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Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that affects predominantly neurons in the
brain. The main purpose of this paper is to define a way in detecting the PD in its early stages.
This has been achieved through the use of recorded speech, a biomarker in the natural environment
in its original state. In this paper, the Mel-Frequency Cepstral Coefficients (MFCC) method is
utilized to extract features from the recorded speech. The principal component analysis (PCA)
and Genetic algorithm (GA) are then applied for feature extraction/selection. Once the features are
selected, multiple classifiers are then applied for classification. Performance metrics such as accuracy,
specificity, and sensitivity are measured. The result shows that Support Vector Machine (SVM) along
with the GA has shown optimal performance.

Keywords: Parkinson’s Disease, Support Vector Machine, Mel Frequency Cepstral Coefficient,
Principal Component Analysis, Accuracy, Sensitivity, Specificity, Genetic algorithm.

1. Introduction

Parkinson’s disease is a neurological issue that influences motor and non-motor actions in the
human body. For the provision of customized patient care, monitoring, and diagnosis using smart
gadgets there is a requirement for a framework that works in indigenous habitats just a controlled
condition was proposed by Bocklet et al. [3] Gupta B et al. [5], and Gupta K [6] in their paper
proposed a very important statistic highlighted in Mumbai, the Parsi Community most affected in
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the world with a PD with a prevalence rate of 328/100000 population. Prosodic features can be seen
as speech highlights related to huge units. For example, syllables, words, expressions, and sentences
naturalization speech signal is obtained from the pitch, time, and audibility level by Al-Ali et al. [1].
Fundamental frequency (F0), pitch, and power spectrum depict prosodic features in a speech signal.
To analyze aperiodic vibrations in the speech signal, acoustic tools are used by Cernak M et al. [4]
Speech signal can be utilized as a biomarker for the early introduction of the ailment. Matrices for
PD advance incorporate the Unified PD Rating Scale: motor subscale (UPDRS-III) by Qian L et
al. [11] and Wicks P et al. [15] UPDRS can then reveal the existence of sever nature gravity of PD
symptoms. The programmed discovery of Parkinson’s infection from the speech is a fundamental
advancement towards the smart technology-aided apparatuses supporting the diagnosis and determi-
nation of the sickness Arora et al. [2]. Although others have proposed limited strategies, the results
of their implementation in real life circumstances is yet unknown.
Furthermore, the utilization of acoustic conditions in diagnosing PD from speech is not yet a very
well-known approach proposed by Vasquez et al. [13]. Among the thought about conditions, founda-
tion commotion creates the most noticeably awful impact, while dynamic pressure or some discourse
codecs can even have a negligible positive effect by Correa [13]. PD progression based on its manifes-
tations on the vocal system using UPDRS standardized speech signal characteristics and evaluating
the performance of GMM and SVM classifiers to estimate PD severity from UPDRS was investigated
by Verma et al. [14]. This study focuses on tele-diagnosis but leaves out the period at which it is
critical to identify a disease, especially PD with no known cure, which needs control measures to be
taken care of as early as possible.
An insight was done by Wenhai Ji et al. [16] into the advanced stages of PD and classification chal-
lenges. Kruger R et al. [9] in their methodologies require strengthening of patients and coordination
into treatment choices, by introducing correspondence techniques and choice help in light of new
advances to modify the treatment of PD as per patient requests and wellbeing. Vocal impairments
are prodromal for PD. They argue that most studies for the detection of PD using acoustic tend to
consider universal characteristics. Jeancolas et al. [7] work is based on analyzing speech and speaker
recognition by using the MFCC feature extraction method and a GMM classifier. They carried
automatic analysis using: vowels, syllables, and sentences. They concluded that their method was
inconclusive and better performance can be achieved by a combination of more classical methods to
improve classifier efficiency and effectiveness by Jeancolas L et al [7].
In another work by Mirarchi et al. [10] on PD, it was found that PD is highly affected by challenges
with respect to vowel pronunciation. Problems in phonation are associated with PD effects and the
condition is called Parkinsonian. Dysarthria was highlighted by the vocal analysis. The focus in that
research work was placed on biomarker discovery. This was then utilized in different methodologies
to streamline building a machine learning arrangement models for the early diagnostic of the PD
by Soliman A et al. [12] and Wenhai Ji et al. [16]. The objective was to sort the therapeutic
estimations and select the most significant parameters to construct a quicker and more exact model
utilizing highlight determination procedures. In that work the clinical measurements were utilized
to point out UPDRS, which is a standard measure in PD clinical analysis. The filter method had
shortfalls on the provision of comprehensive information on the correlation of data sets, it analyses
attributes individually was proposed by Jancovic J et al. [8] and Bocklet T et al. [3].
In section 2 of this paper the proposed methodology for feature extraction is explained and in sec-
tion 3 the classifiers used have been discussed. Results for various classifiers and comparison of
performance metrics are then discussed in section 4.
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Figure 1: Block diagram of MFCC

2. Proposed Methodology

The methodology of feature extraction in this paper will be based on the Mel frequency cepstral
coefficient (MFCC) with successive separations of high and low-frequency components. First, the
recorded speech is pre-processed and the features are extracted and normalized. After extracting
the features, certain features are then selected using methods like PCA and GA. Once the features
are selected they will be given to the classifiers which will identify whether the sample is normal or
abnormal.

2.1. MFCC Feature Extraction

MFCCs are essential parameters of voice. Feature extraction involves gathering of MFCCs and
organizing their components into vectors of comparative measurements shown in figure 1. The
predicted vectors are extracted from each frame of the sample voice signal under test. In this
context, the subjects recite sustained vowels “a”, “o”, and “u” as part of their medical examinations.
The features that are analysed are prosodic features F0, jitter, shimmer and PPE, formants, etc
[1]. The MFCCs are figured over Hamming window frames with 30ms size and 10ms overlap speech
signal. Equation (2.1) represents the computation of the Hamming window.

Hamm(X) = [0.54− 0.460∗ cos(
cos 2π(x− 1)

(X − 1)
)] (2.1)

where the number of samples in one frame (X = 160) and x is from 1 to X. FFT process
represents the time domain into the frequency domain. By applying FFT the output is a spectrum
or periodogram .The MFCC features are obtainable through the use of 32 channel Mel filter banks,
continued by transformation to the Cepstral domain with 13 coefficients. Then the Cepstral coeffi-
cients are affixed to the MFCC features. Feature warping is conducted on obtained MFCC features.
MFCC computation is shown in Equation (2.2).

C∑
b=1

log(Mb) cos[2π/C(b+ 1/2)p] = mfcc (2.2)

where ‘p’ is the coefficients and ‘C’ is the channel number. The positive value range only used
for the calculations.
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Figure 2: Block diagram of a genetic algorithm

2.2. Principal Component Analysis

Principal Component Analysis is a dimensionality reduction technique that is frequently used to
diminish the dimensionality of enormous informational indexes. The technique involves exchanging
a huge arrangement of factors into a smaller one which contains the majority of the data in the
larger set. Diminishing the number of factors of an informational index normally comes to the
detriment of exactness; however, the trap in dimensionality decrease is to exchange a little precision
for straightforwardness. Having a simpler informational collection can result in an easier investigation
and quicker computation time for the machine learning algorithms as there won’t be any superfluous
factors to process in the data. In this work, PCA=10 is implemented and also tested for different
components. There is no increase in accuracy when the components are decreased.

2.3. Genetic algorithm

A genetic algorithm is a feature reduction technique that is used to select the most powerful
features ramous hunt spaces productively, and thus has less opportunity to get local optimal solution
than other algorithms.

The basic block diagram is shown in figure 2. The initial population of GA is created haphaz-
ardly utilizing 200 × n chromosomes; where n is the number of features that should be chosen for
acceptable precision. Then a fitness value for each chromosome is obtained. The chromosomes are
then rearranged according to their fitness values. At that point Crossover and Mutation is applied.
A new population is then developed. At last, the chromosome with the most noteworthy wellness is
picked and the number of features in that chromosome assessed as chosen features.

3. Classifiers

Multiple classifiers such as Linear Regression (LR), Linear Discriminant Analysis (LDA), k-
Nearest Neighbourhood (KNN), Decision Tree (DT), Neural Network (NN), Naive Bayes (NB),
Gradient Boost (GB), Random forest (RF), Support Vector Machine (SVM) and their performance
parameters (sensitivity, specificity, accuracy, Mathew’s correlation coefficient) are gathered and com-
pared.
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3.1. Logistic Regression (LR)

Uses the sigmoid logistic equation with weights (coefficient values) and biases (constants) to model
the probability of a certain class for binary classification. An output of 1 represents one class, and
an output of 0 represents the other. Training the model will learn the optimal weights and biases.

3.2. Linear Discriminant Analysis (LDA)

Assumes that the data is Gaussian and each feature has the same variance. LDA estimates the
mean and variance for each class from the training data and then uses properties of statistics (Bayes
theorem, Gaussian distribution, etc) to compute the probability of a particular instance belonging
to a given class. The class with the largest probability is the prediction.

3.3. k-Nearest Neighbours (KNN)

Makes predictions about the validation set using the entire training set. KNN makes an expec-
tation about another example by looking through the entire set to discover the k ”nearest” cases.
”Closeness” is resolved to utilize a nearness estimation (Euclidean) overall features. The class that
the majority of the k closest instances belong to is the class that the model predicts the new instance
to be.

3.4. Decision Tree (DT)

Represented by a binary tree, where each root node represents an input variable and a split point,
and each leaf node contains an output used to make a prediction.

3.5. Neural Network (NN)

Models the way the human brain makes decisions. Each neuron takes in 1+ inputs and then uses
an activation function to process the input with weights and biases to produce an output. Neurons
can be arranged into layers, and multiple layers can form a network to model complex decisions.
Training the network involves using the training instances to optimize the weights and biases.

3.6. Naive Bayes (NB)

Simplifies the calculation of probabilities by assuming that all features are independent of one
another (a strong but effective assumption). Bayes theorem is often used to calculate the probabilities
that the instance to be predicted is in each class, and then finds the class with the highest probability.

3.7. Gradient Boost (GB)

Generally used when seeking a model with a very high predictive performance. Used to reduce
bias and variance (“error”) by combining multiple ”weak learners” (not very good models) to create
a ”strong learner” (high-performance model). Involves 3 elements: a loss function (error function)
to be optimized, a weak learner (decision tree) to make predictions, and an additive model to add
trees to minimize the loss function. Gradient descent is used to minimize error after adding each
tree (one by one).

3.8. Support Vector Machine (SVM)

SVM tends to be utilized for non-linear data by using a kernel function to first indirectly map
the non-linear data into a linear feature space. The Support-vector machine constructs a set of
hyperplanes in an infinite-dimensional space, which can be used for classification. Naturally, a decent
division is accomplished by the hyperplane that has the biggest separation to the closest preparing
information purpose of any class (purported utilitarian edge), since as a rule the bigger the edge, the
lower the speculation blunder of the classifier.
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3.9. Performance Metrics

The goal is to implement a machine learning model to diagnose Parkinson’s disease given various
features of a patient’s speech with at least 90% accuracy and/or a Matthews Correlation Coefficient
of at least 0.9. Performance parameters are calculated as shown in the equations below.

Accuracy =
TP + TN

TP + FP + TN + FN
(3.1)

Sensitivity =
TP

TP + FN
(3.2)

Specifity =
TN

TN + FP
(3.3)

MCC =
TP.TN − FN.FP√

((FN + TP )(FP + TN)(FP + TP )(FN + TN))
(3.4)

Accuracy represents the success of the classifier in distinguishing between normal and Parkinson
patients. Detecting PD patients accurately represents the sensitivity and accuracy whereas detect-
ing normal patients represents specificity. The quality of binary classification in machine learning
represents Mathew’s correlation coefficient (MCC). The MCC is in essence a correlation coefficient
between the observed and predicted binary classifications; it returns a value between −1 and +1. A
coefficient of +1 represents a perfect prediction, 0 is basically a random prediction and −1 indicates
disagreement between prediction and observation.

3.10. Dataset

The dataset was created by Max Little of the University of Oxford, in collaboration with the
National Centre for Voice and Speech, Denver, Colorado, who recorded the speeches. The data
consists of 195 sustained vowel phonations from 31 male and female subjects. 23 of the subjects
were diagnosed with PD. The data set mentioned above has 22 extracted features using the MFCC
algorithm. As a part of feature selection to find the most powerful features, the dataset is fed to a
genetic algorithm for feature selection and out of those 22 features 10 powerful features were selected.
A description of those extracted and selected features is summarized in table 1. Among the extracted
features 10 features were selected and they are MDVP: Flo (Hz), Jitter(%), Jitter (Abs), MDVP:
RAP, MDVP: PPQ, Shimmer, Shimmer (dB), HNR, D 2, and DFA. The convergence and fitness
curve for validation size of 70% is shown in figures 3 and 4.

4. Results and Discussion

The descriptions for all the features are listed in Table 1. Table 2 lists the performance metrics
such as accuracy, sensitivity, and specificity. Using the MFCC feature extraction technique and
without any feature selection technique for the various training and test data such as 80-20, 70-30,
60-40, and 50-50, the performance metrics were measured. SVM performed well under various test
data when compared to other classifiers. For validation size of 0.2 SVM, LDA, KNN performed well,
for 0.3 SVM, LDA, KNN performed well, for validation size of 0.4 SVM, GB, LDA, KNN performed
well, for validation size of 0.5 SVM, LDA, GB performed well. Overall, SVM has shown the best
performance when compared to all other classifiers and that was also evident in figure 5.
Table 3 also lists the performance metrics using the MFCC feature extraction technique and Genetic
algorithm feature selection technique for the various training and test data as mentioned earlier.
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Figure 3: convergence curve for validation size of 70-30

Figure 4: Fitness curve for validation size of 70-30
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Table 1: Extracted and selected features [? ]

Table 2: Performance comparison of various classifiers
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Table 3: Performance of various classifiers implementing Genetic algorithm

Table 4: Performance metrics for various classifiers with PCA
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Table 5: Performance Metrics for SVM Classifier using Genetic Algorithm

Table 6: Performance Metrics for SVM Classifier using PCA

Figure 5: Comparison of accuracy for multiple classifiers for various validation sizes without feature selection
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Figure 6: Comparison of accuracy for multiple classifiers for various validation sizes with genetic algorithm

SVM performed well under various test data when compared to other classifiers. LDA and KNN was
also found to provide good results. For validation size of 0.2 SVM,LDA,KNN performed well, for 0.3
SVM,LDA,KNN,GB performed well, for validation size of 0.4 SVM,GB,LDA,KNN performed well,
for validation size of 0.5 SVM,LDA,KNN performed well and is depicted in figure 6.
Table 4 lists the performance metrics when MFCC feature extraction technique is used along with
the PCA feature selection technique for various training and test data such as 80-20, 70-30, 60-40,
50-50,. For validation size of 0.2 LDA, KNN performed well, for 0.3 GB, LDA, KNN performed
well, for validation size of 0.4 LDA, LR performed well, for validation size of 0.5 LDA, LR, KNN
performed well.
Judging from the above results, it is evident that the performance metrics have shown better results
when appropriate features were selected.
Table 5 shows the performance metrics for the SVM classifier using the Genetic algorithm. For
validation size of 0.2, the classifier has achieved 92% accuracy along with 100% Sensitivity and 50%
specificity. This is relatively the best result when compared with all other validations.
Table 6 shows the performance metrics for the SVM classifier using Principal Component Analysis.
For validation size of 0.4 and 0.5, the classifier has achieved 90% accuracy along with 100% Sensitivity
and 0% specificity.

5. Conclusion

The future is headed towards real-time as well as smart diagnosis and monitoring of pathological
and non-pathological clinical features for PD patients. When implementing Principal component
analysis, LDA, SVM, KNN, and GB performed well for the fusion of the MFCC feature extraction
technique for a validation size of 0.2. When the validation size is increases to 0.3, LDA, KNN, GB,
and SVM showed better accuracy of around 86%, 84%, 85%, and 90% respectively. LDA, LR, and
SVM also performed well having an accuracy of around 80− 87% for 50-50 validation data. Overall,
LDA and SVM performed well for the fusion of MFCC feature extraction for various validation sizes.
When implementing Genetic algorithm LDA, SVM, KNN performed well for the fusion of the MFCC
feature extraction technique for a validation size of 0.2. For validation size of 0.3, LDA, KNN, GB,
and SVM showed better accuracy of around 88%, 83%, 84%, and 88%. LDA, KNN, GB, and SVM
performed well having an accuracy of around 84 − 88%, for 50-50 validation data. Overall, SVM
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performed well for the fusion of MFCC feature extraction, and especially for 0.2 validation size the
sensitivity was 100% and the accuracy was 92%. When comparing all the feature selection algorithms
and various classifiers Genetic algorithm along with SVM classifier have yielded the best results.
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[3] T. Bocklet, E. Nöth, G. Stemmer, H. Ruzickova and J. Rusz, Detection of persons with Parkinson’s disease by
acoustic, vocal, and prosodic analysis, Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE
(2011) 478–483.

[4] M. Cernak, J.R. Orozco-Arroyave, F. Rudzicz, H. Christensen, J.C. Vásquez-Correa and E. Nöth, Characteri-
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