Int. J. Nonlinear Anal. Appl. 13 (2022) No. 1, 881-887 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.5608



# E-small essential submodules

Mamoon F. Khalf<sup>a,\*</sup>, Hind Fadhil Abbas<sup>b</sup>

<sup>a</sup> Department of Physics, College of Education, University of Samarra, Iraq <sup>b</sup>Directorate of Education Salah Eddin, Khaled Ibn Al Walid School, Tikrit, Iraq

(Communicated by Madjid Eshaghi Gordji)

## Abstract

Let R be a commutative ring with identity, and  $U_R$  be an R-module, with  $E = End(U_R)$ . In this work we consider a generalization of class small essential submodules namely E-small essential submodules. Where the submodule Q of  $U_R$  is said E-small essential if  $Q \cap W = 0$ , when W is a small submodule of  $U_R$ , implies that  $N_S(W) = 0$ , where  $N_S(W) = \{\psi \in E \mid Im\psi \subseteq W\}$ . The intersection  $\overline{B}_R(U)$  of each submodule of  $U_R$  contained in  $Soc(U_R)$ . The  $\overline{B}_R(U)$  is unique largest E-small essential submodule of  $U_R$ , if  $U_R$  is cyclic. Also in this paper we study  $\overline{B}_R(U)$  and  $\overline{W}_E(U)$ . The condition when  $\overline{B}_R(U)$  is E-small essential, and Tot  $(U, U) = \overline{W}_E(U) = J(E)$  are given.

*Keywords:* Small submodule, Small essential submodules, E-small essential submodules, Endomorphism ring.

#### 1. Introduction

Throughout this treatise, all ring R is a associative with identity, and all module over a ring R is unitary right module. Let  $U_R$  will always denoted such an R-module and E is endomorphism ring and denoted by  $E = End(U_R)$  of ring module. The submodule W is called essential of  $U_R$  (denoted by:  $W \leq U_R$ ) if  $0 \neq G \leq U_R$ , then  $W \cap G \neq 0$  (see [1]), where the submodule G of  $U_R$  is denoted by  $(G \leq U_R)$ . The submodule Q of  $U_R$  is said small submodule (denoted by:  $Q \ll U_R)$ , if  $\forall W \leq U_R$  then  $Q + W = U_R$  (see [2]). The left annihilator of an submodule Q of  $U_R$  is denoted by  $\delta_E(Q)$ , and the right annihilator of an endomorphism h of  $U_R$  is denoted by  $k_U(h)$ , specifically that Ker (h). We also denoted  $N_E(Q) = \{\theta \in E \mid Im\theta \subseteq Q\}$  for each  $Q \subseteq U$ . Nicholson and Zhou defined annihilator-small right ideals [5]. Also Amouzegar and Keskin introduced and study the right annihilator-small submodules of an R-module. Let  $U_R$  be an R-module and  $F \leq U_R$ , then

<sup>\*</sup>Corresponding author

*Email addresses:* mamoun42@uosamarra.edu.iq (Mamoon F. Khalf), Hind.f1975@gmail.com (Hind Fadhil Abbas)

F is a said to annihilator- small submodule if F + W = U, where W is a submodule of  $U_R$ , so  $\delta_E(W) = 0$  [4]. From [7] the Zhouaud and Zhang, give a definition of small- essential submodules. Let K be a submodule of a module  $U_R$ , then K is called small-essential in  $U_R$  (denoted by  $K \leq_E U$ , if  $K \cap W = 0$ , with  $W \ll U_R$  implies that W = 0. In this paper we introduced new concept namely E-small essential submodule, where a submodule Q of a module  $U_R$  is called E-small essential (denoted by  $Q \leq_{E-s} U$ ) if  $Q \cap W = 0$ , for each  $W \ll U_R$ , implies that  $N_E(Q) = 0$ , where  $E = End(U_R)$ . In [7], essential submodule is small essential submodule. It is clearly that small essential submodule is E-small essential (see proposition 2.2), and every E-small essential is small essential (see proposition 2.4 and 2.5). We have verified that the equality is correct for the following statement Tot  $(U, U) = \overline{W}_E(U) = J(E)$ .

## 2. Main Results

**Definition 2.1.** Let Q be an submodule of a module  $U_R$ , then Q is called E-small essential (denoted by  $Q \trianglelefteq_{E-s} U$ ) if  $Q \cap W = 0$ , where W is small submodule of  $U_R$  (or denoted by  $W \ll U_R$ ), implies that  $N_E(W) = 0$ , where  $E = End(U_R)$ .

It is clearly that every small essential submodule is E-small essential submodule, but the opposite is generally not true (meditation the submodule mZ of the Z-module Z).

The left R-module  $U_R$  is called retractable if there exists a non-zero homomorphism  $\beta: U \to Q$  for each anon-zero submodule Q of  $U_R$ .

**Proposition 2.2.** Let  $U_R$  be an retractable *R*-module. If  $Q \leq_{E-s} U_R$ , then  $Q \leq_e U_R$ . **Proof**. Let  $Q \cap F = 0$ , for an  $F \leq U_R$ , then by hypothesis  $N_E(F) = 0$ . But  $U_R$  is retractable, then F = 0, that mean  $Q \leq_e U_R$ .

**Corollary 2.3.** If  $U_R$  is retractable *R*-module and  $Q \trianglelefteq_{E-s} U_R$ , then  $Q \trianglelefteq_s U_R$ .

**Proposition 2.4.** Let  $U_R$  be a cyclic and  $\pi$ -projective module. Then Q is small essential submodule if and only if Q is E-small essential submodule of  $U_R$ .

**Proof**. Let  $U_R = uR$  for some  $u \in U_R$ , and  $Q \leq_{E-s} U_R$ . Let  $V \ll U_R$ , we put  $0 \neq v \in V$ , so then there exists  $0 \neq n \in R$ , such that v = un, but  $U_R = uR = unR + u(1-n)R$ , since  $U_R$  is  $\pi$ -projective then there exists  $\beta \in End(U_R)$ , with  $Im\beta \subseteq unR \subseteq V$ , so  $Im(1-\beta) \subseteq (1-n)uR$ , that is  $N_E(V) \neq 0$ . As  $Q \leq_{E-s} U_R$ , and  $Q \cap V \neq 0$ . That mean  $Q \leq_{E-s} U_R$ . The converse is evident.  $\Box$ 

**Proposition 2.5.** Let  $U_R$  be a cyclic *R*-module and *R* be a commutative ring. Then  $Q \leq_{E-s} U_R$  if and only if  $Q \leq_s U_R$ . **Proof**. Is evident.  $\Box$ 

**Lemma 2.6.** Let  $U_R$  be an *R*-module. If  $V \leq Q \leq U_R$ , and  $Q \leq_{E-s} U_R$ , then  $V \leq_{E-s} U_R$ . **Proof**. Is evident.  $\Box$ 

**Proposition 2.7.** Let  $U_R$  be an R-module. If  $Q \leq_{E-s} U_R$  and  $F \leq_s U_R$ , then  $Q \cap F \leq_{E-s} U_R$ . **Proof**. Let  $Q \cap F \cap V = 0$ , where  $V \ll U_R$ . Since  $F \leq_s U_R$ , that is  $Q \cap V = 0$  and  $N_E(V) = 0$ .  $\Box$ 

**Lemma 2.8.** Let  $U_R$  be a module, and Q be a submodule of  $U_R$  if  $N_E(Q) \leq_s E_E$ , then  $N_E(Q)U_R \leq_{E-s} U_R$ .  $U_R$ . In specially,  $Q \leq_{E-s} U_R$ .

**Proof**. Let  $N_E(Q) U_R \cap V = 0$ , so  $N_E(Q) \cap N_E(V) = 0$ , thus  $N_E(V) = 0$ . But  $N_E(Q) \leq_s E_E$ . So that the last perception by (Lemma 2.6) and since  $N_E(Q)U_R \subseteq Q \subseteq U_R$  always achieve.  $\Box$ 

Note that the converse of Lemma 2.8 is true if  $(N_E(Q) \cap vE) U_R = N_E(Q) U_R \cap vU_R$  verified for each submodule Q of  $U_R$ , and all small element  $v \in E$ . And to watch it, let  $N_E(Q) \cap vE = 0$ , for any small element  $v \in E$ . Thus  $N_E(Q) U_R \cap vU_R = 0$ , so  $N_E(vU_R) = 0$ . But  $N_E(Q)U_R \leq_{E-s} U_R$ and  $vE \subseteq N_E(vU_R) = 0$ , then v = 0. Hence  $N_E(Q) \leq_s E_E$ .

Recall that an R-module  $U_R$  is called semi-injective if for each  $\alpha \in E$  such that

$$E\alpha = \delta_E \left( ker(\alpha) \right) = \delta_E \left( k_U(\alpha) \right)$$

(equivalently for any monomorphism  $\alpha : Q \to U$ , where Q is a factor module of  $U_R$ , and for any homomorphism  $\beta : Q \to U$ , then there exists  $\gamma : U \to U$  such that  $\alpha \gamma = \beta$ ) [5, p. 261].

**Lemma 2.9.** Let us have the following situation for any R-module  $U_R$  and  $u \in E$ :

(1)  $k_U(u) \leq _{E-s} U_R$ . (2)  $k_U(u) \subset _{\neq} k_U(ur)$  for all  $0 \neq r \in E$ . (3)  $k_E(1_E - au) = 0$  for all  $0 \neq a \in E$ . (4)  $k_E(1_E - ua) = 0$  for all  $0 \neq a \in E$ . (5)  $k_E(u - uau) = k_E(u)$  for all  $0 \neq a \in E$ . Then (1)  $\Longrightarrow$  (2)  $\Longrightarrow$  (3)  $\Longrightarrow$  (4)  $\Longrightarrow$  (5). If  $U_R$  is semi-injective, then (5)  $\Longrightarrow$  (1). **Proof** (1)  $\Longrightarrow$  (2) Suppose that  $0 \neq r \in E$  and  $k_r(r) = k_r(ur)$ . It is alore that

**Proof**. (1)  $\Longrightarrow$  (2) Suppose that  $0 \neq r \in E$ , and  $k_U(r) = k_U(ur)$ . It is clear that  $k_U(u) \cap rU = 0$ . According to  $k_U(u) \trianglelefteq_{E-s} U_R$ , and  $N_E(rU) = 0$ , so  $rE \subseteq N_E(rU) = 0$ . That is r = 0.

(2)  $\Longrightarrow$  (3) Let  $a \in E$ , and  $r \in k_E(1_E - au)$ , so r = aur, then  $k_U(ur) \subseteq k_U(aur) = k_U(r)$ . Then by (2), hence r = 0.

 $(3) \Longrightarrow (4)$  Let  $r \in k_E (1_E - ua)$ , for all  $a \in E$ , thus  $(1_E - ua) r = 0$ , that mean  $(1_E - au) ar = (a - aua) r = a (1_E - ua) r = 0$ , implies that ar = 0 that by (3), then r = uar = 0.

 $(4) \Longrightarrow (5)$  Let  $r \in k_E(u - uau)$ , for all  $a \in E$ , so by (4) ur = 0. Then  $r \in k_E(u)$ . Other embedding in a similar way.

(5)  $\implies$  (1) S uppose that  $U_R$  is semi-injective. Now, let  $k_U(u) \cap V = 0$  for a small submodule V of  $U_R$ , and let  $r \in N_E(V)$ , implies that  $rU \cap k_U(u) = 0$ , then  $k_U(r) = k_U(ur)$ . But  $U_R$  is semi-injective, then there exists a homomorphism  $v \in E$  such that r = vur, so (u - uvu)r = 0. Thus  $r \in (u - uvu) = k_E(u)$ , then ur = 0, and hence r = 0.  $\Box$ 

Note that we us define  $\overline{W}_E(U) = \{ u \in E | \ker v = k_U(u) \leq_{E-s} U_R \}$  for any module  $U_R$ .

**Corollary 2.10.** Let  $U_R$  be a module, and  $u \in \overline{W}_E(U)$ . Thus  $Eu \subseteq \overline{W}_E(U)$ . If  $U_R$  is semi-injective, then  $uE \subseteq \overline{W}_E(U)$ .

**Proof**. Let  $r \in E$ , and  $U_R$  is semi-injective, we most show that  $k_U(ur) \leq_{E-s} U_R$ . Now let  $v \in E$ , since  $k_U(u) \leq_{E-s} U_R$ , then by Lemma 2.9(4)  $k_E(1_E - urv) = 0$ . Once again form Lemma 2.9(4)  $k_U(ur) \leq_{E-s} U_R$ . Thus  $uE \subseteq \overline{W}_E(U)$ . Now through the Lemma ??, we get  $Eu \subseteq \overline{W}_E(U)$ .  $\Box$ 

**Corollary 2.11.** We own  $\overline{W}_E(U) \subseteq \delta_E(Soc(E_E))$ . Furthermore,  $J(E) \subseteq \overline{W}_E(U)$ , if  $U_R$  is a semiinjective.

**Proof**. Let  $w \in \overline{W}_E(U)$ , and  $0 \neq u \in Soc(E_E)$ , we want to prove that  $0 = wSoc(E_E)$ . Now  $u \in E_1 \oplus E_2 \oplus \cdots \oplus E_n$ , where  $E_1, E_2, \ldots, E_n$  are simple right ideal of E, and n is positive integer. Suppose that  $wu \neq 0$  and  $u = u_1 + u_2 + \cdots + u_n$  where as  $u_j \in E_j$  for some  $j \in \{1, 2, \ldots, n\}$ , then  $wu_j \neq 0$ . As  $E_j$  is simple so  $Ewu_j = E_j$ . Thus  $u_j = \beta wu_j$  for all  $\beta \in E$ . So  $u_j \in k_E(1_E - \beta w)$ , but  $k_U(w) \leq E_{-s} U_R$ , then from Lemma2.9  $k_E(1_E - \beta w) = 0$ , that is  $u_j = 0$ . This is a contradiction. So wu = 0, hence  $\overline{W}_E(U) \subseteq \delta_E(Soc(E_E))$ . Now let  $v \in J(E)$  and  $w \in E$ . We must prove that  $v \in \overline{W}_E(U)$ , we take  $\beta \in k_E(1_E - wv)$ . Thus  $(1_E - wv) = 0$ , but  $1_E - wv$  is invertible, so  $\beta = 0$ . Then  $k_E(1_E - wv) = 0$  for all  $w \in E$ . Hence from Lemma2.9  $v \in \overline{W}_E(U)$ , implies that  $J(E) \subseteq \overline{W}_E(U)$ .  $\Box$ 

**Corollary 2.12.** Let  $U_R$  is a semi- injective module and  $h \in E$ . Then  $Kerh = k_U(u) \leq_{E-s} U_R$  if and only if  $Eh \ll_a E_E$ .

**Proof**. Let  $h \in E$  and suppose that  $k_U(h) \trianglelefteq_{E-s} U_R$ . Now let E = Eh + P, where P is an ideal of E. So  $1_E = rh + q$ , where  $r \in E$  and  $q \in P$ , then  $k_U(h) \cap k_U(q) = 0$ . But  $k_U(h) \trianglelefteq_{E-s} U_R$ , then  $N_E(k_U(q)) = 0$ . That is  $N_E(k_U(P)) = 0$ , hence  $k_U(P) = 0$  implies that  $Eh \ll_a E_E$ . The converse, suppose  $Eh \ll_a E_E$ , then from ([4], Corollary 2.8)  $k_E(h - hrh) = k_E(h)$ , for all  $r \in E$ . Then from Lemma 2.9  $k_U(h) \trianglelefteq_{E-s} U_R$ .

**Corollary 2.13.** Let  $U_R$  be an R-module. If  $h^2 = h \in \overline{W}_E(U)$ , then h = 0. **Proof**. We can see from the lemma 2.9 (4) and  $k_U(h) \leq_{E-s} U_R$ ,  $k_E(1_E - h) = 0$ , and since  $h \in k_E(1_E - h)$ . Implies that h = 0.  $\Box$ 

**Corollary 2.14.** Let P be an maximal-ideal of E, where  $E = End(U_R)$  and  $U_R$  be amodule. Then the following ferries are equivalent:

- 1.  $PU \leq_{E-s} U_R$
- 2.  $P \leq_e E_E$

**Proof**. (1)  $\Longrightarrow$  (2) Let  $PU \leq_{E-s} U_R$  Suppose that P is not essential of  $E_E$ . Then  $P \cap K = 0$ , foe some K is a non-zero ideal of  $E_E$ . But P is amaximal ideal, that mean P is direct summand of  $E_E$ . So there exists idempotent element  $i \in E_E$  such that P = iE. Then  $PU = iU = k_E (1_E - i) \leq_{E-s} U_R$ . Hence  $1_E - i \in \overline{W}_E(U)$ . Then from ( Corollary 2.13 ) i = 1. This is a contradiction. (2)  $\Longrightarrow$  (1) Let  $P \leq_e E_E$ , and  $PU \cap V = 0$  for an small submodule V of  $U_R$ . So  $0 = N_E(0) =$ 

 $N_E(PU) \cap N_E(V)$ . Then  $P \cap N_E(V) = 0$ . But  $P \leq_e E_E$ , then  $N_E(V) = 0$ .  $\Box$ 

Recall that the element h in E is called to be partially invertible if hE contains anon-zero idempotent, where ( hE equivalent Eh ). Where an R-module  $U_R$  the total of  $U_R$  is defined as Tot  $(E) = Tot (U, U) = \{h \in E | h \text{ is not partially invertible}\}.$ 

Unable to closed the total under addition. In effect, if 0 and 1 are the only idempotent in E, then the total of  $U_R$  is the set of non-isomorphism.

**Proposition 2.15.** Let  $U_R$  be a module. Then  $\overline{W}_E(U) \subseteq Tot(U,U)$ . **Proof**. If  $h \in \overline{W}_E(U)$  and  $h \notin Tot(U,U)$ , implies that h is partially invertible then there exists  $0 \neq i^2 = i \in Eh$ . So by (Corollary 2.10),  $i \in \overline{W}_E(U)$ . Thus acousticates to (Corollary 2.13).  $\Box$ 

Let P is a subset of a ring R, then R is called to be P-semi-potent if every ideal not contained in P contains anon-zero idempotent, equivalently if every element  $q \notin P$  is a partial inverse R is said to be semi-potent if R is J(R)-semi-potent.

**Lemma 2.16.** Let  $U_R$  be a module, if P is a subset of  $E = End(U_R)$ . Then the following ferries are equivalent:

1. E is P-semi-potent.

2.  $Tot(U, U) \subseteq P$ .

**Proof**. Is evident from (5], Lemma 20).  $\Box$ 

**Proposition 2.17.** Let  $E = End(U_R)$  for any *R*-module  $U_R$ . Then *E* is a semi-potent if and only if J(E) = Tot(U, U). **Proof**. Is evident from ([5], Theorem 21).  $\Box$  **Proposition 2.18.** Let  $U_R$  be a semi- injective R-module, and  $E = End(U_R)$  is a semi-potent. Then  $\overline{W}_E(U) = J(E) = Tot(U,U)$ .

**Proof**. It is evident that  $J(E) \subseteq \overline{W}_E(U)$  by (Corollary 2.11). Let  $u \in \overline{W}_E(U)$ , if  $u \notin J(E)$ and E is J(E)-semi-portent, then  $\overline{W}_E(U)$  have anon-zero idempotent which is a contradiction (we can see corollary 2.13). Then  $J(E) = \overline{W}_E(U)$ . Now from Proposition 2.15  $\overline{W}_E(U) \subseteq Tot(U,U)$ . From other hand, E is  $\overline{W}_E(U)$ -semi-portent and since  $J(E) = \overline{W}_E(U)$ . Hence form Lemma 2.16  $Tot(U,U) \subseteq \overline{W}_E(U)$ .  $\Box$ 

**Proposition 2.19.** Let  $U_R$  be a semi- injective R-module, and  $E = End(U_R)$ , where  $k_E(u) = 0$ , for all  $u \in E$ , such that Eu = E. Then  $\overline{W}_E(U) = J(E)$ .

**Proof**. It is clear that from Corollary 2.11  $J(E) \subseteq \overline{W}_E(U)$ . Let  $x \in \overline{W}_E(U)$ , then  $k_U(x) \leq_{E-s} U_R$ , hence  $k_E(1_E - ux) = 0$ , for all  $u \in E$ , so from Lemma 2.9 then  $E(1_E - ux) = E$ , thus by hypothesis  $x \in J(E)$ . Implies  $\overline{W}_E(U) \subseteq J(E)$ .  $\Box$ 

A ring R is said to be right Kasch if every simple right R-module embeds in R, this is rewarding, if  $k_R(V) \neq 0$  for every maximal right ideal E of R. Associated R aleft ideal  $W_2$  ring if every left ideal is isomorphic to direct of RR is itself a direct summand of RR

**Lemma 2.20.** Let  $U_R$  be a semi- injective R-module. In each of the following statements, we have  $\overline{W}_E(U) = J(E)$ .

- 1. E is semi-potent.
- 2. E is right Kasch.
- 3. E is a left  $W_2$  ring.

### Proof.

- 1. Is evident from Proposition 2.18
- 2. Let  $u \in E$ , then  $k_E(u) = 0$ . If  $uE \neq E$ , then by (2)  $k_E(uE) = 0$ , that is  $k_E(u) \neq 0$ . This is a contradiction. Hence from Proposition 2.19  $\overline{W}_E(U) = J(E)$ .
- 3. Let  $v \in E$ , then  $k_E(v) = 0$ . If Ev = E, then by (3) Ev is a direct summand of E, so vxv = v, for some element  $x \in E$ . Since  $0 = k_E(v) = k_E(vx) = E(1_E - vx)$ . Hence  $vx = 1_E$  and vE = E, from Proposition 2.19,  $\overline{W}_E(U) = J(E)$ .

**Lemma 2.21.** Let u = uR, where  $u \in U$ , and U be a cyclic R-module. Then the following are equivalent for  $w \in U$ :-

- 1.  $wR \leq_{E-s} U$
- 2.  $g(wR) \subsetneq f(U)$ , for all  $g \in E$
- 3.  $k_E(u wn) = 0$ , for all  $n \in R$ .

**Proof**. (1)  $\Longrightarrow$  (2) Let g(wR) = g(U), then g(wn) = g(u), for all  $n \in R$ , hence  $g \in k_E(u - wn)$ . But wR + (u - wn)R = uR = U, then by (1)  $k_E(u - wn) = 0$ . Therefore g = 0.

(2)  $\Longrightarrow$  (3) Let  $g \in k_E(u - wn)$ , for all  $n \in R$ , so  $g(u) = g(wn) \subseteq g(wR)$  by (2). Therefore g = 0. (3)  $\Longrightarrow$  (1) If wR + V = U, where V is small submodule of  $U_R$ , then u = wn + v, for all  $n \in R$  and  $v \in V$ . Now let  $g \in k_E(V)$  that mean g(u) = g(wn). Hence by (3)  $g \in k_E(u - wn) = 0$ . Therefore g = 0.  $\Box$ 

Note: Let  $U_R$  be a module, we can defined  $\overline{B_R}(U) = \cap \{D \subseteq U_R | D \leq_{E-s} U_R\}$ . It is clearly that  $\overline{B_R}(U) \subseteq Soc(U)$ .

**Proposition 2.22.** If  $U_R$  is an retractable and semi- projective *R*-module, then  $\overline{B_R}(U) = Soc(U) = Soc(E_E)U$ .

**Proof**. From Corollary 2.3  $\overline{B_R}(U) = Soc(U)$ . Since  $U_R$  is semi- projective, then from ([3], Proposition 2.4),  $\overline{B_R}(U) = Soc(U) = Soc(E_E)U$ .

Let  $U_R$  be an R-module, an element  $c \in U_R$  is called E-small essential if  $cR \leq_{E-s} U_R$ . For simplicity, we denoted  $C_R(U) = \{c \in U | c \text{ is a } E$ -small essential in  $U\} = \{c \in U | cR \leq_{E-s} U_R\}$ . It is evident that  $C_R(U) \subseteq \overline{B_R}(U)$ .  $\Box$ 

**Proposition 2.23.** Let U = aR be a cyclic *R*-module, and *X* be a submodule of  $U_R$ . Then the following are equivalent:

- 1.  $X \leq_{E-s} U_R$
- 2.  $X \subseteq C_R(U)$
- 3.  $k_E(u-a) = 0$ , for all  $a \in R$ .

**Proof**. (1)  $\Longrightarrow$  (2) Fore Proposition 2.7. (2)  $\Longrightarrow$  (3) Let X + Y = U, where Y is small submodule of  $U_R$ , u = x + y, for all  $x \in X$  and  $y \in Y$ , then  $k_E(Y) \subseteq k_E(u - x) = 0$ . (3)  $\Longrightarrow$  (1) According to the hypothesis(3). Therefore  $X \leq_{E-s} U_R$ .  $\Box$ 

**Proposition 2.24.** Let  $U_R$  be an *R*-module, Then

1.  $\overline{B_R}(U) = \{c_1 + c_2 + \dots + c_n | c_j \in C_R(U) \text{ for each } n, j \text{ are positive integer} \}.$ 2.  $\overline{B_R}(U) = C_R(U) R.$ 

**Proof**. (1) Let the set  $F = \{c_1 + c_2 + \dots + c_n | c_j \in C_R(U) \text{ for each } n, j \text{ are positive integer}\}.$ If  $c \in \overline{B_R}(U)$ , then  $c \in F_1 + F_2 + \dots + F_n$ , where  $F_j \leq_{E-s} U_R$ , for each n, j are positive integer. If  $c = c_1 + c_2 + \dots + c_n, c_j \in F_j$ , implies that from Proposition 2.7  $c_j R \leq_{E-s} U_R$ . Thus  $c_j \in C_R(U)$ . Hence  $\overline{B_R}(U) \subseteq F$ . Simply we can note that  $F \subseteq \overline{B_R}(U)$ . (2) Evident by fact,  $C_R(U) \subseteq \overline{B_R}(U)$ , and by (1).  $\Box$ 

**Proposition 2.25.** Let  $U_R$  be an *R*-module, consider the following expression:

- 1. If  $F \leq_{E-s} U_R$  and  $H \leq_{E-s} U_R$ , then  $F + H \leq_{E-s} U_R$ .
- 2.  $C_R(U)$  is closed under addition.
- 3.  $\overline{B_R}(U) = C_R(U).$
- 4.  $\overline{B_R}(U) \leq_{E-s} U_R$

Can we get  $(1) \Longrightarrow (2) \Longrightarrow (3)$  and  $(4) \Longrightarrow (1)$ . But  $(3) \Longrightarrow (4)$ , it can obtained by adding if  $U_R$  is cyclic R-module. In addition, if U = uR, where  $u \in U$  one of the above-mentioned condition the following:

- (i)  $\overline{B_R}(U)$  is the unique largest E-small essential of U.
- (*ii*)  $\overline{B_R}(U) = \{ u \in U | k_E(a uw) = 0, \text{ for all } w \in R \}$

(*iii*)  $\overline{B_R}(U) = \cap \{ G \subseteq^{\max} U | \overline{B_R}(U) \subseteq G \}$ 

**Proof**. (1)  $\Longrightarrow$  (2) Since  $(u + v) R \subseteq uR + vR$ , so  $C_R(U)$  is closed under addition by Prop. 2.7. (2)  $\Longrightarrow$  (3) It is obvious that  $C_R(U) \subseteq \overline{B_R}(U)$ , then from Proposition 2.24 (1),  $\overline{B_R}(U) \subseteq C_R(U)$ . (3)  $\Longrightarrow$  (4) Let U = uR, for some  $u \in U$ , and  $\overline{B_R}(U) + F = U$ , where F is a small submodule of  $U_R$ . Thus by (3)  $C_R(U) + F = U$ . If u = v + w, where  $v \in C_R(U)$  and  $w \in F$ . Thus U = vR + F, so  $vR \leq_{E-s} U_R$ . Then  $k_E(U) = 0$ . Hence  $\overline{B_R}(U) \leq_{E-s} U_R$ .  $\begin{array}{l} (4) \Longrightarrow (1) \ Let \ F \leq_{E-s} U_R \ and \ H \leq_{E-s} U_R. \ Thus \ F \subseteq \overline{B_R}(U) \ and \ H \subseteq \overline{B_R}(U), \ then \ F + H \subseteq \overline{B_R}(U). \ Hence \ from \ Proposition \ 2.7 \ and \ by \ (4), \ implies \ that \ F + H \leq_{E-s} U_R. \\ Now, \ (i) \ is \ evident \ by \ (4), \ and \ (ii) \ is \ evident \ from \ Lemma \ 2.21 \ and \ by \ (3). \ Finally \ (iii) \ if \ u \in \overline{B_R}(U), \\ so \ uR \ is \ not \ E-small \ essential \ by \ (3), \ then \ uR + F = U, \ for \ an \ small \ submodule \ F \ of \ U_R, \ with \\ k_E(U) \neq 0, \ by \ (4) \ \overline{B_R}(U) \leq_{E-s} U_R, \ then \ we \ have \ \overline{B_R}(U) + F \neq U. \ If \ \overline{B_R}(U) + F \subseteq G \subseteq^{\max} U, \\ thus \ u \notin U. \ This \ is \ prove \ of \ (iii). \ \Box \end{array}$ 

**Proposition 2.26.** Let  $U_R$  be a module. consider the following expression:

- 1.  $\overline{B_R}(U) \leq_{E-s} U_R$
- 2. If  $F \leq_{E-s} U_R$  and  $H \leq_{E-s} U_R$ , then  $F \cap H \leq_{E-s} U_R$

Note  $(1) \Longrightarrow (2)$  verified. As well if  $U_R$  finitely cogenerated, hence  $(2) \Longrightarrow (1)$  **Proof**.  $(1) \Longrightarrow (2)$  Let  $F \leq_{E-s} U_R$  and  $H \leq_{E-s} U_R$ , so  $\overline{B_R}(U) \subseteq F \cap H$ , then from Lemma 2.8  $F \cap H \leq_{E-s} U_R$ .

(2)  $\Longrightarrow$  (1) If  $U_R$  finitely cogenerated, and let  $\overline{B_R}(U) \cap F = 0$ , where F is a small submodule of  $U_R$ , then  $F_1 \cap F_2 \cap \cdots \cap F_n \cap H = 0$ , for some  $E_j \subseteq \overline{B_R}(U)$ . Therefore  $N_E(H) = 0$ . that by (1).  $\Box$ 

#### References

- [1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
- [2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Front. Mathematics, Birkäuser Verlag, 2006.
- [3] A. Haghany and M.R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq. 14 (207) 489–496.
- [4] T. A. Kalati and D.K. Tütüncü, Annihilator-small submodules, Bull. Iran Math. Soc. 39 (2013) 1053–1063.
- [5] W. K. Nicholson and Y. Zhou, Annihilator-small right ideals, Algebra Colloq. 18 (2011) 785–800.
- [6] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
- [7] D.X. Zhan and X.R. Zhang, Small-Essential Submodule and Morita Duality, Southeast Asian Bull. Math. 35 (2021) 1051–1062.