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Abstract

We have established the solvability of fractional integral equations with both (k, s)-Riemann-Liouville
and Erdélyi-Kober fractional integrals using a new generalized version of the Darbo’s theorem us-
ing Mizogochi-Takahashi mappings and justify the validity of our results with the help of suitable
examples.
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1. Introduction

Many authors attempted to extend the well-known Banach contraction principle after its publica-
tion. Ameer et al., for example, introduced the concept of generalized multivalued contractions and

∗Corresponding author
Email addresses: math.anupam@gmail.com (A. Das), zam.dalahoo@gmail.com (V. Parvaneh),

bhuban.math@gmail.com (B. Chandra Deuri), zohrehbagheri@yahoo.com (Z. Bagheri)

Received: March 2021 Accepted: June 2021

http://dx.doi.org/10.22075/ijnaa.2021.23002.2451


860 Das, Parvaneh, Chandra Deuri, Bagheri

established certain common fixed point results in the class of αK-complete partial b-metric spaces in
[10]. Furthermore, Ameer et al. [11] introduced the concept of Ćirić type rational graphic contraction
pair mappings and offered some associated common fixed point results on partial b-metric spaces
equipped with a directed graph. They demonstrated several electric circuit equations and fractional
differential equations as applications.

Darbo’s fixed point theorem is a well-known generalization of the Banach contraction principle.
Many researchers believe in this theorem. Matani and Roshan proposed the ideas of multivariate
generalized Meir-Keeler condensing operator and multivariate L-function in reference [8], and used
the measure of non-compactness to verify several new fixed point theorems. They also used these
findings to analyze the solvability of a system of Volterra type functional integral equations in three
variables. In addition, Roshan published several expansions of Darbo’s fixed point theorem, as well
as some conclusions on the existence of coupled fixed points for a specific class of operators in a
Banach space (see [9]). He also investigated the existence of a solution for a system of nonlinear
functional integral equations as an application.

Functional integral equations play a pivotal role in different fields and many real life problems
which can be modelled using integral equations with fractional order in a very effective manner.
A fractional derivative is a derivative of any real or complex non-integer order. In recent times,
the fixed point theory has applications in different scientific fields. The FIEs have made significant
contributions to several real-life problems, e.g., science, engineering, mathematics, and other areas
which can be described using all kinds of integral equations of fractional order. Fixed point theorems
can be applied in seeking solutions for fractional differentials and integral equations.

In this work, we have established a generalization of Darbo’s Fixed point theorem, which is an
extension of the work ([3]) and we have applied it to a functional integral equation (FIE) of mixed
type.

In this paper, we will be using the following abbreviated forms:
FIE : Fractional integral equation,
MNC: Measure of noncompactness,
NBCC: Nonempty, bounded, closed and convex subset.

In this article, E is a Banach space with the norm ∥ . ∥E, B[θ, κ] is a closed ball with center θ and
radius κ in E, Λ̄ is the closure of Λ, ConvΛ is the convex closure of Λ, ME denotes the family of all
nonempty and bounded subsets of E and NE is the family of all relatively compact sets. For more
details on fractional calculous and the theory of measure of noncompactness we refer the reader to
[12]-[16].

Definition 1.1. [4] A function ϑ : ME → R+ = [0,∞) is called an MNC in E if:

(i) Λ ∈ ME and ϑ(Λ) = 0 gives Λ is precompact.

(ii) ker ϑ = {Λ ∈ ME : ϑ (Λ) = 0} is nonempty and ker ϑ ⊂ NE.

(iii) Λ ⊆ Λ1 =⇒ ϑ (Λ) ≤ ϑ (Λ1) .

(iv) ϑ
(
Λ̄
)
= ϑ (Λ) .

(v) ϑ (ConvΛ) = ϑ (Λ) .

(vi) ϑ (ϖΛ + (1−ϖ) Λ1) ≤ ϖϑ (Λ) + (1−ϖ)ϑ (Λ1) for all ϖ ∈ [0, 1] .

(vii) if Λn ∈ ME, Λn = Λ̄n, Λn+1 ⊂ Λn for all n ∈ N and lim
n→∞

ϑ (Λn) = 0, then Λ∞ =
∞⋂
n=1

Λn ̸= ϕ.

The family kerϑ is said to be the kernel of measure ϑ. Also, Λ∞ ∈ kerϑ and ϑ(Λ∞) ≤ ϑ(Λn) for
any n. So, ϑ(Λ∞) = 0. This gives Λ∞ ∈ kerϑ.
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Theorem 1.2. [2, Shauder] Let E be a Banach space and Λ(̸= ϕ) ⊆ E be closed and convex. Then
every continuous compact mapping ∆ : Λ → Λ has at least one fixed point.

Theorem 1.3. [5, Darbo] Let E be a Banach space and Λ ⊆ E be nonempty, bounded, closed and
convex (NBCC). Also, let ∆ : Λ → Λ be a continuous mapping. If

ϑ(∆Π) ≤ κϑ(Π), Π ⊆ Λ,

for a constant κ ∈ [0, 1), then ∆ has a fixed point.

With the help of following concepts, we establish our fixed point theorem.
Denote by Ψ the family of all functions ψ : R+ → R+ so that

(1) ψ(s) = 0 ⇔ s = 0.

(2) ψ is nondecreasing and continuous.

Denote by Γ the family of all γ : (0,∞) → R so that

(1) γ is continuous and increasing.

(2) for all {tn} ⊆ (0,∞), lim
n→∞

tn = 1 iff lim
n→∞

γ(tn) = 0.

(3) for all {tn} ⊆ (0,∞), lim
n→∞

tn = 0 iff lim
n→∞

γ(tn) = −∞.

Note that γ(1) = 0.
Some examples of elements of Γ are:

(1) γ1(ς) = ln(ς)

(2) γ2(ς) = −ς− 1
2 + 1.

Definition 1.4. [7] Let F be the family of all maps F : [0,∞)× [0,∞) → [0,∞) satisfying:

(1) max {l,m} ≤ F (l,m) for all l,m ≥ 0.

(2) F is continuous and nondecreasing.

(3) F (l1 + l2,m1 +m2) ≤ F (l1,m1) + F (l2,m2).
For example, let F (τ, ς) = τ + ς, for all τ, ς ≥ 0.

Definition 1.5. The function β : R+ → [0, 1) such that lim sups→t+ β(s) < 1, for any t > 0, is
called a Mizogochi-Takahashi mapping. We denote this class by MT .

Lemma 1.6. [6] Let f : R+ → R+ be the function defined by f(x) = xα.
(1) If α ≥ 0 and t1, t2 ∈ I = [a, b], where a, b ≥ 0 and t2 > t1, then t

α
2 − tα1 ≤ α(t2 − t1).

(2) If 0 < α < 1 and t1, t2 ∈ I and t2 > t1, then t
α
2 − tα1 ≤ (t2 − t1)

α.

2. New Results

In this section, we establish a new fixed point theorem with the help of a new condensing operator
which involves Mizogochi-Takahashi mappings. Also, we show that this new fixed point theorem is
a generalization of Darbo’s fixed point theorem.
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Theorem 2.1. Let E be a Banach space and let C ⊆ E be an NBCC. Also, let T : C → C be a
continuous mapping satisfying

γ [ψ {F (ϑ (TD) , ϕ (ϑ (TD)))}] ≤ γ [β [ψ {F (ϑ (D) , ϕ (ϑ (D)))}]] + γ [ψ {F (ϑ (D) , ϕ (ϑ (D)))}]
(2.1)

where D ⊆ C, F ∈ F, γ ∈ Γ, β ∈ MT , ψ ∈ Ψ, ϕ : R+ → R+ is a continuous function and ϑ is an
arbitrary MNC. Then T has a fixed point in C.

Proof . Define a sequence (Cn), where C1 = C and Cn+1 = Conv(TCn) for all n ≥ 1. Also,
TC1 = TC ⊆ C = C1, C2 = Conv(TC1) ⊆ C = C1 and continuing this process, we have
C1 ⊇ C2 ⊇ C3 ⊇ . . . ⊇ Cn ⊇ Cn+1 ⊇ . . . .

If n1 ∈ N satisfying ϑ(Cn1) = 0, then Cn1 is compact. By Theorem 1.2 it can be observed that
T has a fixed point.

Let F (ϑ(Cn), ϕ(ϑ(Cn))) > 0 for all n > 0. By (2.1) we have

γ [ψ {F (ϑ (Cn+1) , ϕ (ϑ (Cn+1)))}]
= γ [ψ {F (ϑ (ConvTCn) , ϕ (ϑ (ConvTCn)))}]
= γ [ψ {F (ϑ (TCn) , ϕ (ϑ (TCn)))}]
≤ γ [β [ψ {F (ϑ (Cn) , ϕ (ϑ (Cn)))}]] + γ [ψ {F (ϑ (Cn) , ϕ (ϑ (Cn)))}]
< γ [ψ {F (ϑ (Cn) , ϕ (ϑ (Cn)))}] .

Since γ is increasing, we have,

ψ {F (ϑ (Cn+1) , ϕ (ϑ (Cn+1)))} < ψ {F (ϑ (Cn) , ϕ (ϑ (Cn)))} ,

i.e., {ψ {F (ϑ (Cn) , ϕ (ϑ (Cn)))}}∞n=1 is a positive, decreasing and bounded below sequence of real
numbers.

Suppose that
lim
n→∞

ψ {F (ϑ (Cn) , ϕ (ϑ (Cn)))} = r ≥ 0.

Assume that r > 0. As n→ ∞, we have

γ (r) < γ(r)

which is a contradiction. So, lim
n→∞

ψ {F (ϑ (Cn) , ϕ (ϑ (Cn)))} = 0, i.e.,

lim
n→∞

F (ϑ (Cn) , ϕ (ϑ (Cn))) = 0.

Using the property of F we get lim
n→∞

ϑ (Cn) = 0 = lim
n→∞

ϕ [ϑ (Cn)] .

Since Cn ⊇ Cn+1, by Definition 1.1 we get C∞ =
⋂∞

n=1 Cn ⊆ C is nonempty, closed and convex.
Also, C∞ is invariant under T. Thus, Theorem 1.2 implies that T has a fixed point in C∞ ⊆ C. □

Corollary 2.2. Let E be a Banach space and let C ⊆ E be an NBCC. Also, let T : C → C be a
continuous mapping satisfying

ψ {F (ϑ (TD) , ϕ (ϑ (TD)))} ≤ β [ψ {F (ϑ (D) , ϕ (ϑ (D)))}]ψ {F (ϑ (D) , ϕ (ϑ (D)))} (2.2)

where D ⊆ C, F ∈ F, β ∈ MT , ψ ∈ Ψ, ϕ : R+ → R+ is a continuous function and ϑ is an arbitrary
MNC. Then T has a fixed point in C.
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Proof . The result follows by taking γ(ς) = ln ς in Theorem 2.1. □

Theorem 2.3. Let E be a Banach space and let C ⊆ E be an NBCC. Also, let T : C → C be a
continuous mapping satisfying

ψ {F (ϑ (TD) , ϕ (ϑ (TD)))} ≤ kψ {F (ϑ (D) , ϕ (ϑ (D)))} (2.3)

where D ⊆ C, F ∈ F, ψ ∈ Ψ, ϕ : R+ → R+ is a continuous function and ϑ is an arbitrary MNC.
Then T has a fixed point in C.

Proof . The result follows by taking β(ϖ) = k ∈ [0, 1) in Theorem 2.2. □

Remark 2.4. Taking ψ(x) = x
2
, ϕ ≡ 0 and F (p, q) = p + q in Theorem 2.3, Darbo’s Theorem is

obtained.

3. Measure of noncompactness on C([a, b])

Let E = C(I) be the set of real continuous functions on I, where I = [a, b]. Then E is a Banach
space with the norm

∥ ϱ ∥= sup {|ϱ(ς)| : ς ∈ I} , ϱ ∈ E.

Let Λ(̸= ϕ) ⊆ E be bounded. For ϱ ∈ Λ and ϵ > 0, denote by ω(ϱ, ϵ) the modulus of the continuity
of ϱ, i.e.,

ω(ϱ, ϵ) = sup {|ϱ(ς1)− ϱ(ς2)| : ς1, ς2 ∈ I, |ς1 − ς1| ≤ ϵ} .

Further, we define
ω(Λ, ϵ) = sup {ω(ϱ, ϵ) : ϱ ∈ Λ}

and
ω0(Λ) = lim

ϵ→0
ω(Λ, ϵ).

It is well-known that the function ω0 is an MNC in E such that the Hausdorff MNC χ is given by
χ(Λ) = 1

2
ω0(Λ) (see [4]).

4. Existence of solution of an integral equation involving two different fractional inte-
grals

In this part, we shall establish the existence of solution of an integral equation involving both
Erdélyi-Kober and (k, s)-Riemann-Liouville fractional equation in C[1, T ] with the help of the newly
established fixed point theorem.

We find in [6] the definition of the Erdélyi-Kober fractional integral equation of a continuous
function f as follows:

Iγβ,af(ς) =
β

Γ(γ)

∫ ς

a

ξβ−1f(ξ)

(ςβ − ξβ)1−γ
dξ, β > 0, 0 < γ < 1, a > 0.

For a = 1,

Iγβf(ς) =
β

Γ(γ)

∫ ς

1

ξβ−1f(ξ)

(ςβ − ξβ)1−γ
dξ, β > 0, 0 < γ < 1.

We find in [1] the definition of the (k, s)-Riemann-Liouville fractional integral equation of a
continuous function f as follows:
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s
kJ

α
af(ς) =

(s+ 1)1−
α
k

k
ς
kΓ( ς

k
)

∫ ς

a

(
ςs+1 − ηs+1

)α
k
−1
ηsf(η)dη, ς ∈ [a, b], k > 0, α > 0, s ∈ R\ {1} , a > 0.

For a = 1,

s
kJ

αf(ς) =
(s+ 1)1−

α
k

k
ς
kΓ( ς

k
)

∫ ς

1

(
ςs+1 − ηs+1

)α
k
−1
ηsf(η)dη.

In this part, we study the fractional integral equation

Υ (ς) = Π
(
ς,U(ς, Υ (ς)), IγβΥ (ς),

s
k J

αΥ (ς)
)
, (4.1)

where 0 < γ, β, k < 1, α > 0, s ∈ R\ {1} and ς ∈ I = [1, T ].
Let

Bd0 = {Υ ∈ E :∥ Υ ∥≤ d0} .

Assume that

(A) Π : I × R3 → R, U : I × R → R be continuous and there exist constants α1, α2, α3, α4 ≥ 0
satisfying∣∣Π(ς,U, I1, I2)−Π(ς, Ū, Ī1, Ī2)

∣∣ ≤ α1

∣∣U− Ū
∣∣+ α2

∣∣I1 − Ī1
∣∣+ α3

∣∣I2 − Ī2
∣∣ ,

for all ς ∈ I, U, I1, I2, Ū, Ī1, Ī2 ∈ R and

|U(ς, J1)−U(ς, J2)| ≤ α4 |J1 − J2| , J1, J2 ∈ R,

and
α1α4 < 1.

(B) There exists d0 > 0 satisfying

Π̄ = sup
{
|Υ (ς,U, I1, I2)| : ς ∈ I,U ∈ [−Û, Û], I1 ∈ [−Ĵ, Ĵ], I2 ∈ [−Î, Î]

}
≤ d0

where
Û = sup {|U| : ς ∈ I, Υ (ς) ∈ [−d0, d0]} ,

Ĵ = sup
{∣∣IγβΥ (ς)∣∣ : ς ∈ I, Υ (ς) ∈ [−d0, d0]

}
and

Î = sup {|skJαΥ(ς)| : ς ∈ I, Υ (ς) ∈ [−d0, d0]} .

(C) |Π (ς, 0, 0, 0)| = 0.

(D) there exists a positive solution d0 of the inequality

α1α4r +
α2r

Γ(γ + 1)
T βγ +

α3r(s+ 1)−
α
k

αk
T
k
−1Γ( 1

k
)

(
T s+1 − 1

)α
k ≤ r.

Theorem 4.1. If conditions (A)-(D) hold, then 4.1 has a solution in E = C(I).
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Proof . Define the operator Q : E → E as follows:

(QΥ )(ς) = Π
(
ς,U(ς, Υ (ς)), IγβΥ (ς),

s
k J

αΥ (ς)
)
.

Step 1: We prove that the function Q maps Bd0 into Bd0 . Let Υ ∈ Bd0 . We have

|(QΥ ) (ς)|
≤

∣∣Π (
ς,U(ς, Υ (ς)), IγβΥ (ς),

s
k J

αΥ (ς)
)
−Π (ς, 0, 0, 0)

∣∣+ |Π (ς, 0, 0, 0)|
≤ α1 |U(ς, Υ (ς))− 0|+ α2

∣∣IγβΥ (ς)− 0
∣∣+ α3 |skJαΥ (ς)− 0|+ |Π (ς, 0, 0, 0)| .

Also, ∣∣IγβΥ (ς∣∣
=

∣∣∣∣ β

Γ(γ)

∫ ς

1

ξβ−1Υ (ξ)

(ςβ − ξβ)1−γ dξ

∣∣∣∣
≤ β

Γ(γ)

∫ ς

1

ξβ−1 |Υ (ξ)|
(ςβ − ξβ)1−γ dξ

<
βd0
Γ(γ)

∫ ς

1

ξβ−1

(ςβ − ξβ)1−γ dξ

<
d0

Γ(γ + 1)
T βγ,

and

|skJαΥ (ς)|

=

∣∣∣∣∣(s+ 1)1−
α
k

k
ς
kΓ( ς

k
)

∫ ς

1

(
ςs+1 − ηs+1

)α
k
−1
ηsΥ (η)dη

∣∣∣∣∣
≤ (s+ 1)1−

α
k

k
ς
kΓ( ς

k
)

∫ ς

1

(
ςs+1 − ηs+1

)α
k
−1
ηs |Υ (η)| dη

≤ d0(s+ 1)1−
α
k

k
ς
kΓ( ς

k
)

∫ ς

1

(
ςs+1 − ηs+1

)α
k
−1
ηsdη

≤ d0(s+ 1)−
α
k

αk
T
k
−1Γ( 1

k
)

(
T s+1 − 1

)α
k .

Hence, ∥ Υ ∥< d0 gives

∥ QΥ ∥< α1α4d0 +
α2d0

Γ(γ + 1)
T βγ +

α3d0(s+ 1)−
α
k

αk
T
k
−1Γ( 1

k
)

(
T s+1 − 1

)α
k ≤ d0.

Due to the assumption (D) Q maps Bd0 into Bd0 .
Step 2: We prove that Q is continuous on Bd0 . Let ϵ > 0 and Υ, Ῡ ∈ Br0 such that ∥ Υ − Ῡ ∥< ϵ.

We have ∣∣(QΥ ) (ς)− (
QῩ

)
(ς)

∣∣
≤

∣∣Π (
ς,U(ς, Υ (ς)), IγβΥ (ς),

s
k J

αΥ (ς)
)
−Π

(
ς,U(ς, Ῡ (ς)), IγβῩ (ς),

s
k J

αῩ (ς)
)∣∣

≤ α1

∣∣U(ς, Υ (ς))−U(ς, Ῡ (ς))
∣∣+ α2

∣∣IγβΥ (ς)− IγβῩ (ς)
∣∣+ α3

∣∣s
kJ

αΥ (ς)−s
k J

αῩ (ς)
∣∣ .
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Also, ∣∣IγβΥ (ς)− IγβῩ (ς)
∣∣

=

∣∣∣∣ β

Γ(γ)

∫ ς

1

ξβ−1(Υ (ξ)− Ῡ (ξ))

(ςβ − ξβ)1−γ dξ

∣∣∣∣
≤ β

Γ(γ)

∫ ς

1

ξβ−1
∣∣Υ (ξ)− Ῡ (ξ)

∣∣
(ςβ − ξβ)1−γ dξ

<
βϵ

Γ(γ)

∫ ς

1

ξβ−1

(ςβ − ξβ)1−γ dξ

<
ϵ

Γ(γ + 1)
T βγ,

and ∣∣s
kJ

αΥ (ς)−s
k J

αῩ (ς)
∣∣

=

∣∣∣∣∣(s+ 1)1−
α
k

k
ς
kΓ( ς

k
)

∫ ς

1

(
ςs+1 − ηs+1

)α
k
−1
ηs

(
Υ (η)− Ῡ (η)

)
dη

∣∣∣∣∣
≤ (s+ 1)1−

α
k

k
ς
kΓ( ς

k
)

∫ ς

1

(
ςs+1 − ηs+1

)α
k
−1
ηs

∣∣Υ (η)− Ῡ (η)
∣∣ dη

<
ϵ(s+ 1)−

α
k

αk
T
k
−1Γ( 1

k
)

(
T s+1 − 1

)α
k .

Hence, ∥ Υ − Ῡ ∥< ϵ gives

∣∣(QΥ ) (ς)− (
QῩ

)
(ς)

∣∣ < α1α4ϵ+
α2ϵ

Γ(γ + 1)
T βγ +

α3ϵ(s+ 1)−
α
k

αk
T
k
−1Γ( 1

k
)

(
T s+1 − 1

)α
k .

As ϵ→ 0 we get
∣∣(QΥ ) (ς)− (

QῩ
)
(ς)

∣∣ → 0. This shows that Q is continuous on Bd0 .
Step 3: An estimate of Q with respect to ω0: Assume that Ω(̸= ϕ) ⊆ Bd0 . Let ϵ > 0 be arbitrary

and choose Υ ∈ Ω and ς1, ς2 ∈ I such that |ς2 − ς1| ≤ ϵ and ς2 ≥ ς1.
Now,

|(QΥ ) (ς2)− (QΥ ) (ς1)|
=

∣∣Π(ς2,U
(
ς2, Υ (ς2)), I

γ
βΥ (ς2),

s
k J

αΥ (ς2)
)
−Π(ς1,U

(
ς1, Υ (ς1)), I

γ
βΥ (ς1),

s
k J

αΥ (ς1)
)∣∣

≤
∣∣Π(ς2,U

(
ς2, Υ (ς2)), I

γ
βΥ (ς2),

s
k J

αΥ (ς2)
)
−Π(ς2,U

(
ς2, Υ (ς2)), I

γ
βΥ (ς2),

s
k J

αΥ (ς1)
)∣∣

+
∣∣Π(ς2,U

(
ς2, Υ (ς2)), I

γ
βΥ (ς2),

s
k J

αΥ (ς1)
)
−Π(ς2,U

(
ς2, Υ (ς2)), I

γ
βΥ (ς1),

s
k J

αΥ (ς1)
)∣∣

+
∣∣Π(ς2,U

(
ς2, Υ (ς2)), I

γ
βΥ (ς1),

s
k J

αΥ (ς1)
)
−Π(ς2,U

(
ς1, Υ (ς1)), I

γ
βΥ (ς1),

s
k J

αΥ (ς1)
)∣∣

+
∣∣Π(ς2,U

(
ς1, Υ (ς1)), I

γ
βΥ (ς1),

s
k J

αΥ (ς1)
)
−Π(ς1,U

(
ς1, Υ (ς1)), I

γ
βΥ (ς1),

s
k J

αΥ (ς1)
)∣∣

≤ α3 |skJαΥ (ς2)−s
k J

αΥ (ς1)|+ α2

∣∣IγβΥ (ς2)− IγβΥ (ς1)
∣∣

+ α1 |U (ς2, Υ (ς2))−U (ς1, Υ (ς1))|+ ωΠ(I, ϵ)

≤ α3 |skJαΥ (ς2)−s
k J

αΥ (ς1)|+ α2

∣∣IγβΥ (ς2)− IγβΥ (ς1)
∣∣

+ α1α4 |Υ (ς2)− Υ (ς1)|+ ωΠ(I, ϵ)
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where

ωΠ(I, ϵ) = sup

{
|Π(ς2,U, I1, I2)−Π(ς1,U, I1, I2)| : |ς2 − ς1| ≤ ϵ; ς1, ς2 ∈ I;

U ∈ [−Û, Û]; I1 ∈ [−Ĵ, Ĵ]; I2 ∈ [−Î, Î]

}
.

Also,

|skJαΥ (ς2)−s
k J

αΥ (ς1)|

=

∣∣∣∣∣(s+ 1)1−
α
k

k
ς2
k Γ( ς2

k
)

∫ ς2

1

(
ςs+1
2 − ηs+1

)α
k
−1
ηsΥ (η)dη − (s+ 1)1−

α
k

k
ς1
k Γ( ς1

k
)

∫ ς1

1

(
ςs+1
1 − ηs+1

)α
k
−1
ηsΥ (η)dη

∣∣∣∣∣
≤

∣∣∣∣∣(s+ 1)1−
α
k

k
ς2
k Γ( ς2

k
)

∫ ς2

1

(
ςs+1
2 − ηs+1

)α
k
−1
ηsΥ (η)dη − (s+ 1)1−

α
k

k
ς2
k Γ( ς2

k
)

∫ ς1

1

(
ςs+1
1 − ηs+1

)α
k
−1
ηsΥ (η)dη

∣∣∣∣∣
+

∣∣∣∣∣(s+ 1)1−
α
k

k
ς2
k Γ( ς2

k
)

− (s+ 1)1−
α
k

k
ς1
k Γ( ς1

k
)

∣∣∣∣∣
∫ ς1

1

(
ςs+1
1 − ηs+1

)α
k
−1
ηs |Υ (η)| dη

≤ (s+ 1)1−
α
k

k
ς2
k Γ( ς2

k
)

∣∣∣∣∫ ς2

1

(
ςs+1
2 − ηs+1

)α
k
−1
ηsΥ (η)dη −

∫ ς1

1

(
ςs+1
1 − ηs+1

)α
k
−1
ηsΥ (η)dη

∣∣∣∣
+

∣∣∣∣∣(s+ 1)1−
α
k

k
ς2
k Γ( ς2

k
)

− (s+ 1)1−
α
k

k
ς1
k Γ( ς1

k
)

∣∣∣∣∣ ∥ Υ ∥
∫ ς1

1

(
ςs+1
1 − ηs+1

)α
k
−1
ηs |Υ (η)| dη

≤ (s+ 1)−
α
k ∥ Υ ∥

(s+ 2)k
ς2
k γ

(
ς2
k

) [2(ςs+1
2 − ςs+1

1 )
α
k + (ςs+1

2 − 1)
α
k − (ςs+1

1 − 1)
α
k

]
+ (s+ 1)−

α
k

∣∣∣∣∣ 1

k
ς2
k γ

(
ς2
k

) − 1

k
ς1
k γ

(
ς1
k

)∣∣∣∣∣ ∥ Υ ∥ k

α

(
T s+1 − 1

)α
k

and ∣∣IγβΥ (ς2)− IγβΥ (ς1)
∣∣

=

∣∣∣∣∣∣∣
β

Γ(ϖ)

∫ ς2

1

ξβ−1Υ (ξ)(
ςβ2 − ξβ

)1−γ dξ −
β

Γ(γ)

∫ ς1

1

ξβ−1Υ (ξ)(
ςβ1 − ξβ

)1−γ dξ

∣∣∣∣∣∣∣
≤ ∥ Υ ∥

Γ(γ + 1)

[
2
(
sβ2 − sβ1

)γ

+
(
sβ2 − 1

)γ

−
(
sβ1 − 1

)γ]
.

As ϵ→ 0, then ς2 → ς1 and so, |skJαΥ (ς2)−s
k J

αΥ (ς1)| → 0 and
∣∣IγβΥ (ς2)− IγβΥ (ς1)

∣∣ → 0. Hence,

|(QΥ ) (ς2)− (QΥ ) (ς1)|
≤ α3 |skJαΥ (ς2)−s

k J
αΥ (ς1)|+ α2

∣∣IγβΥ (ς2)− IγβΥ (ς1)
∣∣

+ α1α4ω(Υ, ϵ) + ωΠ(I, ϵ),

i.e.

ω(QΥ, ϵ) ≤ α3 |skJαΥ (ς2)−s
k J

αΥ (ς1)|+ α2

∣∣IγβΥ (ς2)− IγβΥ (ς1)
∣∣+ α1α4ω(Υ, ϵ) + ωΠ(I, ϵ).

By the uniform continuity of Π on I× [−Û, Û]× [−Ĵ, Ĵ]× [−Î, Î] we have ωΠ(I, ϵ) → 0, as ϵ→ 0.
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Taking supΥ∈Ω and ϵ→ 0 we get,

ω0(QΩ) ≤ α1α4ω0(Ω),

Thus, by Remark 2.4, Q has a fixed point in Ω ⊆ Bd0 , i.e., equation (4.1) has a solution in E. □
Now, we shall consider an example of integral equations involving both (k, s)-Riemann-Liouville

and Erdélyi-Kober fractional integrals and study the existence of solution of it on C[1, 2].

Example 4.2. Consider the following equation

Υ (ς) =
Υ (ς)

7 + ς2
+

I
1
3
1
3

Υ (ς)

6
+

1
3
1
3

J
2
3Υ (ς)

400
(4.2)

for ς ∈ [1, 2] = I.

Here,

I
1
3
1
3

Υ (ς) =
1

3Γ(1
3
)

∫ ς

1

ξ−
2
3

(
ς

1
3 − ξ

1
3

)− 2
3
Υ (ξ)dξ

and
1
3
1
3

J
2
3Υ (ς) =

33ς+1

4Γ(3ς)

∫ ς

1

ξ
1
3

(
ς

4
3 − ξ

4
3

)
Υ (ξ)dξ.

Also, Π(ς,U, I1, I2) = U + I1
6
+ I2

400
and U(ς, Υ ) = Υ

7+ς2
. It is trivial that both Π and U are

continuous and

|U(ς, J1)−U(ς, J2)| ≤
|J1 − J2|

8
and ∣∣Π(ς,U, I1, I2)−Π(ς, Ū, Ī1, Ī2)

∣∣ ≤ ∣∣U− Ū
∣∣+ 1

6

∣∣I1 − Ī1
∣∣+ 1

400

∣∣I2 − Ī2
∣∣ .

Therefore, α1 = 1, α2 =
1
6
, α3 =

1
400
, α4 =

1
8
and α1α4 =

1
8
< 1.

If ∥ Υ ∥≤ d0, then

Û =
d0
8
,

Ĵ =
3
(
2

1
3 − 1

) 1
3
d0

Γ(1
3
)

and

Î =
38

(
2

4
3 − 1

)2

d0

32Γ(3)
.

Further,

|Π(ς,U, I1, I2)| ≤
d0
8

+
1

6


3
(
2

1
3 − 1

) 1
3
d0

Γ(1
3
)

+
1

400
.
38

(
2

4
3 − 1

)2

d0

32Γ(3)
≤ d0.

If we choose d0 = 2, then

Û =
1

4
, Ĵ =

(
2

1
3 − 1

) 1
3

Γ(1
3
)

, Î =
38

(
2

4
3 − 1

)2

16Γ(3)
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which gives
Π̄ ≤ 2.

On the other hand, assumption (D) is also satisfied for d0 = 2.
We observe that all the assumptions from (A) − (D) of Theorem 4.1 are satisfied. By Theorem

4.1 it can be said that equation (4.2) has a solution in E = C(I).

5. Conclusion

Here, the solvability of fractional integral equations with both (k, s)-Riemann-Liouville and
Erdélyi-Kober fractional integrals using a new generalized version of the Darbo’s theorem using
Mizogochi-Takahashi mappings has been studied. Also, justify the validity of our results with the
help of suitable examples. This method can be applied to different types of integral equations in-
volving different fractional integrals.
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