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Abstract

In the present paper, we introduce new types of convergence of a sequence in left dislocated and
right dislocated metric spaces. Also, we generalize the Banach contraction principle in these newly
defined generalized metric spaces.
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1. Introduction

Soon after Maurice Fréchet [2] seminal paper on metric spaces researchers have started to gener-
alize extend his idea. Menger [5] was the first to propose probabilistic metric spaces, a generalization
of metric spaces. Afterward a generalization pseudometric spaces/dislocated metric spaces of metric
spaces was proposed by Hitzler and Seda [4], Hitzler [3], Hitzler and Seda [4] and Beg et al. [1] stud-
ied generalization of Banach contraction principle in dislocated metric spaces. Their results were
applied in the area of programming language semantics.

Following Waszkiewicz [6, 7], let (X, d) be a distance space where d is a function from X into [0,∞).

Define the distance topology on (X, d) as follows:

(1) Let x ∈ X and ϵ > 0. Then the set Bd(x, ϵ) := {y ∈ X : d(x, y) < d(x, x) + ϵ} is called ball with centre

x and radius ϵ.

(2) Nx := {A ⊆ X : ∃ some ϵ > 0 such that Bd(x, ϵ) ⊆ A}.
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(3) The distance topology on (X, d) is denoted and defined by τd := {A ⊆ X : ∀x ∈ A,A ∈ Nx}.

We denote and define the inverse distance topology on (X, d) as follows:

τd1 := τ−1
d , where d1(x, y) = d(y, x).

Furthermore, Waszkiewicz [7] established the following proposition.

Proposition 1.1. Let (X, d) be a distance space, (xn) be a sequence of elements of X and x ∈ X.
Then d(x, xn) → d(x, x) ⇒ xn→τdx.

In a similar way, we state and prove the following proposition.

Proposition 1.2. Let (X, d) be a distance space, (xn) be a sequence of elements of X and x ∈ X.
Then d(xn, x) → d(x, x) ⇒ xn→τ−1

d
x.

Proof . Let U be anyτ−1
d -open set around x. Then ∃ ϵ > 0 such that x ∈ B−1

d (x, ϵ) ⊆ U . Suppose
that d(xn, x) → d(x, x). Then ∃ nϵ ∈ N(N := the set of all positive integers) such that ∀n ≥ nϵ,
|d(xn, x) − d(x, x)| < ϵ. If |d(xn, x) − d(x, x)| ≥ 0, then d(xn, x) < d(x, x) + ϵ and so xn ∈ U . If
d(xn, x) − d(x, x) ≤ 0, then d(xn, x) ≤ d(x, x) and so d(xn, x) < d(x, x) + ϵ, i.e., xn ∈ U . In the
present paper, we introduce new types of convergence of a sequence in distance space. Mainly we aim
to generalize Banach contraction principle in special types of these spaces, namely, q-left-Hausdorff
q-left-complete ld-metric spaces and q-right-Hausdorff q-right-complete rd-metric spaces. Also, we
give two counterexamples to illustrate that the converse of Proposition 1.1 (Proposition 2.5 [7]) and
Proposition 1.2 may not be true in these spaces. □
Let (X, d) be a distance space. Consider the following conditions, for all x, y, z ∈ X,

(Mi) d(x, x) = 0,

(Mii) d(x, y) = d(y, x) = 0, then x = y,

(Miii) d(x, y) = d(y, x),

(Miv) d(x, y) ≤ d(x, z) + d(z, y),

(Mv) d(x, y) ≤ d(z, x) + d(z, y),

(Mvi) d(x, y) ≤ d(x, z) + d(y, z).

If d satisfies conditions (Mi)− (Miv), then it is called a metric. If it satisfies conditions (Mii), (Miii)

and (Miv), it is called a dislocated metric [4] (or simply d-metric). If it satisfies conditions (Mii) and (Mv),

it is called a left dislocated metric [9] (or simply ld-metric). If it satisfies conditions (Mii) and (Mvi), it is

called a right dislocated metric [9] (or simply rd-metric).

The following theorem is established by Hitzler and Seda [4].

Theorem 1.3. Let (X, d) be a complete d-metric space and let f : X → X be a Banach contraction
function. Then f has a unique fixed point.

We use the following lemma due to Ahmed, Zeyada and Hassan [9].

Lemma 1.4. Let (X.d) be a ld-metric space. If f : (X, d) → (X, d) is a Banach contraction function,
then (fn(x0)) is a Cauchy sequence for each x0 ∈ X.
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Lemma 1.5. Let (X.d) be a rd-metric space. If f : (X, d) → (X, d) is a Banach contraction
function, then (fn(x0)) is a Cauchy sequence for each x0 ∈ X.

Theorem 1.3 was generalized in [9] by the following theorems.

Theorem 1.6. Let (X.d) be a complete ld-metric space and let f : X → X be a Banach contraction
function. Then f has a unique fixed point.

Theorem 1.7. Let (X.d) be a complete rd-metric space and let f : X → X be a Banach contraction
function. Then f has a unique fixed point.

2. Definitions in distance spaces

In this section, we introduce definitions needed for our results in a distance space. As it turns out, these

notions can be carried over directly from conventional metrics.

Definition 2.1. A sequence (xn) in a distance space (X, d) is called a Cauchy sequence if ∀ϵ > 0,
∃ n0 ∈ N such that d(xm, xn) < ϵ ∀m,n ≥ n0.

Definition 2.2. A sequence (xn) q-left-converges to x iff lim
n→∞

d(xn, x) = d(x, x). In this case x is

called a q-left-limit of (xn).

Definition 2.3. A sequence (xn) q-right-converges to x iff lim
n→∞

x, d(xn) = d(x, x). In this case x is

called a q-right-limit of (xn).

Definition 2.4. A distance space (X, d) is called q-left (resp. q-right) complete if every Cauchy
sequence is q-left (resp. q-right) convergent.

Definition 2.5. Let (X, d1) and (Y, d2) be distance spaces and let f : (X, d1) → (Y, d2). Then f is
q-left-continuous iff ∀x0 ∈ X, ∀ϵ > 0 ∃ δ(ε) > 0 such that

|d1(x, x0)− d1(x0, x0)| < δ(ε) ⇒ |d2(f(x), f(x0))− d2(f(x0), f(x0))| < ε

.

Definition 2.6. Let (X, d1) and (Y, d2) be distance spaces and let f : (X, d1) → (Y, d2). Then f is
q-left-continuous iff ∀x0 ∈ X, ∀ϵ > 0 ∃ δ(ε) > 0 such that

|d1(x0, x)− d1(x0, x0)| < δ(ε) ⇒ |d2(f(x0), f(x))− d2(f(x0), f(x0))| < ε

.

Definition 2.7. [8] A function f : X → X is called a Banach contraction function if there exists
0 ≤ λ < 1 such that d(f(x), f(y)) ≤ λd(x, y) for all x, y ∈ X.

Lemma 2.8. Every subsequence of q-left (resp. q-right) convergent sequence to x0 is a q-left (resp.
q-right) convergent to x0.

Lemma 2.9. Let (X, d1) and (Y, d2) be distance spaces. A mapping f : (X, d1) → (Y, d2) is q-
left-continuous iff ∀(xn) in X q-left- d1-converges to x0 ∈ X, (f(xn)) in Y q-left-d2-converges to
f(x0) ∈ Y .
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Proof . Let f be q-left-continuous and (xn) be a sequence inX. Suppose that (xn) q-left-d1-converges
to x0 ∈ X. Let ϵ > 0. Then ∃δ(ϵ) > 0 such that

|d1(x, x0)− d1(x0, x0)| < δ(ε) ⇒ |d2(f(x), f(x0))− d2(f(x0), f(x0))| < ϵ

.

Then ∃δ(ϵ) > 0 and ∃ n0 ∈ N such that ∀ n ≥ n0, |d1(xn, x0)− d1(x0, x0)| < δ(ε). Thus

|d2(f(xn), f(x0))− d2(f(x0), f(x0))| < ϵ

.

Hence, (f(xn)) in Y q-left-d2-converges to f(x0) ∈ Y .

Conversely, suppose that f is not q-left-continuous. Then ∃ x0 ∈ X, ∃ ϵ > 0 such that ∀δ > 0,

|d1(x, x0)− d1(x0, x0)| < δ(ε) ⇒ |d2(f(x), f(x0))− d2(f(x0), f(x0))| ≥ ϵ

.

Then the sequence (xn) (xn = x∀n ∈ N) q-left-d1-converges to x0 but (f(xn)) does not q-left-d2-

converges to f(x0). □

We state the following lemma without proof:

Lemma 2.10. Let (X, d1) and (Y, d2) be distance spaces. A mapping f : (X, d1) → (Y, d2) is q-right
continuous iff ∀(xn) in X q-right- d1-converges to x0 ∈ X, (f(xn)) in Y q-right-d2-converges to
f(x0) ∈ Y .

3. A generalization of Banach contraction mapping in left-d-metric space

In this section, we give a generalization of the Banach contraction mapping in left d-metric space.

Definition 3.1. A left-d-metric space (X, d) is called a q-left-Hausdorff space iff every left-q-convergent
sequence (xn) in X left-q-converges to a unique point in X.

Theorem 3.2. Let (X, d) be a q-left-Hausdorff q-left-complete ld-metric space and let f : X → X
be a q-left-continuous Banach contraction mapping. Then f has a unique fixed point.

Proof . Existence: from Lemma 1.4, (fn(x0)) is a Cauchy sequence for each x0 ∈ X. Since (X, d)
is q-left complete, then (fn(x0)) q-left-converges to a point x ∈ X, say. From the q-left-continuity
of the mapping f and Lemma 2.9, (fn+1(x0)) q-left-converges to f(x). From Lemma 2.8, (fn+1(x0))
q-left-converges to x. Since (X, d) is a q-left-Hausdorff, then f(x) = x. □

Uniqueness: suppose that there are two fixed points x and y. Then

d(x, y) = d(f(x), f(y)) ≤ λd(x, y) =)(1âË†′λ)d(x, y) ≤ 0,

d(y, x) = d(f(y), f(x)) ≤ λd(y, x) =)(1âË†′λ)d(y, x) ≤ 0.

Since (1− λ) > 0, then we have d(x, y) = d(y, x) = 0. Hence, we obtain from (Mii) that x = y.

The following counterexample illustrates that there exists a q-left-Hausdorff q-left-complete ld-metric

space in which the converse of Proposition 1.1 [8] is not true.
Counterexample: Let X = {x, y, z}. Define d : X ×X → [0,∞) as follows:

d(x, y) = d(z, x) = d(z, y) =
1

8
, d(y, x) = d(x, z) = d(y, z) =

1

6
, d(x, x) =

1

7
, d(y, y) = 0, d(z, z) =

1

4
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(1) One can easily verifies that (X, d) is an ld-metric space.

(2) Any sequence (xn) in X is one of the following forms:

(a) ∃n0 ∈ N such that ∀n ≥ n0, xn = x;

(b) ∃n0 ∈ N such that ∀n ≥ n0, xn = y;

(c) ∃n0 ∈ N such that ∀n ≥ n0, xn = z;

(d) ∀n ∈ N such that xn = x ∃ n ∈ N such that m > n and xm = z and ∀k ∈ N such that xk = z ∃l ∈ N
such that l > k and xl = x;

(e) ∀n ∈ N such that xn = y ∃ n ∈ N such that m > n and xm = z and ∀k ∈ N such that xk = z ∃l ∈ N
such that l > k and xl = y;

(f) ∀n ∈ N such that xn = x ∃ n ∈ N such that m > n and xm = x and ∀k ∈ N such that xk = x ∃k ∈ N
such that l > k and xl = y.

Since only any sequence of form (a) is a Cauchy sequence and q-left-converges to x, then (X, d) is
q-leftcomplete.

(3) One can deduce that any sequence of from (a) which are the only q-left-convergent sequences in X,
q-left-converges to the unique point x. Hence (X, d) is q-left-Hausdorff.

(4) One can verifies that τd = {X,∅, {y}, {x, y}} and note that any sequence of the form (b) τd-converges
to x but does not q-left-converges to x.

Remark 3.3. Note that although (X, d) in Counterexample 3.1 is q-left-Hausdorff but (X, τd) is not Haus-
dorff.

4. A generalization of Banach contraction mapping in right-d-metric space

We give a generalization of the Banach contraction mapping in rd-metric space.

Definition 4.1. A right-d-metric space (X, d) is called a q-right-Hausdorff space iff every right-q-convergent
sequence (xn) in X right-q-converges to a unique point in X.

Theorem 4.2. Let (X, d) be a q-left-Hausdorff q-right-complete rd-metric space and let f : X → X be a
q-right-continuous Banach contraction mapping. Then f has a unique fixed point.

Proof . Existence: from Lemma 1.2, (fn(x0)) is a Cauchy sequence for each x0 ∈ X. Since (X, d) is q-right
complete, then (fn(x0)) q-right-converges to a point x ∈ X, say. From the q-right-continuity of the mapping
f and Lemma 2.2, (fn+1(x0)) q-right-converges to f(x). From Lemma 2.1, (fn+1(x0)) q-right-converges to
x. Since (X, d) is a q-left-Hausdorff, then f(x) = x. Uniqueness: suppose that there are two fixed points x
and y. Then

d(x, y) = d(f(x), f(y)) ≤ λd(x, y) =)(1− λ)d(x, y) ≤ 0,

d(y, x) = d(f(y), f(x)) ≤ λd(y, x) =)(1− λ)d(y, x) ≤ 0.

Since (1−λ) > 0, then we have d(x, y) = d(y, x) = 0. Hence we obtain from (Mii) that x = y. The following
counterexample illustrate that there exists a q-left Hausdorff q-right-complete rd-metric space in which the
converse of Proposition 1.1 [8] is not true. □
Counterexample: Let X = {x, y, z}. Define d1 : X ×X → [0,∞) by d1(a, b) = d(b, a) ∀a, b ∈ X, where
d is defined as in Counterexample 3.1. One can verifies that (X, d) is a q-right-Hausdorff q-right-complete
rd-metric space. One can verifies that τ−1

d = {X,∅, {y}, {x, y}}. Note that any sequence of the form (c)
τ−1
d -converges to x but does not q-right-converge to x.
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Remark 4.3. Note that although (X, d1) in Counterexample 4.1 is q-right-Hausdorff but (X, τd1) is not
Hausdorff.
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