E-small essential submodules

Mamoon F. Khalfa,,* Hind Fadhil Abbasb

a Department of Physics, College of Education, University of Samarra, Iraq
b Directorate of Education Salah Eddin, Khaled Ibn Al Walid School, Tikrit, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let R be a commutative ring with identity, and U_R be an R-module, with $E = \text{End}(U_R)$. In this work we consider a generalization of class small essential submodules namely E-small essential submodules. Where the submodule Q of U_R is said E-small essential if $Q \cap W = 0$, when W is a small submodule of U_R, implies that $N_S(W) = 0$, where $N_S(W) = \{ \psi \in E \mid \text{Im}\psi \subseteq W \}$. The intersection $\overline{B}_R(U)$ of each submodule of U_R contained in $\text{Soc}(U_R)$. The $\overline{B}_R(U)$ is unique largest E-small essential submodule of U_R, if U_R is cyclic. Also in this paper we study $\overline{B}_R(U)$ and $\overline{W}_E(U)$. The condition when $\overline{B}_R(U)$ is E-small essential, and $\text{Tot}(U, U) = \overline{W}_E(U) = J(E)$ are given.

Keywords: Small submodule, Small essential submodules, E-small essential submodules, Endomorphism ring.

1. Introduction

Throughout this treatise, all ring R is a associative with identity, and all module over a ring R is unitary right module. Let U_R will always denoted such an R-module and E is endomorphism ring and denoted by $E = \text{End}(U_R)$ of ring module. The submodule W is called essential of U_R (denoted by: $W \subseteq U_R$) if $0 \neq G \subseteq U_R$, then $W \cap G \neq 0$ (see [1]), where the submodule G of U_R is denoted by $(G \leq U_R$).The submodule Q of U_R is said small submodule (denoted by: $Q \ll U_R$), if $\forall W \ll U_R$ then $Q + W = U_R$ (see [2]). The left annihilator of an submodule Q of U_R is denoted by $\delta_E(Q)$, and the right annihilator of an endomorphism h of U_R is denoted by $k_U(h)$, specifically that $\text{Ker}(h)$. We also denoted $N_E(Q) = \{ \theta \in E \mid \text{Im}\theta \subseteq Q \}$ for each $Q \subseteq U$. Nicholson and Zhou defined annihilator-small right ideals [5]. Also Amouzegar and Keskin introduced and study the right annihilator-small submodules of an R-module. Let U_R be an R-module and $F \leq U_R$, then

*Corresponding author

Email addresses: mamoun42@uosamarra.edu.iq (Mamoon F. Khalf), Hind.f1975@gmail.com (Hind Fadhil Abbas)

Received: August 2021 Accepted: September 2021
F is said to annihilator- small submodule if \(F + W = U \), where \(W \) is a submodule of \(U_R \), so \(\delta_E(W) = 0 \) [4]. From [7], Zhou had and Zhang give a definition of small- essential submodules. Let \(K \) be a submodule of a module \(U_R \), then \(K \) is called small-essential in \(U_R \) (denoted by \(K \trianglelefteq_E U \), if \(K \cap W = 0 \), with \(W \ll U_R \) implies that \(W = 0 \). In this paper we introduced new concept namely E-small essential submodule, where a submodule \(Q \) of a module \(U \) is E-small essential submodule if \(Q \subseteq E - s U \) if and only if \(Q \) is E-small essential submodule of \(U_R \). Let \(U_R \) be a retractable \(R \)-module and \(R \) be a commutative ring. Then \(Q \trianglelefteq E - s U \), if \(Q \subseteq E - s U \) then \(Q \subseteq E - s U \), if \(Q \subseteq E - s U \). The converse is evident.\(\square \)

\[\text{Corollary 2.3.} \]

If \(U_R \) is retractable \(R \)-module and \(Q \trianglelefteq E - s U \), then \(Q \trianglelefteq E - s U \).

Proposition 2.4. Let \(U_R \) be a cyclic \(\pi \)-projective module. Then \(Q \) is small essential submodule if and only if \(Q \) is E-small essential submodule of \(U_R \).

Proof. Let \(U_R = uR \) for some \(u \in U_R \), and \(Q \trianglelefteq E - s U \). Let \(V \ll U_R \), we put \(0 \neq v \in V \), so then there exists \(0 \neq n \in R \), such that \(v = un \), but \(U_R = uR = unR + u(1 - n)R \), since \(U_R \) is \(\pi \)-projective then there exists \(\beta \in \text{End}(U_R) \), with \(\text{Im} \beta \subseteq \text{un}R \subseteq V \), so \(\text{Im}(1 - \beta) \subseteq (1 - n)uR \), that is \(N_E(V) \neq 0 \). As \(Q \trianglelefteq E - s U \), and \(Q \cap V \neq 0 \). That mean \(Q \trianglelefteq E - s U \). The converse is evident.\(\square \)

Proposition 2.5. Let \(U_R \) be a cyclic \(R \)-module and \(R \) be a commutative ring. Then \(Q \trianglelefteq E - s U \) if and only if \(Q \trianglelefteq E - s U \).

Proof. Is evident.\(\square \)

Lemma 2.6. Let \(U_R \) be an \(R \)-module. If \(V \subseteq Q \subseteq U_R \), and \(Q \trianglelefteq E - s U \), then \(V \trianglelefteq E - s U \).

Proof. Is evident.\(\square \)

Proposition 2.7. Let \(U_R \) be an \(R \)-module. If \(Q \trianglelefteq E - s U \) and \(F \subseteq s U \), then \(Q \cap F \trianglelefteq E - s U \).

Proof. Let \(Q \cap F \cap V = 0 \), where \(V \ll U_R \). Since \(F \subseteq s U \), that is \(Q \cap V = 0 \) and \(N_E(V) = 0 \).\(\square \)

Lemma 2.8. Let \(U_R \) be a module, and \(Q \) be a submodule of \(U_R \) if \(N_E(Q) \subseteq E \), then \(N_E(Q)U_R \trianglelefteq E - s U \). In specially, \(Q \trianglelefteq E - s U \).

Proof. Let \(N_E(Q)U_R \cap V = 0 \), so \(N_E(Q) \cap N_E(V) = 0 \), thus \(N_E(V) = 0 \). But \(N_E(Q) \subseteq E \). So that the last perception by (Lemma 2.6) and since \(N_E(Q)U_R \subseteq Q \subseteq U_R \) always achieve.\(\square \)
Note that the converse of Lemma 2.8 is true if \((N_E(Q) \cap vE)U_R = N_E(Q)U_R \cap vU_R\) verified for each submodule \(Q\) of \(U_R\), and all small element \(v \in E\). And to watch it, let \(N_E(Q) \cap vE = 0\), for any small element \(v \in E\). Thus \(N_E(Q)U_R \cap vU_R = 0\), so \(N_E(vU_R) = 0\). But \(N_E(Q)U_R \leq_{E-s} U_R\) and \(vE \subseteq N_E(vU_R) = 0\), then \(v = 0\). Hence \(N_E(Q) \leq_{s} E_E\).

Recall that an \(R\)-module \(U_R\) is called semi-injective if for each \(\alpha \in E\) such that
\[
E\alpha = \delta_E(ker(\alpha)) = \delta_E(k_U(\alpha))
\]
(equivalently for any monomorphism \(\alpha : Q \rightarrow U\), where \(Q\) is a factor module of \(U_R\), and for any homomorphism \(\beta : Q \rightarrow U\), then there exists \(\gamma : U \rightarrow U\) such that \(\alpha \gamma = \beta\) [5, p. 261].

Lemma 2.9. Let us have the following situation for any \(R\)-module \(U_R\) and \(u \in E\):

\(1\) \(k_U(u) \leq_{E-s} U_R\).

\(2\) \(k_U(u) \leq_{E-s} k_U(wr)\) for all \(0 \neq r \in E\).

\(3\) \(k_E(1_E - au) = 0\) for all \(0 \neq a \in E\).

\(4\) \(k_E(1_E - ua) = 0\) for all \(0 \neq a \in E\).

\(5\) \(k_E(u - au) = k_E(u)\) for all \(0 \neq a \in E\).

Then \((1) \implies (2) \implies (3) \implies (4) \implies (5)\). If \(U_R\) is semi-injective, then \((5) \implies (1)\).

Proof. \((1) \implies (2)\) Suppose that \(0 \neq r \in E\), and \(k_U(r) = k_U(wr)\). It is clear that \(k_U(u) \cap rU = 0\). According to \(k_U(u) \leq_{E-s} U_R\), and \(N_E(rU) = 0\), so \(rE \subseteq N_E(rU) = 0\). That is \(r = 0\).

\((2) \implies (3)\) Let \(a \in E\), and \(r \in k_E(1_E - au)\), so \(r = aur\), then \(k_U(u) \subseteq k_U(aur) = k_U(r)\). Then by \((2)\), hence \(r = 0\).

\((3) \implies (4)\) Let \(r \in k_E(1_E - ua)\), for all \(a \in E\), thus \((1_E - ua)r = 0\), that mean \((1_E - au)ar = (a - au)a\) for all \(a \in E\), implies that \(ar = 0\) that by \((3)\), then \(r = ur = 0\).

\((4) \implies (5)\) Let \(r \in k_E(1_E - Au)\), for all \(a \in E\), so by \((4) ur = 0\). Then \(r \in k_E(u)\). Other embedding in a similar way.

\((5) \implies (1)\) Suppose that \(U_R\) is semi-injective. Now, let \(k_U(u) \cap V = 0\) for a small submodule \(V\) of \(U_R\), and let \(r \in N_E(V)\), implies that \(rU \cap k_U(u) = 0\), then \(k_U(r) = k_U(wr)\). But \(U_R\) is semi-injective, then there exists ahomomorphism \(v \in E\) such that \(r = urv\), so \((u - uv) = 0\). Thus \(r \in (u - uuv) = k_E(u)\), then \(ur = 0\), and hence \(r = 0\).

Note that we us define \(\overline{W}_E(U) = \{u \in E \mid ker(v) = k_U(u) \leq_{E-s} U_R\}\) for any module \(U_R\).

Corollary 2.10. Let \(U_R\) be a module, and \(u \in \overline{W}_E(U)\). Thus \(Eu \subseteq \overline{W}_E(U)\). If \(U_R\) is semi-injective, then \(uE \subseteq \overline{W}_E(U)\).

Proof. Let \(r \in E\), and \(U_R\) is semi-injective, we must show that \(k_U(wr) \leq_{E-s} U_R\). Now let \(v \in E\), since \(k_U(u) \leq_{E-s} U_R\), then by Lemma 2.9(4) \(k_E(1_E - urv) = 0\). Once again form Lemma 2.9(4) \(k_U(urv) \leq_{E-s} U_R\). Thus \(uE \subseteq \overline{W}_E(U)\). Now through the Lemma ??, we get \(Eu \subseteq \overline{W}_E(U)\).

Corollary 2.11. We own \(\overline{W}_E(U) \subseteq \delta_E(Soc(E_R))\). Furthermore, \(J(E) \subseteq \overline{W}_E(U)\), if \(U_R\) is a semi-injective.

Proof. Let \(w \in \overline{W}_E(U)\), and \(0 \neq u \in Soc(E_R)\), we want to prove that \(0 = wSoc(E_R)\). Now \(u \in E_1 \oplus E_2 \oplus \cdots \oplus E_n\), where \(E_1, E_2, \ldots, E_n\) are simple right ideal of \(E\), and \(n\) is positive integer. Suppose that \(wu \neq 0\) and \(u = u_1 + u_2 + \cdots + u_n\) where as \(u_j \in E_j\) for some \(j \in \{1, 2, \ldots, n\}\), then \(wu_j \neq 0\). As \(E_j\) is simple so \(Euw_j = E_j\). Thus \(u_j = \beta wu_j\) for all \(\beta \in E\). So \(u_j \in k_E(1_E - \beta w)\), but \(k_U(w) \leq_{E-s} U_R\), then from Lemma 2.9 \(k_E(1_E - \beta w) = 0\), that is \(u_j = 0\). This is contradicition. So \(wu = 0\), hence \(\overline{W}_E(U) \subseteq \delta_E(Soc(E_R))\). Now let \(v \in J(E)\) and \(w \in E\). We must prove that \(v \in \overline{W}_E(U)\), we take \(\beta \in k_E(1_E - wv)\). Thus \((1_E - wv) = 0\), but \(1_E - wv\) is invertible, so \(\beta = 0\). Then \(k_E(1_E - wv) = 0\) for all \(w \in E\). Hence from Lemma 2.9 \(v \in \overline{W}_E(U)\), implies that \(J(E) \subseteq \overline{W}_E(U)\).
Corollary 2.12. Let U_R is a semi-injective module and $h \in E$. Then $\text{Ker} h = k_U(\{u\}) \leq_{E-s} U_R$ if and only if $Eh \leq_a E_E$.

Proof. Let $h \in E$ and suppose that $k_U(h) \leq_{E-s} U_R$. Now let $E = Eh + P$, where P is an ideal of E. So $1_E = rh + q$, where $r \in E$ and $q \in P$, then $k_U(h) \cap k_U(q) = 0$. But $k_U(h) \leq_{E-s} U_R$, then $N_E(k_U(q)) = 0$. That is $N_E(k_U(P)) = 0$, hence $k_U(P) = 0$ implies that $Eh \leq_a E_E$. The converse, suppose $Eh \leq_a E_E$, then from (4) $k_E(h - hrh) = k_E(h)$, for all $r \in E$. Then from Lemma 2.9 $k_U(h) \leq_{E-s} U_R$. □

Corollary 2.13. Let U_R be an R-module. If $h^2 = h \in \overline{W}_E(U)$, then $h = 0$.

Proof. We can see from the lemma 2.9 (4) and $k_U(h) \leq_{E-s} U_R$, $k_E(1_E - h) = 0$, and since $h \in k_E(1_E - h)$. Implies that $h = 0$. □

Corollary 2.14. Let P be an maximal-ideal of E, where $E = \text{End}(U_R)$ and U_R be amodule. Then the following ferries are equivalent:

1. $PU \leq_{E-s} U_R$
2. $P \leq_e E_E$

Proof. (1) \Rightarrow (2) Let $PU \leq_{E-s} U_R$ Suppose that P is not essential of E_E. Then $P \cap K = 0$, for some K is a non-zero ideal of E_E. But P is a maximal ideal, that mean P is direct summand of E_E.

So there exists idempotent element $i \in E_E$ such that $P = iE$. Then $PU = iU = k_E(1_E - i) \leq_{E-s} U_R$. Hence $1_E - i \in \overline{W}_E(U)$. Then from (Corollary 2.13) $i = 1$. This is a contradiction.

(2) \Rightarrow (1) Let $P \leq_e E_E$, and $PU \cap V = 0$ for an small submodule V of U_R. So $0 = N_E(0) = N_E(PU) \cap N_E(V)$. Then $P \cap N_E(V) = 0$. But $P \leq_e E_E$, then $N_E(V) = 0$. □

Recall that the element h in E is called to be partially invertible if hE contains an non-zero idempotent, where (hE equivalent Eh). Where an R-module U_R the total of U_R is defined as $\text{Tot}(E) = \text{Tot}(U,U) = \{h \in E|h$ is not partially invertible). Unable to closed the total under addition. In effect, if 0 and 1 are the only idempotent in E, then the total of U_R is the set of non-isomorphism.

Proposition 2.15. Let U_R be a module. Then $\overline{W}_E(U) \subseteq \text{Tot}(U,U)$.

Proof. If $h \in \overline{W}_E(U)$ and $h \notin \text{Tot}(U,U)$, implies that h is partially invertible then there exists $0 \neq i^2 = i \in Eh$. So by (Corollary 2.10), $i \in \overline{W}_E(U)$. Thus contradicts to (Corollary 2.13). □

Let P is a subset of a ring R, then R is called to be P-semi-potent if every ideal not contained in P contains an non-zero idempotent, equivalently if every element $q \notin P$ is a partial inverse R is said to be semi-potent if R is $J(R)$-semi-potent.

Lemma 2.16. Let U_R be a module, if P is a subset of $E = \text{End}(U_R)$. Then the following ferries are equivalent:

1. E is P-semi-potent.
2. $\text{Tot}(U,U) \subseteq P$.

Proof. Is evident from (5), Lemma 20. □

Proposition 2.17. Let $E = \text{End}(U_R)$ for any R-module U_R. Then E is a semi-potent if and only if $J(E) = \text{Tot}(U,U)$.

Proof. Is evident from (5), Theorem 21. □
Proof. It is evident that \(J(E) \subseteq \overline{W}_E(U) \) by (Corollary 2.11). Let \(u \in \overline{W}_E(U) \), if \(u \notin J(E) \) and \(E \) is \(J(E) \)-semi-potent, then \(\overline{W}_E(U) \) have an non-zero idempotent which is a contradiction (we can see corollary 2.13). Then \(J(E) = \overline{W}_E(U) \). Now from Proposition 2.15 \(\overline{W}_E(U) \subseteq \text{Tot}(U, U) \). From other hand, \(E \) is \(\overline{W}_E(U) \)-semi-potent and since \(J(E) = \overline{W}_E(U) \). Hence form Lemma 2.16 \(\text{Tot}(U, U) \subseteq \overline{W}_E(U) \). □

Proposition 2.19. Let \(U_R \) be asemi- injective R-module, and \(E = \text{End}(U_R) \) is a semi-potent. Then \(\overline{W}_E(U) = J(E) = \text{Tot}(U, U) \).

Proof. It is clear that from Corollary 2.11 \(J(E) \subseteq \overline{W}_E(U) \). Let \(x \in \overline{W}_E(U) \), then \(k_U(x) \leq_{E-x} U_R \), hence \(k_E(1_E - u_x) = 0 \), for all \(u \in E \), so from Lemma 2.9 then \(E(1_E - u_x) = E \), thus by hypothesis \(x \in J(E) \). Implies \(\overline{W}_E(U) \subseteq J(E) \). □

A ring \(R \) is said to be right Kasch if every simple right \(R \)-module embeds in \(R \), this is rewarding, if \(k_R(V) \neq 0 \) for every maximal right ideal \(E \) of \(R \). Associated \(R \) alleft ideal \(W_2 \) ring if every left ideal is isomorphic to direct of \(R \) itself is a direct summand of \(R \).

Lemma 2.20. Let \(U_R \) be asemi- injective R-module. In each of the following statements, we have \(\overline{W}_E(U) = J(E) \).

1. \(E \) is semi-potent.
2. \(E \) is right Kasch.
3. \(E \) is a left \(W_2 \) ring.

Proof.

1. Is evident from Proposition 2.18
2. Let \(u \in E \), then \(k_E(u) = 0 \). If \(uE \neq E \), then by (2) \(k_E(uE) = 0 \), that is \(k_E(u) \neq 0 \). This is a contradiction. Hence from Proposition 2.19 \(\overline{W}_E(U) = J(E) \).
3. Let \(v \in E \), then \(k_E(v) = 0 \). If \(Ev = E \), then by (3) \(Ev \) is a direct summand of \(E \), so \(vxx = v \), for some element \(x \in E \). Since \(0 = k_E(v) = k_E(vx) = E(1_E - vx) \). Hence \(vx = 1_E \) and \(vE = E \), from Proposition 2.19 \(\overline{W}_E(U) = J(E) \).

□

Lemma 2.21. Let \(u = uR \), where \(u \in U \), and \(U \) be a cyclic R-module. Then the following are equivalent for \(w \in U \):

1. \(wR \leq_{E^-} U \)
2. \(g(wR) \subseteq f(U) \), for all \(g \in E \)
3. \(k_E(u - wn) = 0 \), for all \(n \in R \).

Proof. (1) \(\Rightarrow \) (2) Let \(g(wR) = g(U) \), then \(g(wn) = g(u) \), for all \(n \in R \), hence \(g \in k_E(u - wn) \). But \(wR + (u - wn)R = uR = U \), then by (1) \(k_E(u - wn) = 0 \). Therefore \(g = 0 \).

(2) \(\Rightarrow \) (3) Let \(g \in k_E(u - wn) \), for all \(n \in R \), so \(g(u) = g(wn) \subseteq g(wR) \) by (2). Therefore \(g = 0 \).

(3) \(\Rightarrow \) (1) If \(wR + V = U \), where \(V \) is small submodule of \(U_R \), then \(u = wn + v \), for all \(n \in R \) and \(v \in V \). Now let \(g \in k_E(V) \) that mean \(g(u) = g(wn) \). Hence by (3) \(g \in k_E(u - wn) = 0 \). Therefore \(g = 0 \). □

Note: Let \(U_R \) be a module, we can defined \(\overline{B}_R(U) = \cap \{ D \subseteq U_R | D \leq_{E^-} U_R \} \). It is clearly that \(\overline{B}_R(U) \subseteq \text{Soc}(U) \).
Proposition 2.22. If U_R is an retractable and semi-projective R-module, then $\overline{R}(U) = \text{Soc}(U) = \text{Soc}(E_E U)$.

Proof. From Corollary 2.3, $\overline{R}(U) = \text{Soc}(U)$. Since U_R is semi-projective, then from (3), Proposition 2.4), $\overline{R}(U) = \text{Soc}(U) = \text{Soc}(E_E U)$.

Let U_R be an R-module, an element $c \in U_R$ is called E-small essential if $cR \trianglelefteq_{E-s} U_R$. For simplicity, we denoted $C_R(U) = \{c \in U | c \text{ is an } E \text{-small essential in } U\} = \{c \in U | cR \trianglelefteq_{E-s} U_R\}$. It is evident that $C_R(U) \subseteq \overline{R}(U)$. \Box

Proposition 2.23. Let $U = aR$ be a cyclic R-module, and X be a submodule of U_R. Then the following are equivalent:

1. $X \trianglelefteq_{E-s} U_R$
2. $X \subseteq C_R(U)$
3. $k_E(u - a) = 0$, for all $a \in R$.

Proof. (1) \implies (2) Fore Proposition 2.7.

(2) \implies (3) Let $X + Y = U$, where Y is small submodule of U_R, $u = x + y$, for all $x \in X$ and $y \in Y$, then $k_E(Y) \subseteq k_E(u - x) = 0$.

(3) \implies (1) According to the hypothesis (3). Therefore $X \trianglelefteq_{E-s} U_R$. \Box

Proposition 2.24. Let U_R be an R-module, then

1. $\overline{R}(U) = \{c_1 + c_2 + \cdots + c_n | c_j \in C_R(U) \text{ for each } n, j \text{ are positive integer}\}$
2. $\overline{R}(U) = C_R(U) R$.

Proof. (1) Let the set $F = \{c_1 + c_2 + \cdots + c_n | c_j \in C_R(U) \text{ for each } n, j \text{ are positive integer}\}$. If $c \in \overline{R}(U)$, then $c \in F_1 + F_2 + \cdots + F_n$, where $F_j \trianglelefteq_{E-s} U_R$, for each n, j are positive integer. If $c = c_1 + c_2 + \cdots + c_n$, $c_j \in F_j$, implies that from Proposition 2.7, $c_j R \trianglelefteq_{E-s} U_R$. Thus $c_j \in C_R(U)$.

Hence $\overline{R}(U) \subseteq F$. Simply we can note that $F \subseteq \overline{R}(U)$.

(2) Evident by fact, $C_R(U) \subseteq \overline{R}(U)$, and by (1). \Box

Proposition 2.25. Let U_R be an R-module, consider the following expression:

1. If $F \trianglelefteq_{E-s} U_R$ and $H \trianglelefteq_{E-s} U_R$, then $F + H \trianglelefteq_{E-s} U_R$.
2. $C_R(U)$ is closed under addition.
3. $\overline{R}(U) = C_R(U)$.
4. $\overline{R}(U) \trianglelefteq_{E-s} U_R$.

Can we get (1) \implies (2) \implies (3) and (4) \implies (1) .

But (3) \implies (4) , it can obtained by adding if U_R is cyclic R-module. In addition, if $U = uR$, where $u \in U$ one of the above-mentioned condition the following:

(i) $\overline{R}(U)$ is the unique largest E-small essential of U.

(ii) $\overline{R}(U) \subseteq \{u \in U | k_E(a - uw) = 0, \text{ for all } w \in R\}$

(iii) $\overline{R}(U) = \cap \{G \subseteq_{\text{max}} U | \overline{R}(U) \subseteq G\}$

Proof. (1) \implies (2) Since $(u + v) R \subseteq uR + vR$, so $C_R(U)$ is closed under addition by Prop. 2.7.

(2) \implies (3) It is obvious that $C_R(U) \subseteq \overline{R}(U)$, then from Proposition 2.24 (1), $\overline{R}(U) \subseteq C_R(U)$.

(3) \implies (4) Let $U = uR$, for some $u \in U$, and $\overline{R}(U) + F = U$, where F is a small submodule of U_R. Thus by (3) $C_R(U) + F = U$. If $u = v + w$, where $v \in C_R(U)$ and $w \in F$. Thus $U = vR + F$, so $vR \trianglelefteq_{E-s} U_R$. Then $k_E(U) = 0$. Hence $\overline{R}(U) \trianglelefteq_{E-s} U_R$.

Proposition 2.26. Let U_R be a module. consider the following expression:

1. $\overline{B_R}(U) \leq_{E-s} U_R$
2. If $F \leq_{E-s} U_R$ and $H \leq_{E-s} U_R$, then $F \cap H \leq_{E-s} U_R$

Note $(1) \implies (2)$ verified. As well if U_R finitely cogenerated, hence $(2) \implies (1)$

Proof. $(1) \implies (2)$ Let $F \leq_{E-s} U_R$ and $H \leq_{E-s} U_R$, so $\overline{B_R}(U) \subseteq F \cap H$, then from Lemma 2.8 $F \cap H \leq_{E-s} U_R$.

$(2) \implies (1)$ If U_R finitely cogenerated, and let $\overline{B_R}(U) \cap F = 0$, where F is a small submodule of U_R, then $F_1 \cap F_2 \cap \cdots \cap F_n \cap H = 0$, for some $E_j \subseteq \overline{B_R}(U)$. Therefore $N_E(H) = 0$. that by (1). □

References