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Abstract

Cayley- Purser Algorithm is a public key algorithm invited by Sarah Flannery in 1998. The algorithm
of Cayley-Purser is much faster than some public key methods like RSA but the problem of it is that
it can be easily broken especially if some of the private key information is known. The solution to
this problem is to modify this algorithm to be more secure than before so that it gives its utilizers the
confidence of using it in encrypting important and sensitive information. In this paper, a modification
to this algorithm based on using general linear groups over Galois field GF (pn), which is represented
by GLm(GF (pn)) where n and m are positive integers and p is prime, instead of GL2(Zn) which is
General linear set of inverted matrices 2×2 whose entries are integers modulo n. This GLm(GF (pn))
ensures that the secret key of this algorithm would be very hard to be obtained. Therefore, this new
modification can make the Cayley-Purser Algorithm more immune to any future attacks.

Keywords: Cryptography, Cayley- Purser Algorithm, Galois field GF (pn), General Linear group
over GF (pn)(GLm(GF (pn)), Encryption, Decryption

1. Introduction

The fast growth of the internet technology the multimedia data such as text, images, audios and
videos will be vulnerable to the coping and the modifying [2]. Numerous technological transforma-
tions in the communication system has been presented in last decade include each growing internet
and explosive improvements ever rapidly increasing of data transmission [25, 29]. The security of
data and information had considered a critical role when the information related to the e-commerce,
the e-banking, or the e-payments, or other forms of important data mostly because it required the
real data to establish get on illegally. Subsequently, the originality and the security of the data very
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important and critical criteria in the data communication services in modern years [6]. Cryptog-
raphy techniques need some algorithms for encryption of data. A lot of these available encryption
techniques are utilized for the text; few of these encryption methods are utilized in order to encrypt
the multimedia data [30, 34]. Cryptography technique is utilized to encrypt the information [27].

The key difference between various forms of technology is key size and strength. For secret com-
munications militaries and governments has been using encryption for a very long period. Nowadays
many forms of civilian communications are also using encryption for data security. Conversion of
normal text into cipher text is the basic purpose of encryption. Encryption can make sure that data
not reaches the wrong person, isn’t altered during transmission and can be utilized to ensure the
sender identity [33].

Encryption can be defined as the process of changing a message (or plaintext) into an ‘unintelli-
gible’ form and decryption is the reverse procedure [5]. The ciphertext is transmitted by way of the
sender to the meant recipient (Bob) of the plaintext, across an insecure conversation channel (any
third celebration can intercept facts that flows through any such channel). The algorithm which
is utilized for performing the steps of encryption and the decryption steps is known as the cipher
[11, 36]. The cryptosystem can mean any gadget that includes cryptology or simply the algorithms,
at the side of units of feasible inputs to them, which are utilized to perform encryption and decryption
of messages [3]. There are two kinds of cryptography methods which are [14, 19]:

A) The first kind of the cryptography methods is the secret(private) key encryption or the sym-
metric key encryption: In the encryption of the SKC, both sides (the sender and receiver) will identify
the same secret key. This key will be utilized for the encryption and the decryption. The SKC found
in two kinds which are: stream cipher, block cipher. Stream cipher is utilized in order to encode
the message bits one by one. Another kind is the block cipher which works on a number of bits and
then encrypts them as one unit. Data is encrypted / decrypted if the data shapes is in block. In the
encryption of the block cipher, blocks will be produced from dividing the plain text which will be
utilized in order to produce cipher text blocks stuffing the plain text into blocks. 64-bit blocks are
commonly utilized [7, 10].

B) Public key encryption or asymmetric key encryption(or public key) is utilized in order to avoid
the distribution of key problem. In PKC, there are two keys; private and public keys are utilized.
For encryption, the public key is utilized, and for encryption that utilizes the private key [10, 8, 4].
Galois Field, which is named as Evariste Galois, also named as finite field, is utilized to refer to
the field where many elements are finite.It is especially useful for computer data translation as it
is represented in binary forms [4, 38]. This Galois Field (GF) is more utilized in the digital signal
processing, the cryptography and the channel coding. There have been different works on planning
cost effective encryption hardware utilized in battery-based applications. Most work emphasis on
area reduction and propagation delay or critical path [14].That is, computer data consists of a group
including two numbers which are 0 and 1, which are the components in a Galois field [31, 17]. In the
Galois field the data will be represented as a vector in order to permitthe mathematical operations
to effortless and efficiently deflate data [28].
The general linear group over Gailo field GF (pn) : GLm(GF (pn)) is utilized in the generation of
Cayley - Purser Algorithm [10]. The following gives a brief description of general linear group over
Galois field GF (pn) and Cayley - Purser Algorithm [20]
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Problem Statement and Preliminaries

The problem of the Cayler-Purser Algorithm is that it can be easily broken especially if some
of the private key information known. Also there is little research that deals with studying it and
working on modifying it to make it suitable for working in coding systems.

The proposed solution

The solution to this problem is modify this algorithm to be more secure than before so that it
gives its utilizers the confidence of using it in encrypting important and sensitive information.

Results achieved

According to the achieved result of the proposed modification (By using Avalanche Effect as
measure) and measuring the running time the algorithm be suitable to utilized in order to secure the
data (different types text, audio, image, video) in many environments and applications.

2. The General Linear Group Over The Galois Field GF (pn), GLm(GF (pn))

Definition 2.1. Let F be the field. Then the general linear set GLm (F) is a set of inverted matrices
m Ö m with inputs in F under the matrix multiplier, and if the positive integers are m> 1, then the
GLm (F) group is not Abiliangroup [13, 22, 1].

Definition 2.2. A finite field (Galois field (GF)) which is named after the French mathematician
Evariste Galois. It include a specified number of elements and is a group on which the multiplication,
the addition, the subtraction and the division are determined and fulfill some main rules. Also, the
Galois field’s order is always a prime or a power of the prime.

The following shows examples of Galois fields [13].

Example 2.3. A prime field is of order p a Galois field denoted by GF (p) for p is a prime number,
and the prime field elements are represented as integers in the range 0,1,2, . . . , (p-1).

Example 2.4. The order pn Finite fields are Galois fields which represented by GF (pn) for the
positive integer n , and the GF (pn) possible elements may be appear as polynomials of degree strictly
minimal than n with coefficients belong to GF (p). Moreover, it is Very traditional to express the
elements of the GF (pn) as binary numbers.That is,theGalois field components in which is utilized in
order to represent the computer data include two numbers which are 0 and 1 [39, 18, 21].

3. Finite Field Arithmetic

In this section, how the operations (addition, subtraction, multiplication, and multiplicative
inverse) can be done over the polynomials of GF (P n) will be showed [13].
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3.1. The Addition and the Subtraction

Suppose that A(x) and B(x) are elements in GF (P n) such that:

A(x) = an−1 xn−1 + an−2 xn−2 + . . .+ a1 x1 + a0 and

A(x) = bn−1 xn−1 + bn−2 xn−2 + . . .+ b1 x1 + b0, then

C(x) = A(x) +B(x) =
n−1∑
i=0

ci x
I

where the coefficient ci = ai + bi (mod p).
Similarly, if H(x) = A(x)−B(x), then Ci = ai−bi (mod P ). Note that, C(x) and H(x) are elements
in GF (P n).

3.2. The multiplication and multiplicative Inverse

The multiplication and multiplicative inverse in the Galois Field claims more work. Assume that
A(x), B(x) and K(x) are polynomials in GF (P n), so that K(x) has a degree at least n and is an
irreducible polynomial, which cannot be factored. The polynomial K(x) must has degree at least n
in order to make the output of the polynomials A(x) and B(x) does not override 11111111 = 255 as
the output thatn has to be stored as a byte [13, 40]. Therefore, T (x) = A(x)⋆B(x) (modK(x)) .But,
the multiplicative inverse of a polynomial in GF (P n) is computed utilizing the Extended Euclidean
Algorithm as the following:
The multiplicative inverse of A(x) is given by A−1(x) such that A(x) ⋆ A−1(x) = 1(modK(x)).

Note that ,computing theoutput of two polynomials and the multiplicativeinverse of a polynomial
in the GF (P n) claims both decreasethe coefficients modulo p and reducing polynomials modulo
K(x). The polynomials can decreased with long division. The following example shows the addition,
subtraction, multiplication, and multiplicative inverse of polynomials in GF (P n).

Example 3.1. Suppose we work in Gf(23) and take the irreducible polynomial coefficient K(x) =
x3+x+1. Note that, Gf(23) = {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1}, and let A(x) = x2+x+1
and B(x) = x2 + 1. Therefore, A(x) + B(x) = x, which is equivalent to (010)2 in its binary form.
And, A(x)−B(x) = x.
On the other hand, A(x) ⋆B(x) = (x3+x+1) ⋆ (x2+1) = [x4+x3+x+1](modx3+x+1) = x2+x.
Also, by utilizing the extended Euclidean Algorithm, we can get A−1(x) such that A(x) ⋆ A−1(x) =
1(modK(x)), which is A−1(x) = x2.

4. Cayley-Purser Algorithm

The Cayley-Purser algorithm is a public-key cryptographic algorithm that was invented in 1998by
Sarah Flannery. This algorithm is as secure as the RSA cryptosystem , but it utilizes only modular
matrix multiplication instead of modular exponentiation. Also, it is proven that this algorithm is
much faster than other asymmetric cryptosystem’s algorithms for large. For instance, with 200 digits
modulus, this algorithm is about twenty times faster than the algorithms of RSA cryptosystem [40].

Algorithm Setup [23]

The Cayley-Purser Algorithm’s utilizers has to do the following:

� Select large prime numbers p and q such that they have the forms p = 2r1 + 1; q = 2r2 + 1
where r1 and r2 are prime numbers.
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� Compute, N = pq.

� Select A and S which are elements in GL2(ZN) so that SA ̸= SC.

� Choose a positive integer a and calculate R = Sa.

� Compute B, such that B = S−1 A−1 S.

� Announce A, B, R, and N.

� Keep S secret, which is needed for the decryption procedure.

The Encryption Procedure [12]

The sender has to utilize the published receiver’s parameters, which are A, B, R, and N. Then
she has to do the following:

� Let m be a 2 x 2 matrix with entries in ZN such that m is representing the plaintext.

� Choose a positive integer s1randomly and compute W= Rs1

� Calculate Q= W−1 A W.

� Calculate K= W−1 B W

� To encrypt m, calculate E= K m K

� Send the pair ( E, Q) to the intended receiver.

The Decryption Procedure [Receiver] [12]

When the intended receiver gets the pair ( E, Q), she utilizes her secret key S. Then she has to
apply the following decryption algorithm:

� Calculate L = S−1Q S.

� Calculate m = LEL.

The following shows a proof of the decryption procedure [12].
We have to show how the decryption algorithm LEL = m satisfied, and that would be as follows,

L.H.S → LEL = (S−1 Q S) E (S−1QS)

=
(
S−1 ( W−1 A W ) S

)
E
(
S−1 (W−1 A W )S

)
=

(
W−1 ( S−1 A S) W

)
E
(
W−1 (S−1 A S) W

)
(since W = Rs1 = Sas1 , so W commutes with S)

=
(
W−1( S−1A−1S)

−1
W

)
E

(
W−1( S−1A−1S)

−1
W

)
=

(
W−1B−1 W

)
E

(
W−1B−1 W

)
[since B = S−1 A−1 S]

=
(
W−1 B W

)−1

E
(
W−1 B W

)−1

= K−1EK−1 [since K = W−1BW ]

= K−1(KmK)K−1

= m
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The Security Of Cayley-Purser Algorithm [12, 9]

It is not easy to find the secret matrix , S. To find the secret matrix S, only A, B, R, and N are
known, one might attempt to solve either of the following equations:

R = Sa or B = S−1 A−1 S

For the equation R= Sa : only the matrix R is known, and assume that someone knew a, solving
this equation shall include the of extracting the a-th root of a matrix modulo the composite integer
N=pq. It is proven that if a=2, then extracting the root square of a 2 x 2 matrix requires solving
the ordinary quadratic congruence T= S2 (mod N) which is a known problem that equivalent to the
factorization problem, factoring N[15].

For the equation B = S−1 A−1 S : Only A, N, and B are known, therefore , A−1 can be computed
easily with modulus N. The secret matrix S can be attacked by solvingS B = A−1 S. Also, the
number of solutions to this equation has proven to be large as long as the group elements have a
large arrangement, which can be guaranteed for each component. In other word, the number of
possible solutions to this equation is given by the order of centralizer of A in GL2(ZN), denoted by
C(A). With groups that have a very large order, it is ensured that the order of C(A) would be really
large , which makes it computationally impossible to search for S [35].

5. The Proposed Modification of Cayley-Purser Algorithm

This modification focus on the utilization of the GLm(GF (pn)) in the Cayley-Purser Algorithm
instead of GL2(ZN), this modification is as the following:
The proposed modification of Cayley-Purser Algorithm’s utilizers has to do the following

� Select a Galois field of order pn[GF (pn)] where p is a very large prime number of the form
p = 2r3 + 1, where r3 is the large prime number and n is the positive integer.

� Choose an irreducible polynomial , K(x), which has a degree at least n.

� Select A and S which are elements in GLm(GF (pn)) so that SA ̸= SC. Note that the entries
in the matrices are polynomials or its equivalents in the binary form.

� Choose a positive integer a and calculate R = Sa.

� Compute B, such that B = S−1 A−1 S.

� Announce A,B,R,K(x) and GF (P n).

� Keep S secret, which is needed for the decryption procedure.

The Encryption Procedure[ Sender]:
The sender has to utilize the published receiver’s parameters, which are A, B, R, K(x)andGF (P n).

Then she has to do the following:

� Let Y be a m x m matrix with entries in GF (P n).such that Y is representing the plaintext.

� Choose a positive integer s1randomly and compute W= Rs1

� Calculate Q= W−1 A W.
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� Calculate K= W−1 B W

� To encrypt Y , calculate E= K Y K

� Send the pair ( E, Q) to the intended receiver.

The Decryption Procedure[ Receiver]:
When the intended receiver gets the pair ( E, Q), she utilizes her secret key S. Then she has to

apply the following decryption algorithm:

� Calculate L= S−1 Q S .

� Calculate Y = L E L.

Note: In order to multiply matrices and find an inverse of a matrix , we need to computing the
output of two polynomials and the multiplicative inverse of a polynomial in GF (pn). Thatclaim both
decreasing the coefficients modulo p and decreasing the polynomials modulo K(x).

6. The Proposed CP Modification Avalanche Effect

Avalanche effect is substantial feature for the encryption algorithm. This feature can be seen
when the alteration of one bit in plaintext produce the alteration in the outcome of at least half of
the bits in the cipher text. The main aim of the avalanche effect is that by alteration only one bit
there is large alteration then it is harder to perform an analysis of cipher text, when trying to come
up with an attack [9]. Therefore, the avalanche effect can be defined as techniques for ensuring the
level of security in any cryptographic method. The small alterations to the plain text or public key,
should result in a major alteration in the cipher text [15]. The avalanche effect (AE) can be measured
by dividing the number of switched bits by the number of total bits in the ciphertext [24, 32, 16].

Number of Filpped bits in ciphertext

Number of total bits in ciphertext

The original CP algorithm has a good avalanche effect (the AE of key and general AE) since
changing in one bit of the keys (public and private) produce another key with high AE, therefore in
this work the AE is very high since it is the sum of original CP and GF.

Table 1: Avalanche Effect Test
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7. CP Time Analysis

Time-Analysis of the CP algorithm with the RSA shows that the CP algorithm is much faster
than the RSA algorithm. Table (1) shows the time analysis of the CP algorithm and RSA algorithm
for message length is 1769 characters and Table(2) shows the time analysis of the CP algorithm and
RSA algorithm for message length is 21228 characters.

Table 2.

Table 2: CP algorithm running time and RSA running algorithm

Table 3: CP algorithm running time and RSA running algorithm

According to the previous tables result which show the CP algorithm faster, this feature with the
proposed modification (using general linear groups over Galois field GF(pn)which is represented by
GLm(GF (pn)) where n and m are positive integers and p is prime, instead of GL2(Zn)) prove that
the modified CP algorithm become suitable to secure the different types of data.

8. Conclusion

Mathematically, the CP algorithm is as safe as the RSA algorithm. The CP algorithm executes
faster than the RSA algorithm, and the speed factor increases with the coefficient size.This mod-
ification is based on using general linear groups over Galois field GF (pn), which is represented by
GLm(GF (pn)) where n and m are positive integers and p is prime, instead of GL2(Zn) which is the
general linear array of 2× 2 inverted matrices whose entries are integers modulo n.
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