E-small essential submodules

Mamoon F. Khalf ${ }^{a, *}$, Hind Fadhil Abbas ${ }^{\text {b }}$
${ }^{a}$ Department of Physics, College of Education, University of Samarra, Iraq
${ }^{b}$ Directorate of Education Salah Eddin, Khaled Ibn AI Walid School, Tikrit, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let R be a commutative ring with identity, and U_{R} be an R-module, with $E=\operatorname{End}\left(U_{R}\right)$. In this work we consider a generalization of class small essential submodules namely E-small essential submodules. Where the submodule Q of U_{R} is said E-small essential if $Q \cap W=0$, when W is a small submodule of U_{R}, implies that $N_{S}(W)=0$, where $N_{S}(W)=\{\psi \in E \mid \operatorname{Im} \psi \subseteq W\}$. The intersection $\bar{B}_{R}(U)$ of each submodule of U_{R} contained in $\operatorname{Soc}\left(U_{R}\right)$. The $\bar{B}_{R}(U)$ is unique largest E-small essential submodule of U_{R}, if U_{R} is cyclic. Also in this paper we study $\bar{B}_{R}(U)$ and $\bar{W}_{E}(U)$. The condition when $\bar{B}_{R}(U)$ is E-small essential, and $\operatorname{Tot}(U, U)=\bar{W}_{E}(U)=J(E)$ are given.

Keywords: Small submodule, Small essential submodules, E-small essential submodules, Endomorphism ring.

1. Introduction

Throughout this treatise, all ring R is a associative with identity, and all module over a ring R is unitary right module. Let U_{R} will always denoted such an R -module and E is endomorphism ring and denoted by $E=\operatorname{End}\left(U_{R}\right)$ of ring module. The submodule W is called essential of U_{R} (denoted by: $W \unlhd U_{R}$) if $0 \neq G \leq U_{R}$, then $W \cap G \neq 0$ (see [1]), where the submodule G of U_{R} is denoted by $\left(G \leq U_{R}\right)$. The submodule Q of U_{R} is said small submodule (denoted by: $Q \ll U_{R}$), if $\forall W \supsetneqq U_{R}$ then $Q+W=U_{R}$ (see [2]). The left annihilator of an submodule Q of U_{R} is denoted by $\delta_{E}(Q)$, and the right annihilator of an endomorphism h of U_{R} is denoted by $k_{U}(h)$, specifically that $\operatorname{Ker}(h)$. We also denoted $N_{E}(Q)=\{\theta \in E \mid \operatorname{Im} \theta \subseteq Q\}$ for each $Q \subseteq U$. Nicholson and Zhou defined annihilator-small right ideals [5]. Also Amouzegar and Keskin introduced and study the right annihilator-small submodules of an R-module. Let U_{R} be an R-module and $F \leq U_{R}$, then

[^0]Received: August 2021 Accepted: September 2021

F is a said to annihilator- small submodule if $F+W=U$, where W is a submodule of U_{R}, so $\delta_{E}(W)=0$ [4]. From [7] the Zhouaud and Zhang, give a definition of small- essential submodules. Let K be a submodule of a module U_{R}, then K is called small-essential in U_{R} (denoted by $K \unlhd_{E} U$, if $K \cap W=0$, with $W \ll U_{R}$ implies that $W=0$. In this paper we introduced new concept namely Esmall essential submodule, where a submodule Q of a module U_{R} is called E-small essential (denoted by $Q \unlhd_{E-s} U$) if $Q \cap W=0$, for each $W \ll U_{R}$, implies that $N_{E}(Q)=0$, where $E=\operatorname{End}\left(U_{R}\right)$. In [7], essential submodule is small essential submodule. It is clearly that small essential submodule is E-small essential, so every essential is E-small essential. Also give us the condition that makes every E-small essential is essential (see proposition 2.2), and every E-small essential is small essential (see proposition 2.4 and 2.5). We have verified that the equality is correct for the following statement $\operatorname{Tot}(U, U)=\bar{W}_{E}(U)=J(E)$.

2. Main Results

Definition 2.1. Let Q be an submodule of a module U_{R}, then Q is called E-small essential (denoted by $Q \unlhd_{E-s} U$) if $Q \cap W=0$, where W is small submodule of U_{R} (or denoted by $W \ll U_{R}$), implies that $N_{E}(W)=0$, where $E=\operatorname{End}\left(U_{R}\right)$.

It is clearly that every small essential submodule is E-small essential submodule, but the opposite is generally not true (meditation the submodule mZ of the Z-module Z).

The left R-module U_{R} is called retractable if there exists a non-zero homomorphism $\beta: U \rightarrow Q$ for each anon-zero submodule Q of U_{R}.

Proposition 2.2. Let U_{R} be an retractable R-module. If $Q \unlhd_{E-s} U_{R}$, then $Q \leq_{e} U_{R}$.
Proof . Let $Q \cap F=0$, for an $F \leq U_{R}$, then by hypothesis $N_{E}(F)=0$. But U_{R} is retractable, then $F=0$, that mean $Q \leq_{e} U_{R} . \square$

Corollary 2.3. If U_{R} is retractable R-module and $Q \unlhd_{E-s} U_{R}$, then $Q \unlhd_{s} U_{R}$.
Proposition 2.4. Let U_{R} be a cyclic and π-projective module. Then Q is small essential submodule if and only if Q is E-small essential submodule of U_{R}.
Proof . Let $U_{R}=u R$ for some $u \in U_{R}$, and $Q \unlhd_{E-s} U_{R}$. Let $V \ll U_{R}$, we put $0 \neq v \in V$, so then there exists $0 \neq n \in R$, such that $v=$ un, but $U_{R}=u R=u n R+u(1-n) R$, since U_{R} is π-projective then there exists $\beta \in \operatorname{End}\left(U_{R}\right)$, with $\operatorname{Im} \beta \subseteq u n R \subseteq V$, so $\operatorname{Im}(1-\beta) \subseteq(1-n) u R$, that is $N_{E}(V) \neq 0$. As $Q \unlhd_{E-s} U_{R}$, and $Q \cap V \neq 0$. That mean $Q \unlhd_{E-s} U_{R}$. The converse is evident.

Proposition 2.5. Let U_{R} be a cyclic R-module and R be a commutative ring. Then $Q \unlhd_{E-s} U_{R}$ if and only if $Q \unlhd_{s} U_{R}$.
Proof . Is evident.
Lemma 2.6. Let U_{R} be an R-module. If $V \leq Q \leq U_{R}$, and $Q \unlhd_{E-s} U_{R}$, then $V \unlhd_{E-s} U_{R}$.
Proof . Is evident.
Proposition 2.7. Let U_{R} be an R-module. If $Q \unlhd_{E-s} U_{R}$ and $F \unlhd_{s} U_{R}$, then $Q \cap F \unlhd_{E-s} U_{R}$. Proof . Let $Q \cap F \cap V=0$, where $V \ll U_{R}$. Since $F \unlhd_{s} U_{R}$, that is $Q \cap V=0$ and $N_{E}(V)=0$.

Lemma 2.8. Let U_{R} be a module, and Q be a submodule of U_{R} if $N_{E}(Q) \unlhd_{s} E_{E}$, then $N_{E}(Q) U_{R} \unlhd_{E-s}$ U_{R}. In specially, $Q \unlhd_{E-s} U_{R}$.
Proof . Let $N_{E}(Q) U_{R} \cap V=0$, so $N_{E}(Q) \cap N_{E}(V)=0$, thus $N_{E}(V)=0$. But $N_{E}(Q) \unlhd_{s} E_{E}$. So that the last perception by (Lemma 2.6) and since $N_{E}(Q) U_{R} \subseteq Q \subseteq U_{R}$ always achieve.

Note that the converse of Lemma 2.8 is true if $\left(N_{E}(Q) \cap v E\right) U_{R}=N_{E}(Q) U_{R} \cap v U_{R}$ verified for each submodule Q of U_{R}, and all small element $v \in E$. And to watch it, let $N_{E}(Q) \cap v E=0$, for any small element $v \in E$. Thus $N_{E}(Q) U_{R} \cap v U_{R}=0$, so $N_{E}\left(v U_{R}\right)=0$. But $N_{E}(Q) U_{R} \unlhd_{E-s} U_{R}$ and $v E \subseteq N_{E}\left(v U_{R}\right)=0$, then $v=0$. Hence $N_{E}(Q) \unlhd_{s} E_{E}$.
Recall that an R -module U_{R} is called semi-injective if for each $\alpha \in E$ such that

$$
E \alpha=\delta_{E}(\operatorname{ker}(\alpha))=\delta_{E}\left(k_{U}(\alpha)\right)
$$

(equivalently for any monomorphism $\alpha: Q \rightarrow U$, where Q is a factor module of U_{R}, and for any homomorphism $\beta: Q \rightarrow U$, then there exists $\gamma: U \rightarrow U$ such that $\alpha \gamma=\beta$) [5, p. 261].
Lemma 2.9. Let us have the following situation for any R-module U_{R} and $u \in E$:
(1) $k_{U}(u) \unlhd_{E-s} U_{R}$.
(2) $k_{U}(u) \varsubsetneqq k_{U}(u r)$ for all $0 \neq r \in E$.
(3) $k_{E}\left(1_{E}-a u\right)=0$ for all $0 \neq a \in E$.
(4) $k_{E}\left(1_{E}-u a\right)=0 \quad$ for all $0 \neq a \in E$.
(5) $k_{E}(u-u a u)=k_{E}(u) \quad$ for all $0 \neq a \in E$.

Then $(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(4) \Longrightarrow(5)$. If U_{R} is semi-injective, then $(5) \Longrightarrow(1)$.
Proof . (1) $\Longrightarrow(2)$ Suppose that $0 \neq r \in E$, and $k_{U}(r)=k_{U}(u r)$. It is clear that $k_{U}(u) \cap r U=0$. According to $k_{U}(u) \unlhd_{E-s} U_{R}$, and $N_{E}(r U)=0$, so $r E \subseteq N_{E}(r U)=0$. That is $r=0$.
$(2) \Longrightarrow(3)$ Let $a \in E$, and $r \in k_{E}\left(1_{E}-a u\right)$, so $r=$ aur, then $k_{U}(u r) \subseteq k_{U}($ aur $)=k_{U}(r)$. Then by (2), hence $r=0$.
$(3) \Longrightarrow(4)$ Let $r \in k_{E}\left(1_{E}-u a\right)$, for all $a \in E$, thus $\left(1_{E}-u a\right) r=0$, that mean $\left(1_{E}-a u\right)$ ar $=$ ($a-a u a) r=a\left(1_{E}-u a\right) r=0$, implies that ar $=0$ that by (3), then $r=u a r=0$.
(4) $\Longrightarrow(5)$ Let $r \in k_{E}(u-u a u)$, for all $a \in E$, so by (4) ur $=0$. Then $r \in k_{E}(u)$. Other embedding in a similar way.
$(5) \Longrightarrow(1) S$ uppose that U_{R} is semi-injective. Now, let $k_{U}(u) \cap V=0$ for a small submodule V of U_{R}, and let $r \in N_{E}(V)$, implies that $r U \cap k_{U}(u)=0$, then $k_{U}(r)=k_{U}(u r)$. But U_{R} is semi-injective, then thereesxists ahomomorphism $v \in E$ such that $r=v u r$, so $(u-u v u) r=0$. Thus $r \in(u-u v u)=k_{E}(u)$, then $u r=0$, and hence $r=0$.
Note that we us define $\bar{W}_{E}(U)=\left\{u \in E \mid \operatorname{ker} v=k_{U}(u) \unlhd_{E-s} U_{R}\right\}$ for any module U_{R}.
Corollary 2.10. Let U_{R} be a module, and $u \in \bar{W}_{E}(U)$. Thus $E u \subseteq \bar{W}_{E}(U)$. If U_{R} is semi-injective, then $u E \subseteq \bar{W}_{E}(U)$.
Proof . Let $r \in E$, and U_{R} is semi-injective, we most show that $k_{U}(u r) \unlhd_{E-s} U_{R}$. Now let $v \in E$, since $k_{U}(u) \unlhd_{E-s} U_{R}$, then by Lemma 2.9(4) $k_{E}\left(1_{E}-u r v\right)=0$. Once again form Lemma 2.9(4) $k_{U}(u r) \unlhd_{E-s} U_{R}$. Thus $u E \subseteq \bar{W}_{E}(U)$. Now through the Lemma ??, we get $E u \subseteq \bar{W}_{E}(U)$.
Corollary 2.11. We own $\bar{W}_{E}(U) \subseteq \delta_{E}\left(S o c\left(E_{E}\right)\right)$. Furthermore, $J(E) \subseteq \bar{W}_{E}(U)$, if U_{R} is a semiinjective.
Proof . Let $w \in \bar{W}_{E}(U)$, and $0 \neq u \in \operatorname{Soc}\left(E_{E}\right)$, we want to prove that $0=w \operatorname{Soc}\left(E_{E}\right)$. Now $u \in E_{1} \oplus E_{2} \oplus \cdots \oplus E_{n}$, where $E_{1}, E_{2}, \ldots, E_{n}$ are simple right ideal of E, and n is positive integer. Suppose that $w u \neq 0$ and $u=u_{1}+u_{2}+\cdots+u_{n}$ where as $u_{j} \in E_{j}$ for some $j \in\{1,2, \ldots, n\}$, then $w u_{j} \neq 0$. As E_{j} is simple so $E u u_{j}=E_{j}$. Thus $u_{j}=\beta w u_{j}$ for all $\beta \in E$. So $u_{j} \in k_{E}\left(1_{E}-\beta w\right)$, but $k_{U}(w) \unlhd_{E-s} U_{R}$, then from Lemma2.9 $k_{E}\left(1_{E}-\beta w\right)=0$, that is $u_{j}=0$. This is acontradiction. So $w u=0$, hence $\bar{W}_{E}(U) \subseteq \delta_{E}\left(S o c\left(E_{E}\right)\right)$. Now let $v \in J(E)$ and $w \in E$. We must prove that $v \in \bar{W}_{E}(U)$, we take $\beta \in k_{E}\left(1_{E}-w v\right)$. Thus $\left(1_{E}-w v\right)=0$, but $1_{E}-w v$ is invertible, so $\beta=0$. Then $k_{E}\left(1_{E}-w v\right)=0$ for all $w \in E$. Hence from Lemma2. $9 v \in \bar{W}_{E}(U)$, implies that $J(E) \subseteq \bar{W}_{E}(U)$.

Corollary 2.12. Let U_{R} is a semi- injective module and $h \in E$. Then $\operatorname{Kerh}=k_{U}(u) \unlhd_{E-s} U_{R}$ if and only if $E h<\Vdash_{a} E_{E}$.
Proof. Let $h \in E$ and suppose that $k_{U}(h) \unlhd_{E-s} U_{R}$. Now let $E=E h+P$, where P is an ideal of E. So $1_{E}=r h+q$, where $r \in E$ and $q \in P$, then $k_{U}(h) \cap k_{U}(q)=0$. But $k_{U}(h) \unlhd_{E-s} U_{R}$, then $N_{E}\left(k_{U}(q)\right)=0$. That is $N_{E}\left(k_{U}(P)\right)=0$, hence $k_{U}(P)=0$ implies that $E h<_{a} E_{E}$. The converse, suppose $E h<_{a} E_{E}$, then from ([4], Corollary 2.8) $k_{E}(h-h r h)=k_{E}(h)$, for all $r \in E$. Then from Lemma $2.9 k_{U}(h) \unlhd_{E-s} U_{R}$.

Corollary 2.13. Let U_{R} be an R-module. If $h^{2}=h \in \bar{W}_{E}(U)$, then $h=0$.
Proof . We can see from the lemma2.9 (4) and $k_{U}(h) \unlhd_{E-s} U_{R}, k_{E}\left(1_{E}-h\right)=0$, and since $h \in$ $k_{E}\left(1_{E}-h\right)$. Implies that $h=0$.

Corollary 2.14. Let P be an maximal-ideal of E, where $E=\operatorname{End}\left(U_{R}\right)$ and U_{R} be amodule. Then the following ferries are equivalent:

1. $P U \unlhd_{E-s} U_{R}$
2. $P \leq{ }_{e} E_{E}$

Proof . (1) $\Longrightarrow(2)$ Let $P U \unlhd_{E-s} U_{R}$ Suppose that P is not essential of E_{E}. Then $P \cap K=0$, foe some K is a non-zero ideal of E_{E}. But P is amaximal ideal, that mean P is direct summand of E_{E}. So there exists idempotent element $i \in E_{E}$ such that $P=i E$. Then $P U=i U=k_{E}\left(1_{E}-i\right) \unlhd_{E-s} U_{R}$. Hence $1_{E}-i \in \bar{W}_{E}(U)$. Then from (Corollary 2.13) $i=1$. This is acontradiction.
$(2) \Longrightarrow$ (1) Let $P \leq_{e} E_{E}$, and $P U \cap V=0$ for an small submodule V of U_{R}. $S o \quad 0=N_{E}(0)=$ $N_{E}(P U) \cap N_{E}(V)$. Then $P \cap N_{E}(V)=0$. But $P \leq_{e} E_{E}$, then $N_{E}(V)=0$.

Recall that the element h in E is called to be partially invertible if hE contains anon-zero idempotent, where (hE equivalent Eh). Where an R-module U_{R} the total of U_{R} is defined as $\operatorname{Tot}(E)=$ $\operatorname{Tot}(U, U)=\{h \in E \mid h$ is not partially invertible $\}$.
Unable to closed the total under addition. In effect, if 0 and 1 are the only idempotent in E , then the total of U_{R} is the set of non-isomorphism.

Proposition 2.15. Let U_{R} be a module. Then $\bar{W}_{E}(U) \subseteq \operatorname{Tot}(U, U)$.
Proof . If $h \in \bar{W}_{E}(U)$ and $h \notin \operatorname{Tot}(U, U)$, implies that h is partially invertible then there exists $0 \neq i^{2}=i \in$ Eh. So by (Corollary 2.10), $i \in \bar{W}_{E}(U)$. Thus acontradicts to (Corollary 2.13).

Let P is a subset of a ring R , then R is called to be P -semi-potent if every ideal not contained in P contains anon-zero idempotent, equivalently if every element $q \notin P$ is a partial inverse R is said to be semi-potent if R is $J(R)$-semi-potent.

Lemma 2.16. Let U_{R} be a module, if P is a subset of $E=\operatorname{End}\left(U_{R}\right)$. Then the following ferries are equivalent:

1. E is P-semi-potent.
2. $\operatorname{Tot}(U, U) \subseteq P$.

Proof . Is evident from ([5], Lemma 20).
Proposition 2.17. Let $E=\operatorname{End}\left(U_{R}\right)$ for any R-module U_{R}. Then E is a semi-potent if and only if $J(E)=\operatorname{Tot}(U, U)$.
Proof . Is evident from ([5], Theorem 21).

Proposition 2.18. Let U_{R} be asemi- injective R-module, and $E=\operatorname{End}\left(U_{R}\right)$ is a semi-potent. Then $\bar{W}_{E}(U)=J(E)=\operatorname{Tot}(U, U)$.
Proof . It is evident that $J(E) \subseteq \bar{W}_{E}(U)$ by (Corollary 2.11). Let $u \in \bar{W}_{E}(U)$, if $u \notin J(E)$ and E is $J(E)$-semi-portent, then $\bar{W}_{E}(U)$ have anon-zero idempotent which is a contradiction (we can see corollary 2.13). Then $J(E)=\bar{W}_{E}(U)$. Now from Proposition $2.15 \bar{W}_{E}(U) \subseteq \operatorname{Tot}(U, U)$. From other hand, E is $\bar{W}_{E}(U)$-semi-portent and since $J(E)=\bar{W}_{E}(U)$. Hence form Lemma 2.16 $T o t(U, U) \subseteq \bar{W}_{E}(U)$.

Proposition 2.19. Let U_{R} be asemi- injective R-module, and $E=\operatorname{End}\left(U_{R}\right)$, where $k_{E}(u)=0$, for all $u \in E$, such that $E u=E$. Then $\bar{W}_{E}(U)=J(E)$.
Proof. It is clear that from Corollary $2.11 J(E) \subseteq \bar{W}_{E}(U)$. Let $x \in \bar{W}_{E}(U)$, then $k_{U}(x) \unlhd_{E-s} U_{R}$, hence $k_{E}\left(1_{E}-u x\right)=0$, for all $u \in E$, so from Lemma 2.9 then $E\left(1_{E}-u x\right)=E$, thus by hypothesis $x \in J(E)$. Implies $\bar{W}_{E}(U) \subseteq J(E)$.

A ring R is said to be right Kasch if every simple right R -module embeds in R , this is rewarding, if $k_{R}(V) \neq 0$ for every maximal right ideal E of R . Associated R aleft ideal W_{2} ring if every left ideal is isomorphic to direct of ${ }_{R} R$ is itself a direct summand of ${ }_{R} R$
Lemma 2.20. Let U_{R} be asemi- injective R-module. In each of the following statements, we have $\bar{W}_{E}(U)=J(E)$.

1. E is semi-potent.
2. E is right Kasch.
3. E is a left W_{2} ring.

Proof .

1. Is evident from Proposition 2.18
2. Let $u \in E$, then $k_{E}(u)=0$. If $u E \neq E$, then by (2) $k_{E}(u E)=0$, that is $k_{E}(u) \neq 0$. This is a contradiction. Hence from Proposition $2.19 \bar{W}_{E}(U)=J(E)$.
3. Let $v \in E$, then $k_{E}(v)=0$. If $E v=E$, then by (3) $E v$ is a direct summand of E, so $v x v=v$, for some element $x \in E$. Since $0=k_{E}(v)=k_{E}(v x)=E\left(1_{E}-v x\right)$. Hence $v x=1_{E}$ and $v E=E$, from Proposition 2.19, $\bar{W}_{E}(U)=J(E)$.

Lemma 2.21. Let $u=u R$, where $u \in U$, and U be a cyclic R-module. Then the following are equivalent for $w \in U$:-

1. $w R \unlhd_{E-s} U$
2. $g(w R) \varsubsetneqq f(U)$, for all $g \in E$
3. $k_{E}(u-w n)=0$, for all $n \in R$.

Proof . (1) $\Longrightarrow(2)$ Let $g(w R)=g(U)$, then $g(w n)=g(u)$, for all $n \in R$, hence $g \in k_{E}(u-w n)$. But $w R+(u-w n) R=u R=U$, then by (1) $k_{E}(u-w n)=0$. Therefore $g=0$.
(2) \Longrightarrow (3) Let $g \in k_{E}(u-w n)$, for all $n \in R$, so $g(u)=g(w n) \subseteq g(w R)$ by (2). Therefore $g=0$.
(3) \Longrightarrow (1) If $w R+V=U$, where V is small submodule of U_{R}, then $u=w n+v$, for all $n \in R$ and $v \in V$. Now let $g \in k_{E}(V)$ that mean $g(u)=g(w n)$. Hence by (3) $g \in k_{E}(u-w n)=0$. Therefore $g=0$.

Note: Let U_{R} be a module, we can defined $\overline{B_{R}}(U)=\cap\left\{D \subseteq U_{R} \mid D \unlhd_{E-s} U_{R}\right\}$. It is clearly that $\overline{B_{R}}(U) \subseteq \operatorname{Soc}(U)$.

Proposition 2.22. If U_{R} is an retractable and semi- projective R-module, then $\overline{B_{R}}(U)=\operatorname{Soc}(U)=$ $\operatorname{Soc}\left(E_{E}\right) U$.
Proof . From Corollary $2.3 \overline{B_{R}}(U)=\operatorname{Soc}(U)$. Since U_{R} is semi- projective, then from ([3], Proposition 2.4), $\overline{B_{R}}(U)=\operatorname{Soc}(U)=\operatorname{Soc}\left(E_{E}\right) U$.
Let U_{R} be an R-module, an element $c \in U_{R}$ is called E-small essential if $c R \unlhd_{E-s} U_{R}$. For simplicity, we denoted $C_{R}(U)=\{c \in U \mid c$ is a E-small essential in $U\}=\left\{c \in U \mid c R \unlhd_{E-s} U_{R}\right\}$. It is evident that $C_{R}(U) \subseteq \overline{B_{R}}(U)$.

Proposition 2.23. Let $U=a R$ be a cyclic R-module, and X be a submodule of U_{R}. Then the following are equivalent:

1. $X \unlhd_{E-s} U_{R}$
2. $X \subseteq C_{R}(U)$
3. $k_{E}(u-a)=0$, for all $a \in R$.

Proof . (1) $\Longrightarrow(2)$ Fore Proposition 2.7 .
(2) \Longrightarrow (3) Let $X+Y=U$, where Y is small submodule of $U_{R}, u=x+y$, for all $x \in X$ and $y \in Y$, then $k_{E}(Y) \subseteq k_{E}(u-x)=0$.
$(3) \Longrightarrow(1)$ According to the hypothesis(3). Therefore $X \unlhd_{E-s} U_{R}$.
Proposition 2.24. Let U_{R} be an R-module, Then

1. $\overline{B_{R}}(U)=\left\{c_{1}+c_{2}+\cdots+c_{n} \mid c_{j} \in C_{R}(U)\right.$ for each n, j are positive integer $\}$.
2. $\overline{B_{R}}(U)=C_{R}(U) R$.

Proof. (1) Let the set $F=\left\{c_{1}+c_{2}+\cdots+c_{n} \mid c_{j} \in C_{R}(U)\right.$ for each n, j are positive integer $\}$. If $c \in \overline{B_{R}}(U)$, then $c \in F_{1}+F_{2}+\cdots+F_{n}$, where $F_{j} \unlhd_{E-s} U_{R}$, for each n, j are positive integer. If $c=c_{1}+c_{2}+\cdots+c_{n}, c_{j} \in F_{j}$, implies that from Proposition $2.7 c_{j} R \unlhd_{E-s} U_{R}$. Thus $c_{j} \in C_{R}(U)$. Hence $\overline{B_{R}}(U) \subseteq F$. Simply we can note that $F \subseteq \overline{B_{R}}(U)$.
(2) Evident by fact, $C_{R}(U) \subseteq \overline{B_{R}}(U)$, and by (1).

Proposition 2.25. Let U_{R} be an R-module, consider the following expression:

1. If $F \unlhd_{E-s} U_{R}$ and $H \unlhd_{E-s} U_{R}$, then $F+H \unlhd_{E-s} U_{R}$.
2. $C_{R}(U)$ is closed under addition.
3. $\overline{B_{R}}(U)=C_{R}(U)$.
4. $\overline{B_{R}}(U) \unlhd_{E-s} U_{R}$

Can we get $(1) \Longrightarrow(2) \Longrightarrow(3)$ and $(4) \Longrightarrow(1)$.
But $(3) \Longrightarrow(4)$, it can obtained by adding if U_{R} is cyclic R-module. In addition, if $U=u R$, where $u \in U$ one of the above-mentioned condition the following:
(i) $\overline{B_{R}}(U)$ is the unique largest E-small essential of U.
(ii) $\overline{B_{R}}(U)=\left\{u \in U \mid k_{E}(a-u w)=0\right.$, for all $\left.w \in R\right\}$
(iii) $\overline{B_{R}}(U)=\cap\left\{G \subseteq{ }^{\max } U \mid \overline{B_{R}}(U) \subseteq G\right\}$

Proof . (1) $\Longrightarrow(2)$ Since $(u+v) R \subseteq u R+v R$, so $C_{R}(U)$ is closed under addition by Prop. 2.7. $(2) \Longrightarrow(3)$ It is obvious that $C_{R}(U) \subseteq \overline{B_{R}}(U)$, then from Proposition 2.24 (1), $\overline{B_{R}}(U) \subseteq C_{R}(U)$.
(3) \Longrightarrow (4) Let $U=u R$, for some $u \in U$, and $\overline{B_{R}}(U)+F=U$, where F is a small submodule of U_{R}. Thus by (3) $C_{R}(U)+F=U$. If $u=v+w$, where $v \in C_{R}(U)$ and $w \in F$. Thus $U=v R+F$, so $v R \unlhd_{E-s} U_{R}$. Then $k_{E}(U)=0$. Hence $\overline{B_{R}}(U) \unlhd_{E-s} U_{R}$.
$(4) \Longrightarrow$ (1) Let $F \unlhd_{E-s} U_{R}$ and $H \unlhd_{E-s} U_{R}$. Thus $F \subseteq \overline{B_{R}}(U)$ and $H \subseteq \overline{B_{R}}(U)$, then $F+H \subseteq$ $\overline{B_{R}}(U)$. Hence from Proposition 2.7 and by (4), implies that $F+H \unlhd_{E-s} U_{R}$.
Now, (i) is evident by (4), and (ii) is evident from Lemma 2.21 and by (3). Finally (iii) if $u \in \overline{B_{R}}(U)$, so $u R$ is not E-small essential by (3), then $u R+F=U$, for an small submodule F of U_{R}, with $k_{E}(U) \neq 0$, by (4) $\overline{B_{R}}(U) \unlhd_{E-s} U_{R}$, then we have $\overline{B_{R}}(U)+F \neq U$. If $\overline{B_{R}}(U)+F \subseteq G \subseteq^{\max } U$, thus $u \notin U$. This is prove of (iii).

Proposition 2.26. Let U_{R} be a module. consider the following expression:

1. $\overline{B_{R}}(U) \unlhd_{E-s} U_{R}$
2. If $F \unlhd_{E-s} U_{R}$ and $H \unlhd_{E-s} U_{R}$, then $F \cap H \unlhd_{E-s} U_{R}$

$$
\text { Note }(1) \Longrightarrow(2) \text { verified. As well if } U_{R} \text { finitely cogenerated, hence }(2) \Longrightarrow(1)
$$

Proof . (1) $\Longrightarrow(2)$ Let $F \unlhd_{E-s} U_{R}$ and $H \unlhd_{E-s} U_{R}$, so $\overline{B_{R}}(U) \subseteq F \cap H$, then from Lemma 2.8 $F \cap H \unlhd_{E-s} U_{R}$.
$(2) \Longrightarrow$ (1) If U_{R} finitely cogenerated, and let $\overline{B_{R}}(U) \cap F=0$, where F is a small submodule of U_{R}, then $F_{1} \cap F_{2} \cap \cdots \cap F_{n} \cap H=0$, for some $E_{j} \subseteq \overline{B_{R}}(U)$. Therefore $N_{E}(H)=0$. that by (1).

References

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
[2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Front. Mathematics, Birkäuser Verlag, 2006.
[3] A. Haghany and M.R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq. 14 (207) 489-496.
[4] T. A. Kalati and D.K. Tütüncü, Annihilator-small submodules, Bull. Iran Math. Soc. 39 (2013) 1053-1063.
[5] W. K. Nicholson and Y. Zhou, Annihilator-small right ideals, Algebra Colloq. 18 (2011) 785-800.
[6] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
[7] D.X. Zhan and X.R. Zhang, Small-Essential Submodule and Morita Duality, Southeast Asian Bull. Math. 35 (2021) 1051-1062.

[^0]: *Corresponding author
 Email addresses: mamoun42@uosamarra.edu.iq (Mamoon F. Khalf), Hind.f1975@gmail.com (Hind Fadhil Abbas)

