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Abstract

Using the fixed point method, we prove the Hyers-Ulam stability and the superstability of n-
Jordan ∗-derivations in Fréchet locally C∗-algebras for the following generalized Jensen-type func-
tional equation
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1. Introduction and preliminaries

In this paper, assume that n is an integer greater than 1.

Definition 1.1. Let n ∈ N − {1} and let A be a ring and B be an A-module. An additive map
D : A→ B is called n-Jordan derivation if

D(an) = D(a)an−1 + aD(a)an−2 + . . .+ an−2D(a)a+ an−1D(a),

for all a ∈ A .
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The concept of n-jordan derivations was studied by Eshaghi Ghordji.(see also [7, 8, 13]).

Definition 1.2. Let A , B be C∗-algebras. A C-linear mapping D : A → B is called n-Jordan
∗-derivation if

D(an) = D(a)an−1 + aD(a)an−2 + . . .+ an−2D(a)a+ an−1D(a),

D(a∗) = D(a)∗

for all a ∈ A.

We say functional equation (ξ) is stable if any function g satisfying the equation (ξ) approxi-
mately is near to the true solution of (ξ). We say that a functional equation is superstable if every
approximate solution is an exact solution of it.

The stability of functional equations was first introduced by Ulam [28] in 1940. More precisely,
he proposed the following problem: Given a group G1, a metric group (G2, d) and ϵ > 0, does there
exist a δ > 0 such that if a mapping f : G1 → G2 satisfies the inequality d(f(ab), f(a)f(b)) < δ for
all a, b ∈ G1, then there exists a homomorphism T : G1 → G2 such that d(f(a), T (a)) < ϵ for all
a ∈ G1? As mentioned above, when this problem has a solution, we say that the homomorphisms
from G1 to G2 are stable. In 1941, Hyers [16] gave a partial solution of Ulam,s problem for the
case of approximate additive mappings under the assumption that G1 and G2 are Banach spaces. In
1950, Aoki [2] generalized the Hyers, theorem for approximately additive mappings. In 1978, Rassias
[27] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy
differences.

Theorem 1.3. [27] Let f : E → E ′ be a mapping from a normed vector space E into a Banach
space E ′ subject to the inequality

∥f(a+ b)− f(a)− f(b)∥ ≤ ϵ(∥a∥p + ∥b∥p) (1.1)

for all a, b ∈ E, where ϵ and p are constants with ϵ > 0 and p < 1. Then there exists a unique
additive mapping T : E → E ′ such that

∥f(a)− T (a)∥ ≤ 2ϵ

2− 2p
∥a∥p (1.2)

for all a ∈ E. If p < 0 then inequality (1.1) holds for all a, b ̸= 0, and (1.2) holds for a ̸= 0. Also, if
the function t→ f(ta) from R into E ′ is continuous for each fixed a ∈ X, then T is linear.

The result of the Rassias theorem was generalized by Forti [14] and Gavruta [15] who permitted
the Cauchy difference to become arbitrary unbounded. Some results on the stability of functional
equations in single variable and nonlinear iterative equations can be found in [1, 29]. During the last
decades several stability problems of functional equations have been investigated by many mathe-
maticians (see [6, 9, 10, 11, 12, 17, 18, 20, 21, 22, 23, 24, 25]).

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.
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Theorem 1.4. ([3, 5]) Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

Definition 1.5. A topological vector space X is a Fréchet space if it satisfies the following three
properties:

(1) it is complete as a uniform space;
(2) it is locally convex;
(3) its topology can be induced by a translation invariant metric, i.e., a metric d : X × X → R

such that d(x, y) = d(x+ a, y + a) for all a, x, y ∈ X.

For more detailed definitions of such terminologies, we can refer to [9]. Note that a ternary
algebra is called a ternary Fréchet algebra if it is a Fréchet space with a metric d.

Fréchet algebras, named after Maurice Fréchet, are special topological algebras as follows.
Note that the topology on A can be induced by a translation invariant metric, i.e. a metric

d : X ×X → R such that d(x, y) = d(x+ a, y + a) for all a, x, y ∈ X.
Trivially, every Banach algebra is a Fréchet algebra as the norm induces a translation invariant

metric and the space is complete with respect to this metric.
A locally C∗-algebra is a complete Hausdorff complex ∗-algebra A whose topology is determined by

its continuous C∗-seminorms in the sense that a net {ai}i∈I converges to 0 if and if the net {p(ai)}i∈I
converges to 0 for each continuous C∗-seminorm p on A (see [19, 26]). The set of all continuous
C∗-seminorms on A is denoted by S(A). A Fréchet locally C∗-algebra is a locally C∗-algebra whose
topology is determined by a countable family of C∗-seminorms. Clearly, any C∗-algebra is a Fréchet
locally C∗-algebra.

For given two locally C∗-algebras A and B, a morphism of locally C∗-algebras from A to B is
a continuous ∗-morphism φ from A to B. An isomorphism of locally C∗-algebras from A to B is a
bijective mapping φ : A→ B such that φ and φ−1 are morphisms of locally C∗-algebras.

Hilbert modules over locally C∗-algebras are generalization of Hilbert C∗-modules by allowing
the inner product to take values in a locally C∗-algebra rather than in a C∗-algebra.

In this paper, using the fixed point method, we prove the Hyers-Ulam stability and the super-
stability of n-Jordan ∗-derivations in Fréchet locally C∗-algebras for the the following generalized
Jensen-type functional equation

f

(
a+ b

2

)
+ f

(
a− b

2

)
= f(a).

2. Stability of n-Jordan ∗-derivations

Lemma 2.1. ([23]) Let A, B be C∗-algebras, and let D : A→ B be a mapping such that

∥D
(
a+ b

2

)
+D

(
a− b

2

)
∥B ≤ ∥D(a)∥B, (2.1)

for all a, b ∈ A. Then D is Cauchy additive.
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Proof . By putting a = b = 0 in (2.1) we get ∥2D(0)∥ ≤ ∥D(0)∥. So D(0) = 0, for all a, b ∈ A.
Letting x = a+b

2
,y = a−b

2
in (2.1), we conclude that D is additive

D(x) +D(y) = D(a) = D

(
a+ b

2
+
a− b

2

)
= D(x+ y).

□
Now, we prove the Hyers-Ulam stability problem for n-Jordan ∗-derivations in Fréchet locally

C∗- algebras.

Theorem 2.2. Let A, B be Fréchet locally C∗-algebras, and θ be nonnegative real number. Let
f : A→ B be a mapping such that

∥µf(a+ b

2
) + µf(

a− b

2
)− f(µa) + f(cn)− f(c)cn−1 + cf(c)cn−2 + . . .

+ cn−2f(c)c+ cn−1f(c) + f(d∗)− f(d)∗∥B ≤ θ (2.2)

for all µ ∈ T1 := {λ ∈ C : |λ| = 1} and all a, b, c, d ∈ A. Then the mapping f : A → B is an
n-Jordan ∗-derivation.

Proof . Suppose that µ = 1 and c, d = 0 in (2.2) by Lemma 2.1, the mapping f : A→ B is additive.
By putting a = b and c = d = 0 in (2.2), we get

∥µf(2a
2
) + µf(0)− f(µa)∥ ≤ θ,

for all a ∈ A and µ ∈ T1. So
µf(a) = f(µa),

for all a ∈ A and µ ∈ T1.
By [4, Theorem 2.1], the mapping f : A→ B is C-Linear. Letting a = b = d = 0 in (2.2), we get

f(cn) = f(c)cn−1 + cf(c)cn−2 + . . .+ cn−2f(c)c+ cn−1f(c),

for all c ∈ A and by letting a = b = c = 0 in (2.2), we have

f(d∗) = f(d)∗,

for all d ∈ A. Hence the mapping f : A→ B is a n-Jordan ∗-derivation. □

Theorem 2.3. Let A,B be Frechet locally C∗-algebras and let θ be nonnegative real number. Let
f : A→ B be a mapping satisfying then the mapping f : A→ B is a n-Jordan ∗-derivation

Proof . The proof is similar to the proof of Theorem 2.2. □
Now we prove the Hyers-Ulam stability of n-Jordan derivations in C∗-algebras.

Theorem 2.4. Let A, B be Fréchet locally C∗-algebras. Let f : A → B be a mapping for which
there exists a function φ : A4 → R+ such that

ψ(a, b, c, d) =
∞∑
i=0

2−iφ(2ia, 2ib, 2ic, 2id) <∞, (2.3)



n-Jordan ∗-derivations in Fréchet locally C∗-algebras 559

∥µf(a+ b

2
) + µf(

a− b

2
)− f(µa) + f(cn)− f(c)cn−1 + cf(c)cn−2 + . . .

+ cn−2f(c)c+ cn−1f(c) + f(d∗)− f(d)∗∥B ≤ φ(a, b, c, d) (2.4)

for all a, b, c, d ∈ A and all µ ∈ T1. Then there exists a unique n-Jordan ∗-derivation D : A → B
such that

∥f(a)−D(a)∥B ≤ ψ(a, a, 0, 0) (2.5)

for all a ∈ A.

Proof . By putting µ = 1 and b = c = d = 0 and replacing a by 2a in (2.4), we get

∥2f(2a
2
)− f(2a)∥B ≤ φ(2a, 0, 0, 0) (2.6)

for all a ∈ A. Using the induction method, we have

∥f(a)− 2−nf(2na)∥B ≤ 1

2n

n∑
i=1

φ(2ia, 0, 0, 0) (2.7)

for all a ∈ A. Replace a by am in (2.6) and then divide by 2m, we have

∥f(am)− 2−n−mf(2n+ma)∥B ≤ 1

2n+m

m+n∑
i=m

φ(2ia, 0, 0, 0)

for all a ∈ A. Hence, {2−nf(2na)} is a Cauchy sequence. Since A is complete, then

D(a) = lim
n

2−nf(2na)

exists for all a ∈ A. By (2.4) one can show that

∥D(
a+ b

2
) +D(

a− b

2
)−D(a)∥B

= lim
n

1

2n
∥f(2n−1(a+ b)) + f(2n−1(a− b))− f(2na)∥B

≤ lim
n

1

2n
φ(2na, 2nb, 0, 0) (2.8)

for all a, b ∈ A. So

D(
a+ b

2
) +D(

a− b

2
) = D(a)

for all a, b ∈ A. Put x = a+b
2

, y = a−b
2

in above equation, we have

D(x) +D(y) = D(a) = D(
a+ b

2
+
a− b

2
) = D(x+ y)

for all x, y ∈ A. Hence, D is Cauchy additive. On the other hand, we have

D(µa)− µD(a) = lim
n

1

2n
∥f(µ2na)− µf(2na)∥B ≤ lim

n

1

2n
φ(2na, 2na, 0, 0) = 0
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for all µ ∈ T1, and all a ∈ A. So it is easy to show that D is linear. It follow from (2.4) that

∥D(cn)−D(c)cn−1 + cD(c)cn−2 + . . .+ cn−2D(c)c+ cn−1D(c)∥B

= lim
m

∥ 1

2mn
f(2mc)n)− 1

2mn
(f(2m2m(n−1)c) + f(22m2m(n−2)c)

+ f(23m2m(n−3)c))n + . . .+ f(2m(n−1)2mc)∥B ≤ lim
m

1

2mn
φ(0, 0, 0, 2mc)

≤ lim
m

1

2m
φ(0, 0, 0, 2mc)

= 0 (2.9)

for all c ∈ A. and we have

∥D(d∗)−D(d)∗∥B = lim
n

∥ 1

2n
f(2nd∗)− 1

2n
(f(2nd))∗∥B

≤ lim
n

1

2mn
φ(0, 0, 0, 2nd)

= 0 (2.10)

for all d ∈ A. Hence D : A→ B is a unique n-Jordan ∗-derivation. □

Corollary 2.5. Let A,B be Fréchet locally C∗-algebras, and let f : A → B be a mapping with
f(0) = 0 for which there exist constants θ ≥ 0 and p1, p2, p3, p4 ∈ (−∞, 1) such that

∥µf(a+ b

2
) + µf(

a− b

2
)− f(µa) + f(cn)− f(c)cn−1 + cf(c)cn−2 + . . .

+ cn−2f(c)c+ cn−1f(c) + f(d∗)− f(d)∗∥B
≤ θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3 + ∥d∥p4) (2.11)

for all a, b, c, d ∈ A and all µ ∈ T1. Then there exists a unique n-Jordan ∗-derivation D : A → B
such that

∥f(a)−D(a)∥B ≤ 2θ∥a∥p1A
2− 2p1

(2.12)

for all a ∈ A.

Proof . By putting φ(a, b, c, d) = θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3 + ∥d∥p4) in Theorem 2.3, we have

∥f(a)−D(a)∥B ≤ 2θ∥a∥p1A
2− 2p1

for all a ∈ A, as desired. □

Theorem 2.6. Let A, B be Fréchet locally C∗-algebras. Let f : A → B be a mapping for which
there exists a function φ : A4 → R+ such that

ψ(a, b, c, d) =
∞∑
i=0

2iφ(2−ia, 2−ib, 2−ic, 2−id) <∞, (2.13)

∥µf(a+ b

2
) + µf(

a− b

2
)− f(µa) + f(cn)− f(c)cn−1 + cf(c)cn−2 + . . .

+ cn−2f(c)c+ cn−1f(c) + f(d∗)− f(d)∗∥B ≤ φ(a, b, c, d) (2.14)
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for all a, b, c, d ∈ A and all µ ∈ T1. Then there exists a unique n-Jordan ∗-derivation D : A → B
such that

∥f(a)−D(a)∥B ≤ ψ(a, a, 0, 0) (2.15)

for all a ∈ A.

Proof . Suppose that µ = 1 and b = c = d = 0 in (2.14), we get

∥f(a)− 2f(2−1a)∥B ≤ φ(a, 0, 0, 0) (2.16)

for all a ∈ A. Using the induction method, we have

∥f(a)− 2nf(2−na)∥B ≤
n∑

i=1

2iφ(2−ia, 0, 0, 0) (2.17)

for all a ∈ A. Replace a by am in (2.17) and then divide by 2m, we have

∥f(am)− 2n+mf(2−n−ma)∥B ≤
m+n∑
i=m

2iφ(2−ia, 0, 0, 0)

for all a ∈ A. Hence, {2nf(2−na)} is a Cauchy sequence. Since A is complete, then

D(a) = lim
n

2nf(2−na)

exists for all a ∈ A. By (2.14) one can show that

∥D(
a+ b

2
) +D(

a− b

2
)−D(a)∥B

= lim
n

2n∥f(2−n−1(a+ b)) + f(2−n−1(a− b))− 2f(2−na)∥B
≤ lim

n
2nφ(2−na, 2−nb, 0, 0) (2.18)

for all a, b ∈ A. So

D(
a+ b

2
) +D(

a− b

2
) = D(a)

for all a, b ∈ A. Put x = a+b
2

, y = a−b
2

in above equation, we have

D(x) +D(y) = D(a) = D(
a+ b

2
+
a− b

2
) = D(x+ y)

for all x, y ∈ A. Hence, D is Cauchy additive.
The rest of proof is similar to the proof of Theorem 2.3. □

Corollary 2.7. Let A,B be Fréchet locally C∗-algebras, and let f : A → B be a mapping with
f(0) = 0 for which there exist constants θ ≥ 0 and p1, p2, p3, p4 ∈ (−∞, 1) such that

∥µf(a+ b

2
) + µf(

a− b

2
)− f(µa) + f(cn)− f(c)cn−1 + cf(c)cn−2 + . . .

+ cn−2f(c)c+ cn−1f(c) + f(d∗)− f(d)∗∥B
≤ θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3 + ∥d∥p4) (2.19)

for all a, b, c, d ∈ A and all µ ∈ T1. Then there exists a unique n-Jordan ∗-derivation D : A → B
such that

∥f(a)−D(a)∥B ≤ rθ∥a∥p1A
2− 2p1

(2.20)

for r < 1 and all a ∈ A.
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Proof . Letting φ(a, b, c, d) = θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3 + ∥d∥p4) in Theorem 2.5, we have

∥f(a)−D(a)∥B ≤ rθ∥a∥p1A
2− 2p1

for r < 1 and all a ∈ A, as desired. □
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