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Abstract

In this study, we used a powerful method, named as Sumudu-Elzaki transform method (SETM)
together with Adomian polynomials (APs), which can be used to solve non-linear partial differential
equations. We will give the essential clarification of this method by expanding some numerical
examples to exhibit the viability and the effortlessness of this technique which can be used to solve
other non-linear problems.
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1. Introduction

Years ago, many differential equations have been solved using integral transforms, such as Laplace
Transform (LT), Fourier Integral Transform (FIT), Sumudu Transform (ST), Elzaki Transform (ET)
which they are the most commonly used in the literature [3, 25, 8, 27, 21, 6, 7]. Adomian decom-
position method (ADM) is developed by George Adomian (USA) for solving ordinary and nonlinear
partial differential equations [14, 10, 11, 24, 22, 4]. The non-linear partial differential equations
(NLPDEs) show up in numerous utilizations of math, physical science, science and designing, thus
the specialist presents various strategies for settling it, for example, Homotopy Perturbation Method
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(HPM) [26], Variation Iteration Method (VIM) [19]. The above strategies with integral transform
are utilized in a number of techniques like Laplace Variation Iteration Method (LVIM) [12], Sumudu
Homotopy Perturbation Method (SHPM) [5], Elzaki Variation Iteration Method (EVIM) [13]. Many
authors combined these transformation with the (ADM) for solving (NLPDEs) such as Laplace
Decomposition Method (LDM) [11, 15, 16], Sumudu Decomposition Method (SDM) [24], Elzaki De-
composition Method (EDM) [28, 23]. While other authors combined two of these transforms together
for solving some kinds of differential equation. Shams A. et al. [1] used (Laplace-Sumudu) for solv-
ing integral differential equation; whereas Alla M. et al. [9] solved Hirota Schrodinger and Complex
MKDV equations by using (Laplace-Elzaki).
In this study, another strategy for solving (NLPDEs) which is called Sumudu-Elzaki Transform De-
composition Method (SETDM) is presented. The entire build-up of the present study involves the
following: definitions of the (SETM) covered by Section 2, while section 3 highlights the basic deriva-
tive properties of (SETM). Section 4, however, is a proof of the convergence theorem of (SETM),
while section 5 presents (SETDM). Then in section 6, approximate solutions of the non-linear equa-
tions are shown to be close to the exact solutions. Accordingly then, few examples are given as
such to elucidate this process and to prove its effectiveness. The study is rounded-up with several
conclusions.

2. Basic Definitions and theorems of (SETM)

Definition 2.1. Consider h(x, t), a function of two variables x, t ∈ R+, which can be expressed as
an infinite convergent series, The (SETM) of the function h(x, t) is denoted by:

SE[h(x, t)] = H(α, β) =
β

α

∫ ∞

0

∫ ∞

0

h(x, t)e−(
x
α
+ t

β )dxdt (2.1)

It is clear that (SETM) is a linear integral transformation as:

SE[γh(x, t) + δg(x, t)] =
β

α

∫ ∞

0

∫ ∞

0

h(x, t)e−(
x
α
+ t

β )[γh(x, t) + δg(x, t)]dxdt

=
β

α

∫ ∞

0

∫ ∞

0

h(x, t)e−(
x
α
+ t

β )γh(x, t)dxdt

+
β

α

∫ ∞

0

∫ ∞

0

h(x, t)e−(
x
α
+ t

β )δg(x, t)dxdt

=
βγ

α

∫ ∞

0

∫ ∞

0

h(x, t)e−(
x
α
+ t

β )h(x, t)dxdt

+
βδ

α

∫ ∞

0

∫ ∞

0

h(x, t)e−(
x
α
+ t

β )g(x, t)dxdt

= γSE[h(x, t)] + δSE[g(x, t)]

(2.2)

Where γ and δ are constants, and consider that β and α be enough large constants. The inverse
of (SETM) SE−1[H(α, β)] = h(x, t)is defined by:

SE−1[H(α, β)] =h(x, t)

=
1

2πi

∫ a+i∞

a−i∞

1

α
e−

x
αdα.

1

2πi

∫ b+i∞

b−i∞
βe−

t
βH(α, β)dβ

(2.3)
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H(α, β) should be analytic function defined by the inequalities Re α ≤ a and Re β ≤ b, for all α
and β in the region and a and b are real constants that must be chosen carefully.

Definition 2.2. A function h(x, t) is of exponential order for a > 0, b > 0 on 0 ≤ x < ∞,
0 ≤ t < ∞, if ∃K > 0, s.t | h(x, t) |≤ Keax+bt,∀x > X, t > T , where K is constant and we write
h(x, t) = O(eax+bt) as x −→ ∞, t −→ ∞, or, equivalently

limx−→∞,t−→∞ e−(
x
α
+ t

β ) | h(x, t) |= limx−→∞,t−→∞ e−(
1
α
−a)x−( 1

β
−b)t = 0, 1

α
> a, 1

β
> b.

The function h(x, t) is called an exponential order as x −→ ∞, t −→ ∞, and obviously, it doesn’t
grow faster than Keax+bt as x −→ ∞, t −→ ∞.

Theorem 2.3. If a function h(x, t), continuous in finite interval (0, X) and (0, T ), is of exponential
order eax+bt, then the (SETM) h(x, t) of exist for all 1

α
and 1

β
provided Re[ 1

α
] > a and Re[ 1

β
] > b.

Proof . From the (Def. 2.2), we have

| H(α, β) | =| β
α

∫ ∞

0

∫ ∞

0

e−(
x
α
+ t

β )h(x, t)dxdt |

≤ K
1

α

∫ ∞

0

e−x( 1
α
−a)dxβ

∫ ∞

0

e−t( 1
β
−b)dt

Kβ2

(1− αa)(1− βb)
, Re[

1

α
] > a,Re[

1

β
] > b (2.4)

Then, from Eq. 2.4 we have limx−→∞,t−→∞ | H(α, β) |= 0, or limx−→∞,t−→∞ H(α, β) = 0. □

3. Basic Derivative Properties of the (SETM)

If H(α, β) = SE[h(x, t)], then

1 SE
[
∂h(x,t)

∂x

]
= 1

α
H(α, β)− 1

α
E(h(0, t))

Proof . SE
[
∂h(x,t)

∂x

]
= β

α

∫∞
0

∫∞
0

e−(
x
α
+ t

β ) ∂h(x,t)
∂x

dxdt = β
∫∞
0

e−
t
β dt 1

α

∫∞
0

e−
x
α
∂h(x,t)

∂x
dx

Using integration by parts, let u = e−
x
α , dv = ∂h(x,t)

∂x
dx, then

SE
[
∂h(x,t)

∂x

]
= β

∫∞
0

e−
t
β dt
{

1
α
e−

x
αh(x, t) |∞0 + 1

α
1
α

∫∞
0

e−
x
βh(x, t)dx

}
= 1

α
H(α, β)− 1

α
E(h(0, t)). □

2 SE
[
∂Φ(x,t)

∂t

]
= 1

β
H(α, β)− βS(h(x, 0))

Proof . SE
[
∂h(x,t)

∂t

]
= β

α

∫∞
0

∫∞
0

e−
x
α
− t

β

[
∂h(x,t)

∂t

]
dxdt = 1

α

∫∞
0

e−
x
αdxβ

∫∞
0

e−
t
β

[
∂h(x,t)

∂t

]
dt

Using integration by parts, let u = e−
t
β , dv = ∂h(x,t)

∂t
dx, then

SE
[
∂h(x,t)

∂t

]
= 1

α

∫∞
0

e−
x
αdx

{
βe−

t
βh(x, t) |∞0 + 1

β

∫∞
0

e−
t
β
∂h(x,t)

∂t
dt
}
= 1

β
H(α, β)− βS(Φ(x, 0)) □

Similarly

3 SE
[
∂2h(x,t)

∂x2

]
= 1

α2H(α, β)− 1
α2E(h(0, t))− 1

α
E
(

∂h(0,t)
∂x

)
4 SE

[
∂2h(x,t)

∂t2

]
= 1

β2H(α, β)− S(h(x, 0))− βS
(

∂h(x,0)
∂t

)
5 SE

[
∂2h(x,t)
∂x∂t

]
= 1

αβ
H(α, β)− 1

αβ
E(h(x, 0))− βS

(
∂h(x,0)

∂x

)
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4. The Convergence Theorems of (SETM)

Theorem 4.1. Let the function h(x, t) is continuous in the xt − plane, if the integral converges at

α = α0, β = β0 then the integral, β
α

∫∞
0

∫∞
0

h(x, t)e−(
x
α
+ t

β )dxdt is convergence for α < α0, β < β0.
For the proof, we will utilize the accompanying theorems.

Theorem 4.2. Suppose that β
∫∞
0

e−
t
βh(x, t)dt, converges at β = β0, then the integral converges for

β < β0.

Proof . For the proof see [20]. □

Theorem 4.3. Suppose that 1
α

∫∞
0

e−
t
αh(x, t)dt, converges at α = α0, then the integral converges for

α < α0.

Proof . For the proof see [2]. □
Now the proof of the Th. 4.1 is as follows

β

α

∫ ∞

0

∫ ∞

0

h(x, t)e−(
x
α
+ t

β )dxdt =
1

α

∫ ∞

0

e−
x
α

(
β

∫ ∞

0

e−
t
βh(x, t)dt

)
dx

=
1

α

∫ ∞

0

e−
x
αφ(x, t)dx (4.1)

Where φ(x, β) = β
∫∞
0

e−
t
βh(x, t)dt, by using Th.4.2 the integral β

∫∞
0

e−
t
βh(x, t)dt converges for

β < β0, and by using Th. 4.3 the integral 1
α

∫∞
0

e−
x
αφ(x, β)dx converge for α < α0, we see the integral

in RHS of Eq. 4.1 is converges for α < α0, β < β0, hence the integral β
α

∫∞
0

∫∞
0

h(x, t)e−(
x
α
+ t

β )dxdt
Converge for α < α0, β < β0, and this complete the proof of Th. 4.1.

5. Descriptions of the Method

This method is described as in the following manner. Let us consider the (NLPDEs) with the
initial condition (I.C) of the following form:

Lu(x, t) +Ru(x, t) +Nu(x, t) = g(x, t), u(x, 0) = h(x), ut(x, t) = f(x) (5.1)

Where, L is a second order partial differential operator with respect to t L = ∂2

∂t2
, R is a remaining

differential linear operator, N represents a general nonlinear differential operator, and g(x, t) is a
source term.
Using the linearity and the differentiation properties of the (SETM) for Eq. 5.1 and (ST) for the
(I.C) yields:

SE(Lu(x, t)) + SE(Ru(x, t)) + SE(+Nu(x, t)) = SE(g(x, t)) (5.2)

S(u(x, 0)) = S(h(x)) = H(α, 0), S(ut(x, 0)) = S(f(x)) =
∂

∂t
H(α, 0) (5.3)

to substitute Eq.5.2 in Eq.5.3, in the wake of utilizing derivative property (2), we get:

SE(u(x, t)) = τ 2SE(g(x, t)) + τ 4S(h(x)) + τ 3S(f(x))− τ 2SE(Ru(x, t))− τ 2SE(Nu(x, t)) (5.4)
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now, by using the inverse (SETM) to Eq. 5.1 we get:

u(x, t) = G(x, t)− SE−1
[
τ 2[SE(Ru(x, t)) + SE(Nu(x, t))]

]
(5.5)

where G(x, t) illustrates the terms arising from the source term and the prescribed initial condi-
tions.
After this step, we use the following decomposition series for the linear term:

u(x, t) =
∞∑
n=0

un(x, t) = u1(x, t) + u2(x, t) + u3(x, t) + ... (5.6)

and also, the infinite series defined by

N(u(x, t)) =
∞∑
n=0

An(u(x, t)) (5.7)

is used for the nonlinear terms.
Here An represents the (APs), described by the formula given below:

An =
1

n!

dn

dλn
[N(

∞∑
n=0

λiui)]λ=0, n = 0, 1, 2, 3, ... (5.8)

now, substitute Eqs. (5.6-5.7) in Eq. 5.5, we get:

∞∑
n=0

un(x, t) = G(x, t)− SE−1

[
τ 2[SE(R

∞∑
n=0

un(x, t) +
∞∑
n=0

An)]

]
(5.9)

then from Eq.5.9 we have:
u0(x, t) = G(x, t),
u1(x, t) = −SE−1(τ 2[SE(Ru0(x, t) + A0)]),
u2(x, t) = −SE−1(τ 2[SE(Ru1(x, t) + A1)]),

(5.10)

then from Eq.5.10 we can get the general recursive formula as:

un(x, t) = −SE−1
[
τ 2[SE(Run−1(x, t) + An−1)]

]
, n ≥ 1 (5.11)

so, the approximate solution u(x, t) is given by this series: u(x, t) = limn→∞
∑∞

n=0 un(x, t).

6. Illustrative examples

Example 6.1. [17] Consider the following (NLPDE)

ut + uux − uxx = 0 (6.1)

Subject to the (I.C):
u(x, 0) = x.
By applying (SETM) to Eq. 6.1 we have:

1

β
H(α, β)− βS(h(α, 0)) = SE(uxx − uux) (6.2)



968 AL-Safi, Yousif, Abbas

by using (ST) to (I.C) we have:

S(u(x, 0)) = H(α, 0) = S(x) = α (6.3)

from Eq. 6.3 and Eq. 6.2, we obtain:

H(α, β) = αβ2 + βSE(uxx − uux) (6.4)

by using the inverse (SETM) to Eq. 6.4, we get:

u(x, t) = x+ SE−1(βSE(uxx − uux)) (6.5)

After using the (ADM), we can write Eq. 6.5 as,

∞∑
n=0

un(x, t) = x+ SE−1[τ 2SE(
∞∑
n=0

(un)xx −
∞∑
n=0

An(u))]. (6.6)

Where, An(u) are (APs) that illustrate the nonlinear terms.
The first few Ingredients of An(u) are shown as:

A0(u) = u0(u0)x,
A1(u) = (u0)xu1 + u0(u1)x,
A2(u) = (u0)xu2 + (u1)xu1 + (u2)xu0,
A3(u) = (u0)xu3 + (u1)xu2 + (u2)xu1 + (u3)xu0,
.
.
.

(6.7)

by contrasting the two sides of Eq. 6.6, we have:

u0(x, t) = xun+1(x, t) = SE−1[τ 2SE((un)xx − An(u))], n ≥ 0. (6.8)

then:
u1(x, t) = SE−1[τ 2SE((u0)xx − A0(u))] = SE−1[τ 2SE(−x)] = −SE−1[ατ 2] = −xt
u2(x, t) = SE−1[τ 2SE((u1)xx − A1(u))] = SE−1[τ 2SE(2xt)] = −SE−1[2ατ 4] = xt2

by the similar way we get:
u3(x, t) = −xt3

and so on. Then the first four terms of the decomposition series for Eq. 6.1, is given as:
u(x, t) = x− xt+ xt2 − xt3 + ...,
the solution in a closed form is given as:
u(x, t) = x

1+t
, | t |< 1.

Along with any numerical verification of the proposed method which is definitely conducive to a higher
accuracy, we may resort to evaluating the numerical solutions by using the 10-term approximation
for Eq. 6.1. In this respect, we can see that while Table 1 show the difference of the absolute
errors of between the approximate solution and exact solution. However, there are 10-terms used to
evaluate the approximate solutions. On the same footing, with the actual solution of the equations,
we used a subtle approximation. This is accomplished by manipulating only the first ten terms of the
above-mentioned decomposition. No doubt that the corpus of the errors can be minimized through the
addition of new terms of the decomposition series.
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Table 1: The Numerical Result of the Absolute Error of Example 6.1 by Comparison between the exact solution with
approximate solution for 10-term approximation

Example 6.2. [18] Consider the following KdV equations

ut − 6uux + uxxx = 0, (6.9)

Subject to (I.C):
u(x, 0) = 1

6
(x− 1)

Applying (SETM) to Eq. 6.9, we have:

1

β
H(α, β)− βS(h(α, 0)) = SE(6uux − uxxx), (6.10)

by using (ST) to (I.C) we have:

S(u(x, 0)) = H(α, 0) = S(x) =
1

6
(α− 1), (6.11)

from Eq.6.11 and Eq.6.10, we obtain:

H(α, β) =
1

6
(αβ2 − β2) + βSE(6uux − uxxx), (6.12)

by using the inverse (SETM) to Eq. 6.12, we get:

u(x, t) =
1

6
(x− 1) + SE−1(βSE(6uux − uxxx)). (6.13)

After using the (ADM) we can write Eq. 6.13 as,

∞∑
n=0

un(x, t) =
1

6
(x− 1) + SE−1[βSE(6

∞∑
n=0

An(u)−
∞∑
n=0

(un)xxx)]. (6.14)

by contrasting the two sides of Eq. 6.14, we have:

u0(x, t) =
1

6
(x− 1)un+1(x, t) = SE−1[βSE(6An(u)− (un)xxx)], n ≥ 0. (6.15)

then:
u1(x, t) = SE−1[βSE(6A0(u)− (u0)xxx)] = SE−1[βSE

(
6 1
36
(x− 1)

)
] = SE−1

[
1
6
(αβ3 − β3)

]
= 1

6
(x−

1)t.
u2(x, t) = SE−1[βSE(6A1(u) − (u1)xxx)] = SE−1[βSE

(
6 1
36
(2xt− 2t)

)
] = SE−1

[
1
6
(4αβ4 − 4β4)

]
=

1
6
(x− 1)t2.

by the same way we get:
u3(x, t) =

1
6
(x− 1)t3

and so on.
Where the first few ingredients of An(u) are shown as:
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Figure 1: The solution of Eq. (25) by the proposed method (a-Exact solution), (b-Approximate solution).



A0(u) = u0(u0)x,
A1(u) = (u0)xu1 + u0(u1)x,
A2(u) = (u0)xu2 + (u1)xu1 + (u2)xu0,
A3(u) = (u0)xu3 + (u1)xu2 + (u2)xu1 + (u3)xu0,
.
.
.

(6.16)

Then the first four terms of the decomposition series for Eq. 6.9, is given as:
u(x, t) = 1

6
(x− 1)(1 + t+ t2 + t3 + ...),

the solution in a closed form is given as:
u(x, t) = 1

6

(
x−1
1−t

)
, | t |< 1.

Along with any numerical verification of the proposed method which is definitely conducive to
a higher accuracy, we may resort to evaluating the numerical solutions by using the 10-term ap-
proximation for Eq. 6.9. In this respect, we can see that while Figure 1a shows the exact solution,
Figure 1b reflects the approximate solution. However, there are ten terms used to evaluate the ap-
proximate solutions. On the same footing, with the actual solution of the equations, we used a subtle
approximation. This is accomplished by manipulating only the first ten terms of the above-mentioned
decomposition. No doubt that the corpus of the errors can be minimized through the addition of new
terms of the decomposition series. The numerical approximations appear to have a high degree of
accuracy, especially in the majority of un cases. Meanwhile, for very low values of n, the n-term
approximation is accurate.

Example 6.3. [17] Consider the following (NLPDE):

utt −
2x2

t
uux = 0, (6.17)

subject to (I.C):
u(x, 0) = 0, ut(x, t) = x.
By applying (SETM) to Eq. 6.17, we have:

1

β2
H(α, β)− β2S(h(α, 0))− βS

(
∂h(α, 0)

∂t

)
= SE

(
2x2

t
uux

)
, (6.18)

by using (ST) to (I.C) we have:
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Figure 2: The solution of Eq. 6.17 by the proposed method (a-Exact solution), (b-Approximate solution).

S(u(x, 0)) = 0 and S(ut(x, 0)) =
∂h(α, 0)

∂t
= S(x) = α, (6.19)

From Eq. 6.19 and Eq. 6.18, we obtain:

H(α, β) = β3α + β2SE

(
2x2

t
uux

)
, (6.20)

by using the inverse (SETM) to Eq. 6.20, we get:

u(x, t) = xt+ SE−1

(
β2SE

(
2x2

t
uux

))
. (6.21)

After using the (ADM), we can write Eq. 6.21 as,

∞∑
n=0

un(x, t) = xt+ SE−1

[
β2SE

(
2x2

t

∞∑
n=0

An(u)

)]
. (6.22)

Where, An(u) are (APs) that illustrate the nonlinear terms.
By comparing both sides of Eq. 6.22, we have:

u0(x, t) = xtun+1(x, t) = SE−1

[
β2SE

(
2x2

t
An

)]
, n ≥ 0. (6.23)

then:
u1(x, t) = SE−1

[
β2SE

(
2x2

t
A0

)]
= SE−1

[
β2SE

(
2x2

t
xt2
)]

= SE−1[β2SE(2x3t)] = SE−1[12α3β5] =
1
3
x3t3,

u2(x, t) = SE−1
[
β2SE

(
2x2

t
A1

)]
= SE−1

[
β2SE

(
2x2

t
(1
3
x3t4 + x3t4)

)]
= SE−1

[
β2SE

(
(2
3
x5t3 + 2x5t3)

)]
= SE−1[480α5β7 + 1440α5β7] = SE−1[1920α5β7] = 2

15
x5t5,

In a similar way we get:
u3(x, t) =

17
315

x7t7

and so on. Then the first four terms of the decomposition series for Eq. 6.17, is given as:
u(x, t) = xt+ 1

3
x3t3 + 2

15
x5t5 + 17

315
x7t7 + ...,

the solution in a closed form is given as:
u(x, t) = tan(xt).
Moreover, Figures 2a,b shows the exact and approximate solutions respectively.
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7. Conclusions

In this paper, the collection between (ADM) and (SETM) is proposed. We use the advantage
of this method to obtain the numerical approximate solutions as compared with the exact solution
of some (NLPDEs) such as third Order Korteweg-De Vries Equations (KdV) equations. It is shown
that this method is simple and direct very efficient. At last, we can say that this method is actually
dependable and applicable to all (NLPDEs).
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