u1 satisfying

m2

m2 − 1

∫
Ω

u0u1dx > E(0), (3.1)

then the solution of (1.1)-(1.3) blows up in finite time, i.e., there exists T ∗ < +∞ such that

lim
t→T ∗

E(t) = +∞.

Proof . Let define A(t) =
∫

Ω
uutdx, then by using equation (1.3) we have

A′(t) = ‖ut‖2 − µ‖∇u‖2 − (λ+ µ)

∫
Ω

|div u|2dx−
∫

Ω

|∇u|r(x)dx+

∫
Ω

|u|p(x)dx−
∫

Ω

u|ut|m(x)−2utdx.

By using the definition of E(t), we obtain

A′(t) ≥ −r2E(t) +
r2 + 2

2
‖ut‖2 +

µ

2
(r2 − 2)‖∇u‖2 +

(λ+ µ)

2
(r2 − 2)

∫
Ω

|div u|2dx

+
p1 − r2

p1

∫
Ω

|u|p(x)dx−
∫

Ω

u|ut|m(x)−2utdx. (3.2)
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Utilizing inequality (2.10) and (1.7), the last term of above inequality can be estimated as:∫
Ω

u|ut|m(x)−1dx ≤ C

m1

‖∇u‖2 − m2

m2 − 1
E ′(t). (3.3)

Therefore by combining (3.2) with (3.3), we deduce

A′(t) ≥ −r2E(t) +
r2 + 2

2
‖ut‖2 + [

µ

2
(r2 − 2)− C

m1

]‖∇u‖2

+
(λ+ µ)

2
(r2 − 2)

∫
Ω

|div u|2dx+
p1 − r2

p1

∫
Ω

|u|p(x)dx+
m2

m2 − 1
E ′(t).

Since r2 ≥ 2 + 2C
µm1

, we get

d

dt
(A(t)− m2

m2 − 1
E(t)) ≥ −r2E(t) +

r2 + 2

2
‖ut‖2 +

1

C
[
µ

2
(r2 − 2)− C

m1

]‖u‖2

+
(λ+ µ)

2
(r2 − 2)

∫
Ω

|div u|2dx+
p1 − r2

p1

∫
Ω

|u|p(x)dx, (3.4)

where the part (iii) of Lemma 1.1 has been used.
Thanks to (B1), since 2 < r2 ≤ p1 we get from the last inequality

d

dt
(A(t)− m2

m2 − 1
E(t)) ≥ −r2E(t) +

r2 + 2

2
‖ut‖2 +

1

C
[
µ

2
(r2 − 2)− C

m1

]‖u‖2. (3.5)

Using Cauchy inequality, we have

r2 + 2

2
‖ut‖2 +

1

C
[
µ

2
(r2 − 2)− C

m1

]‖u‖2 ≥ 2

√
r2 + 2

2C
[µ(

r2 − 2

2
)− C

m1

]A(t).

Therefore we get

d

dt
(A(t)− m2

m2 − 1
E(t)) ≥ −r2E(t) + 2

√
r2 + 2

2C
[µ(

r2 − 2

2
)− C

m1

]A(t)

≥ r2m2

m2 − 1
(A(t)− m2 − 1

m2

E(t)), (3.6)

where the condition (B1) has been used.
Now, define

H(t) = A(t)− m2

m2 − 1
E(t), (3.7)

where by hypotheses of Theorem 3.1 we have H(0) ≥ 0. Thus inequality (3.6) yields

H ′(t) ≥ r2m2

m2 − 1
H(t),

and integration over t, we deduce

H(t) ≥ e
r2m2
m2−1

t
H(0), ∀t > 0. (3.8)
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It is easy to see that

e
r2m2
m2−1

t
H(0) ≤ H(t) = A(t)− m2

m2 − 1
E(t) ≤ A(t) =

∫
Ω

uutdx. (3.9)

By using Hölder inequality, we have∫
Ω

uutdx ≤
C

2
‖∇u‖2 +

1

2
‖ut‖2. (3.10)

Utilizing (3.10) into (3.9), we deduce

e
r2m2
m2−1

t
H(0) ≤ H(t) ≤ C

2
‖∇u‖2 +

1

2
‖ut‖2. (3.11)

Also, by using Lemma 1.3 since u is global, we have for a positive constant C, we have ‖∇u‖2 ≤ C.
Thus inequality (3.11) shows that ‖ut‖ grows exponentially.
On the other hand, Monotonicity of energy yields

E(0) = E(t)−
∫ t

0

∫
Ω

|ut(s)|m(x)dxds,

thus by assumption of Theorem 3.1 that 0 < E(t) ≤ E(0), therefore we obtain∫ t

0

∫
Ω

|ut(s)|m(x)dxds ≤ E(0). (3.12)

Finally, since 2 < m(x), we have∫ t

0

‖ut(s)‖2ds ≤ C

∫ t

0

∫
Ω

|ut(s)|m(x)dxds ≤ CE(0),

which contradicts the previous result that ‖ut‖ is exponentially growing. Therefore there exists
a finite time T ∗ such that solutions of problem (1.1)-(1.3) blow up and proof of Theorem 3.1 is
completed. �
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