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Abstract

Most time series are characterized in practice that they consist of two components, linear and non-
linear, and when making predictions, the single models are not sufficient to model these series.
Recently several linear, non-linear and hybrid models have been proposed for prediction, In this
research, a new hybrid model was proposed based on the combination of the linear model Auto-
Regressive Fractionally Integrated Moving Average (ARFIMA) with the non-linear model fuzzy time
series model (FTS). The proposed hybrid model analyzes the linear component of the specified time
series using the ARFIMA model, calculates the estimated values, and then calculates the residuals
for this model by subtracting the estimated values from the original time series. The nonlinear
component is analyzed using the (FTS) model for the computed residuals, which inherently contain
the nonlinear patterns of the time series. The final values for the prediction by applying the hybrid
model (ARFIMA-FTS) are obtained by combining the predictions of the (ARFIMA) model of the
original series with the predictions of the model (FTS) for the residual series. The new hybrid
model was used to predict those infected with Covid-19 virus in Iraq for the period from 24/2/2020
to 11/8/2021. The proposed model was more efficient in the prediction process than the single
(ARFIMA) model using a number of comparison criteria, including (RMSE), (MAPE) and (MAE).
The final results showed that the proposed model has the ability to predict time series that contain
linear and nonlinear components.
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1. Introduction

The process of forecasting time series is one of the most important methods of statistical analysis
that plays a major role in making decisions in uncertainty. The time series is defined as a set of
measurements and historical observations that are linked to each other for the phenomenon and for
certain periods of time and are usually equal in length [6]. Over the past decades, researchers have
been interested in building a models of time series for their importance and ability to explain phe-
nomena and data in many fields including (economic, social, medical...etc) and even at the individual
level. One of the most important modern problems facing the world, which has occupied the atten-
tion of researchers, is the spread of the (covid-19) virus, as the world is facing great pressures due to
the pandemic, and the increasing number of daily infections with the virus puts human life at great
risk. It became necessary to predict the number of future cases to prepare a plan control this setting,
recently many methods and models have been presented to predict the numbers of people infected
with this virus, including time series prediction methods. The most important of these models are
the long memory time series and the FTS model, and the FTS model has a flexible mechanism that
sometimes outperforms the basic models of time series because it does not require in the prediction
process the basic assumptions for building the model. This model is characterized by high-accuracy
predictions for its use of many artificial intelligence algorithms. In this research, a hybrid model was
proposed between the (ARFIMA) model and the (FTS) model, and this research aims to build a
hybrid model to predict the numbers of people infected with the (covid-19) virus in Iraq.

2. Long Memory Process

The time series that is represented by a long-term process, the continuity in its observations
may make the behavior of the autocorrelation coefficients of the series observations not decreasing
exponentially towards zero when the displacements increase [4], as is the case in the short-term time
series , but the autocorrelation function will be In the form of hyperbola and decreasing very slowly
and at a polynomial rate, and this process is referred to as the Long Memory Time Series. [10] is
considered the first to notice the phenomenon of long memory time series in the field of irrigation,
and then subsequent studies included the phenomena Economic, as it turned out to have a long
memory. [13] confirmed the idea of [10] by constructing the Brown fractal movement. So, it can be
said that a process has a long memory in the time field if:

lim
n→∞

n∑
i=−n

|ρi| = ∞ (2.1)

Since the absolute values of the autocorrelation are not aggregated.

2.1. Testing of Long Memory

The Hurst exponent (H), which is produced by the rescaled range (R/S) analysis [10], is used
to determine if a time series contains long memory. The Hurst exponent measures long term non
periodic dependency and shows the average duration the reliance may persist for a given time series.
The R/S analysis begins by calculating the R range for a given n

R (n) = max
1≤j≤n

n∑
j=1

(
Xj −X

)
− min

1≤j≤n

n∑
j=1

(
Xj −X

)
(2.2)
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where, R(n) is the range of accumulated deviation of X(t) over the period of n and X is the
overall mean of the time-series. Let S(n) be the standard deviation of X(t) over the period of n.

Q(n) = R(n)/S(n)

Q(n) = αnH , where α is a constant, n → ∞
(2.3)

Taking logarithm on both sides of the Hurst exponent equation (2.3), we have:

logQ(n) = α +H log (n) , as n → ∞.

Then

H ≈ logQ (n)

log (n)
(2.4)

The parameter (H) relates the average values of sub-samples of equal length to the series with the
number of observations for each sub-sample of equal length, and the value of the parameter (H) is
always greater than zero. In general, the relationship between the Hearst exponent and the long
memory parameter (d) is represented by the relationship [9, 12].

H = 1− d

3. ARFIMA Model

The idea of time series is simply crystallized in estimating a mathematical model that enables it
to simulate reality through the historical gradation of that phenomenon, as the model estimates the
special parameters of the prediction process, obtaining estimated values for the time series, and using
this model to obtain future values for the phenomenon studied. ARFIMA [8] is one of the modern
methods that contribute to analysis because it is characterized by a high ability in modeling time
series with long memory and present in the majority of time series, and it is an extension of ARIMA
models for [3] when the differential coefficient (d) takes real values that are limited Between 0.5 and
-0.5, and its importance is that it allows modeling the short-term behavior of the time series through
autoregressive and moving averages parameters, and the long-term behavior through the fractional
integration parameter. It can be said that the time series (Xt) is subject to the (ARFIMA) model if:

ϕp(L)(1− L)dXt = θq (L) εt (3.1)

Where:

ϕp(L) = 1−
p∑

i=1

ϕiL
i = 1− ϕ1L− · · · − ϕpL

p

θq(L) = 1−
q∑

j=1

θjL
j = 1− θ1L− · · · − θqL

q

(ϕp, θq)They represent polynomials in L for the AR(p) and MA(q) parts of degree p and q of the
model, respectively. (L) is called the backshift operator.
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3.1. Estimation of ARFIMA Model

3.1.1. Semi-Parametric Estimation Methods

In this study, the GPH estimator proposed by [7] was used to estimate the long memory parameter.
This approach is based on an approximation of a regression equation derived from the spectral
density function’s logarithm. The GPH estimate process consists of two steps, the first of which is
the estimation of (d). This approach, which is based on spectral least squares regression, takes use
of the sample form of the spectral density pole at the origin: fy(λ) ∼ λ−2d, λ → 0 We may write the
spectral density function of a stationary model to illustrate this approach.

fy (λ) =

[
4 sin2

(
λ

2

)]−d

fε (λ) (3.2)

fε(λ)denotes the spectral density of (εt), which is considered to be a finite and continuous function
on the interval [−π, π]. Equation (3.3) can be used to express the log-spectral density.

log (fy (λ)) = log (fε (0))− d log

[
4 sin2

(
λ

2

)]
+ log

fε (λ)

fε (0)
(3.3)

The linear regression can be written as:

log [Ix (λj)] = α− d log

[
4 sin2

(
λj

2

)]
+ ej, where ej ∼ iid

(
−c, π2/6

)
Let (Ix)(j) be the Fourier frequency-evaluated periodogram. λj =

2πj

T
; j = 1, 2, . . . ,m;T is the

number of observations, and m is the number of Fourier frequencies.
Let xj = − log

[
4 sin2

(
λ
2

)]
the OLS estimate of the regression log (Ix(λj)) on the constant α and xj

is the GPH estimator, It can be written as in equation (3.4)

d̂GPH =

∑m
j=1 (xj − x) log [Ix (λj)]∑m

j=1 (xj − x)2
, where, x =

m∑
j=1

xj/m (3.4)

3.1.2. Parametric Estimation Methods

All parameters of the ARFIMA process are estimated using parametric techniques in a single
phase. [14] proposed EML (Exact Maximum Likelihood). For estimating the parameters of the
ARFIMA model, the EML technique is used in this study.
Let X = (X1 , . . . ., XT ) , X ∼ N (0,Σ) be the original time series. The log-likelihood of the
estimation is simply, Both the long memory parameter and the ARMA parameters can be estimated
simultaneously using the EML method. The objective function of maximum likelihood is written as,

LE(Φ, θ, d;X) = −T

2
log |Σ| − 1

2
X

′
Σ−1X

and the EML estimator of d can be derived as:

d̂EML = argmax

[
−T

2
log |Σ| − 1

2
X

′
Σ−1X

]
(3.5)
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4. Artificial Neural Network

Artificial neural networks are considered one of the most important applications of artificial
intelligence, which reflects the way of human thinking. It includes computational techniques designed
to simulate the way the human brain performs a particular task and produces solutions that exceed
the capabilities of traditional methods of prediction.

Artificial neural networks are defined as a computational system consisting of several (neurons)
interconnected with each other and characterized by its dynamic nature in processing incoming data
[11]. The neural network consists of three main layers: the input layer, the hidden layer, and the
output layer (1). To use neural networks as a model to predict the future values of the time series,
the variable at time (t) is a non-linear function of the same variable at previous time displacements
(xt−1, xt−2, . . . , xt−k) .

Figure 1: A schematic diagram of a three-layered feedforward network model with a single output
and two hidden units.

So before modeling the time series using neural networks, the time series is converted into a set
of patterns with degree (n-k+1) and each pattern has k inputs (xt−1, xt−2, . . . , xt−k) and one output
is (xt). The data is usually divided into a training group, a validation group, and the remainder
for testing. Several algorithms are used to train the neural network, the most important of which is
the back-propagation algorithm to get the best weights for the neural network. Then the model is
evaluated using a set of loss functions like MSE to get the best results.
The relationship between the input variable and the output variable as in equation (4.1).

xt = f

(
α0 +

q∑
j=1

αjg

(
β0j +

k∑
i=1

βijxt−i

))
(4.1)

sigmoid (x) =
1

1 + e−x
(4.2)

where k is the number of inputs of the neural network, αj (j = 0, 1, 2, . . . , q) is the weight between
jth hidden neuron and output neuron, α0 is the bias unit of output neuron, β ◦ j is the bias at jth
hidden neuron, βij is the weight between i th input and j th hidden neuron and q is the number
of hidden neurons. Generally, sigmoid activation function (as in Eq. (4.2)) is used at hidden layer
whereas linear activation function is used at output layer

5. Fuzzy time series model

[15] proposed the theory of fuzzy sets, which was the theoretical basis for the analysis of fuzzy
time series. On the basis of this theory, (Song & Chissom ,1993) proposed the first fuzzy time series
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model to predict the numbers of students enrolled at the University of Alabama. The main ability
of the FTS model lies in its ability to deal with the problems of predicting linguistic variables. The
basic definitions and concepts of the FTS model are summarized as follows (Song & Chissom ,1993):
Define U as the universe of discourse, where U = {u1, u2, . . . , un}. A fuzzy set Ai is defined as

Ai = fAi
(u1) /u1 + fAi

(u2) /u2 + . . .+ fAi
(un) /un,

where fAi
represents the membership function of the corresponding fuzzy set.

Definition 5.1 (Fuzzy time series). Let X(t)(t = . . . , 0, 1, 2, . . .) one of the subsets of real num-
bers, be the universe of discourse on which fuzzy sets Ai(t)(t = . . . , 0, 1, 2, . . .) are defined. Then the
F (t) which is a collection of Ai(t) is called a fuzzy time series on Y (t).

Definition 5.2. Le F (t) be a fuzzy time series. If F (t) is a caused by F (t − 1) ,then this fuzzy
logical relationship is represented by F (t − 1) → F (t). and it is called first order fuzzy time series
model.

Definition 5.3. Let F (t) be a fuzzy time series. If F (t) is caused by F (t−1), F (t−2),. . . , F (t−m),
then this fuzzy logical relationship is represented by: F (t−m), . . . , F (t− 2, F (t− 1) → F (t).

The prediction process according to the proposed FTS model is summarized in the following steps:

Step 1: Partition the universe of discourse into fuzzy intervals:
In this step fuzzy c-means (FCM) clustering is using to partitioning the universe of discourse.
The FCM clustering technique was first introduced by [2]. Let the number of fuzzy sets (c)
and 2 ≤ c ≤ n, where n is the number of observations. In the FCM algorithm, the time series
whose observations are crisp values are divided into fuzzy sets, and the center of each fuzzy
set is determined, the degree to which each observation belongs to a fuzzy set is calculated
depending on the centers of the fuzzy sets.
In this technique, fuzzy clustering is applied by minimizing the least squared errors within
groups, The main step is to minimize the objective function which is defined by:

Jβ (X, V, U) =
c∑

i=1

n∑
j=1

uβ
ijd

2 (xj, vi) (5.1)

Where X matrix of the data, V matrix centers of clusters and U membership values matrix,
uij is the membership values, β is a constant β > 1 called the fuzzy index and d (xj, vi) is a
measure of similarity between an observation and the center of the corresponding fuzzy cluster.
The constraints to minimized the objective function Jβ is:

0 ≤ uij ≤ 1 , ∀i, j,

0 <
n∑

j=1

uij ≤ n, ∀i

c∑
i=1

uij = 1, ∀j.
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An iterative algorithm is used to update the values of (vi, uij) and solve the minimization
problem given above

vi =

∑n
j=1 u

β
ijxj∑n

i=1 uijβ
(5.2)

uij =
1∑c

k=1

[
d(xj ,vi)

d(xj ,vk)

] 2
(β−1)

(5.3)

Step 2: Fuzzify the observations
After partitioning the universe of discourse into c clusters (fuzzy sets), the crisp time-series
observations are converted into linguistic variables depending on the maximum degree of be-
longing for each observation within the U-matrix [1].

Step 3: Establish the fuzzy relationship with artificial neural network.
In this step we use tow order fuzzy time series and an example will be used to explain this step
[1]. Because of using tow order fuzzy time series, two inputs are used in the neural network
model (k=2) to get a lagged variable F (t− 2) and F (t− 1) from fuzzy time series F (t).These
series are shown in Table (1). The index (i) is taken for F (t− 2) and F (t− 1) series as input
values for the neural network model and they are defined as in Table (1) by the whose titles
input (1) and input (2), and the index (i) for F (t) series is taken as target values for the neural
network model. It is defined as in Table (1) by the whose titles target value. When taking the
third observation, for example, the input values for the learning sample [A5, A6] are 5 and 6,
and the target value for the learning sample is 2.

Step 5: Defuzzify results
The defuzzyfied forecasts are the center of the fuzzy cluster which correspond to fuzzy forecasts
obtained by neural networks in the previous stage.

Table 1: Notations for two order fuzzy time series

Observation No. F(t-2) F(t-1) F(t) Input (1) Input (2) Target

1 A5 - - -

2 A5 A6 - - -

3 A5 A6 A2 5 6 2

4 A6 A2 A8 6 2 8

5 A2 A8 A4 2 8 4

6 A8 A4 A3 8 4 3

6. Proposed hybrid (ARFIMA-FTS) model

In practice, most time series are characterized by containing linear and non-linear patterns, and
for the difficulty of modeling these patterns, many models have been proposed that can explain these
patterns through the process of combining linear and non-linear components, and they are called
hybrid prediction models. Applications of hybrid methods appear in the literature by combining



634 Qaddoori, Saud

different methods, it can be an effective way to improve predictions. A lot of research was presented
in this field, the most important of which is the hybrid model presented by the [16] to predict time
series, where he clarified that the basic idea of combining linear and non-linear models is that the
single model cannot adequately employ time series data and cannot clarify Precisely the properties
and characteristics of the time series.

Therefore, to model time series that have linear and non-linear properties, a hybrid method
is proposed to model long memory time series through [16] approach called ARFIMA-FTS. It is
supposed that a time series can be considered composing of two components, which are a linear
autocorrelation structure part and a non-linear part respectively. The model can be given as follows:

Xt = Lt +Nt (6.1)

Where Xt is the originals time series and Lt defined as linear component and Nt defined as Non-linear
component. The prediction steps according to the ARFIMA-FTS hybrid model can be summarized
as follows:

(i) Estimation of the best linear ARFIMA model for the specified time series.

(ii) Calculating the residual values of the ARFIMA model calculated in the previous step according
to the following equation:

et = Xt − L̂t (6.2)

Where et are the residuals of the ARFIMA model at time t

(iii) In this step, the non-linearity of the ARFIMA model’s residuals is tested. as the process of
building the hybrid model requires that these residuals be non-linear, and the test is done using
graphs and the BDS test [5] for non-linearity

(iv) Estimating the non-linear residuals using the FTS model and obtaining the non-linear compo-
nent of the hybrid model. The non-linear FTS model can be written as follows:

et = f (et−1, et−2, . . . , et−n) + εt (6.3)

Where f is the nonlinear function estimated using the FTS model and εt is the random error
of the model. Using equation (6.3) we get the non-linear component of the time series N̂ , so
the predictive values of the time series are calculated according to the following equation:

X̂t = L̂t + N̂t (6.4)

The prediction process according to the ARFIMA-FTS hybrid model can be summarized in the
following scheme:
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Figure 2: Schematic diagram of the Hybrid ARFIMA - FTS model.

7. Performance evaluation

Different indicators are employed in order to measure the forecasting performance of the proposed
hybrid model.

I. RMSE It ascertains the amount of differences between values predicted by the model and the
actual values. In other words, the RMSE shows the standard deviation of differences between
forecasted and realized values. RMSE is a criterion for measuring accuracy to compare pre-
diction errors of various models for a particular variable, as it is scale-dependent. The RMSE
equation is as follows:

RMSE =

(
n−1

n∑
t=1

(
X(t) − X̂(t)

)2)
(7.1)

II. MAPE MAPE is applied to measure a model forecasting accuracy. Describing accuracy as a
percentage, this method is formulated as shown in the following equation

MAPE = n−1

n∑
t=1

∣∣∣X(t) − X̂(t)/X(t)

∣∣∣ (7.2)

III. MAE The Mean Absolute Error (MAE)

MAE = n−1

n∑
t=1

∣∣∣X(t) − X̂(t)

∣∣∣ (7.3)

8. Applications

8.1. Time series Description

Our time series was obtained from the official website of the Iraqi Ministry of Health, and it
represents the number of daily infections of the covid-19 virus for the period from 24/2/2020 to
11/8/2021 with 535 views. Table 2 shows the most important descriptive statistics for the time
series.
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Table 2: descriptive statistics for covid-19 time series in Iraq

Observations Kurtosis Skewness Std. Dev. Minimum Maximum Median Mean

535 4.026541 1.017997 2764.24 0 13515 2961 3254.08

From the above table, it is noted that the highest infections were 13515, and the average is 3254.
Figure 3 represents the graph of the time series, and it is noted that it is a non-linear series, as there
are clear highs and lows for varying periods.

Figure 3: Plot of covid-19 time series in Iraq.

8.2. Long memory test

The existence of long memory for the time series is tested using equation (2.4).
The result of Hurst exponent (H = 0.831), which is close to one, as it proves that the series has a
long memory, and this is also confirmed by the graph of the ACF and PACF functions which are
shown in Figure 4.

Figure 4: ACF &PACF for covid-19 time series in Iraq.

8.3. Nonstationary Testing

To test the stationarity of the time series, the ADF and PP tests are used. The null hypothesis
says that the time series has a unit root. And the results shown in Table 3 show that the P-value for
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Table 3: Result of the ADF &PP tests for stationarity

P-Value Critical Value Test Sta. Test

0.452 -1.941 -0.163 ADF

0.574 -1.941 -0.309 PP

the two tests is greater than 0.05, so we cannot reject the null hypothesis and that the time series
has a unit root and is not stationary.

Therefore, fractional differences will be taken to make the time series stationary because it has
the long memory property. The value of the fractional difference (d) was estimated using the EML
and GPH methods as in equations (3.4) and (3.5), the two results were close to both methods, the
estimated value using the EML method = 0.495 and using the GPH method = 0.49. The results are
shown in Table 4 the time series stability test after taking the fractional difference.

Table 4: Result of the ADF &PP tests after taking the fractional difference

P-Value Critical Value Test Sta. Test

0.0003 -1.941 -2.983 ADF

0.0000 -1.941 -15.142 PP

The above results confirm that the time series became stationary after taking the fractional
difference.

8.4. Applying ARFIMA Model

After the time series has become stationary, the appropriate model for the time series is identified
by reconciling a number of the proposed models, and a comparison is made between these models
using the comparison criteria AIC, BIC, HQ. The results in Table 5 showed that the model ARFIMA
(1,0.495,2) has the lowest values for these criteria.

Table 5: Values of the comparison criteria for the candidate models

Model AIC BIC HQ

ARFIMA(0,d,0) 15.90463 15.92064 15.91089

ARFIMA(0,d,1) 15.59934 15.62335 15.60873

ARFIMA(0,d,2) 15.54364 15.57566 15.55617

ARFIMA(1,d,0) 15.53278 15.55679 15.54217

ARFIMA(1,d,1) 15.53252 15.56453 15.54504

ARFIMA(1,d,2) 15.45748 15.4975 15.47314

ARFIMA(2,d,0) 15.53303 15.56505 15.54556

ARFIMA(2,d,1) 15.53606 15.57608 15.55172

ARFIMA(2,d,2) 15.45823 15.50626 15.47702

The autoregressive (p) and moving averages (q) parameters of the model ARFIMA(1,0.495,2)
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were estimated using the Maximum Likelihood method and the estimated values of these parameters
are shown in Table 6

Table 6: Result of the estimated ARFIMA(1,0.495,2) parameters

Variable Coefficient Std. Error t-Statistic Prob.

AR(1) 0.988211 0.006379 154.9051 0.000

MA(1) -0.50264 0.032974 -15.2436 0.000

MA(2) -0.363731 0.027336 -13.30598 0.000

The above table shows that all parameters of the model are significant. The coefficients of the
moving averages are always stationary, to be invertible the following conditions must be proven:

θ1+θ2 = −0.866371 < 1

θ2 − θ1 = 0.138909 < 1

|θ2| = 0.3637 < 1

The autoregressive coefficients are always invertible, to be stationary the following conditions must
be proven:

|∅1| = 0.988211 < 1

When stationarity and invertibility are confirmed, the model can be considered efficient in the esti-
mation process. At the final of applying ARFIMA model, the residuals of the chosen model must be
analyzed and its validity for future prediction. Because the time series is non-linear, it is assumed
that the non-linear patterns of the series appear in the residuals of the chosen model.
The BDS test was conducted to find out the presence of non-linear patterns and the results were
shown in Table 7.

Table 7: BDS test results on residuals from ARFIMA model.

Dimension BDS Statistic Std. Error z-Statistic Prob.

2 0.026918 0.004725 5.69745 0.000

3 0.062655 0.007541 8.308275 0.000

4 0.091455 0.009023 10.13566 0.000

5 0.110727 0.009451 11.71568 0.000

6 0.120449 0.009161 13.14828 0.000

The above table shows that the P-value is less than 0.05 for all dimension levels, and this means
that the null hypothesis is not rejected, which states that the residuals of the model are non-linear.
Therefore, these patterns must be analyzed to take advantage of them in the forecasting process.

8.5. Applying FTS Model

8.5.1. Partition the universe of discourse into fuzzy intervals

The fuzzy time series model (FTS) is applied to the residuals of the ARFIMA (1,0.495,2) model
considering these residuals as a time series that bears the non-linear patterns of the model. In the
first step, the universe of discourse is defined and divided based on the FCM algorithm into a number
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of clusters (c), as in equations (5.1) and (5.2), In this research, (25) clusters were identified to fit the
data of the residual series. Table 8 shows the centers of the clusters.

Table 8: Centers of the (25) clusters.

Cluster
Number

Cluster
Center

Cluster
Number

Cluster
Center

Cluster
Number

Cluster
Center

Cluster
Number

Cluster
Center

Cluster
Number

Cluster
Center

cluster1 -2055.14 cluster6 -513.057 cluster11 -35.4872 cluster16 269.364 cluster21 767.3102

cluster2 -1333.33 cluster7 -371.913 cluster12 4.520552 cluster17 345.2759 cluster22 934.9524

cluster3 -1002.67 cluster8 -269.272 cluster13 52.50986 cluster18 436.2801 cluster23 1240.573

cluster4 -806.05 cluster9 -172.044 cluster14 125.4693 cluster19 562.879 cluster24 1614.334

cluster5 -631.293 cluster10 -99.074 cluster15 203.5642 cluster20 654.1948 cluster25 2784.946

Fuzziness of the time series depending on the degree of membership in the matrix (U) which
calculated by equation (5.3). The crisp values of the residual series are converted to the corresponding
cluster number to the maximum degree of belonging to each deterministic value in the time series,
so that we have a time series whose observations are linguistic values. Table 9, represents the first
ten values and the maximum degree of belonging of each observation to any cluster. And converting
the crisp time series into a (FTS).

Table 9: fuzzifying first ten values of residual series.

Actual max membership degree cluster FTS

-97.255 0.997698649 10 A10

-2.22187 0.934918967 12 A12

2.597373 0.994925302 12 A12

-3.1807 0.914534119 12 A12

-2.10501 0.937209181 12 A12

4.761055 0.999922362 12 A12

-0.99515 0.956859121 12 A12

1.556711 0.987824689 12 A12

-1.36968 0.950652326 12 A12

-3.0063 0.918453163 12 A12

8.5.2. Establish the fuzzy relationship with artificial neural network

This step is considered the most important stage of applying the fuzzy time series model. After
obtaining the FTS from the previous step, we find FTS-1 and FTS-2, which represent the inputs of
the artificial neural network. The input layer of the network in this research consists of two nodes,
the hidden layer of the network consists of five nodes, and the output layer consists of one node,
which represents the predicted value. for the fuzzy time series.

8.5.3. Defuzzify results

After obtaining the FTS predictions, the predictions are defuzzed by replacing the prediction
value with their corresponding cluster centers for all time series observations. Table 10 shows the
first ten predicted values that have been defuzzed.
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Table 10: the first ten predicted values for residual series.

Actual FTS Predict FTS Cluster Index Predict value

A10 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

A12 A12 12 4.520552

8.6. Applying Hybrid Model

After obtaining the predictive values using the ARFIMA model (1,0.495,2), which represents the

linear component L̂t and the predictive values of the residuals using the FTS model, which represent
the nonlinear part N̂t , The linear and non-linear component are collected as in equation (6.4) to
get the final predictions of the hybrid model. Figure 5 shows the plot of the real time series with its
predictive values using the hybrid model

Figure 5: Actual & forecasting time series by hybrid ARFIMA-FTS model.

9. Results and discussion

In this research a new hybrid model is proposed to predict the number of people infected with
covid-19 virus in Iraq. By combining the linear component of the time series, which was analyzed
using the ARFIMA (1,0.495,2) model with the non-linear component analyzed by the FTS model
for the residuals of the ARFIMA model (1,0.495,2). It was found through the research that the
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time series under study is not stationary and contains of linear and non-linear patterns. The not
stationarity was analyzed by taking the fractional difference d = 0.495 which was estimated by
EMLE and GPH methods. The prediction results using the hybrid model were more accurate than
the predictions obtained from the ARFIMA (1,0.495,2) model. Table 11 shows the results of the
prediction accuracy criteria RMSE, MAPE, and MAE.

Table 11: The comparison of the results.

Model RMSE MAPE MAE

ARFIMA (1,0.495,2) 532.5365 0.2274474 334.2731

ARFIMA-FTS 514.7011 0.1755291 320.1998

The ARFIMA-FTS hybrid model has the lowest values for these criteria than the singular
ARFIMA (1,0.495,2) model. Therefore, the hybrid model can be used to predict the future se-
ries of the number of people infected with COVID-19 virus in Iraq. It can also be used to predict
time series that contain linear and non-linear components.
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