
Int. J. Nonlinear Anal. Appl. 13 (2022) No. 1, 1035–1047
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.24467.2750

Numerical analysis of the wall impact in the
peristaltic pumping of a casson liquid in an inclined
canal

Ramu Katipellia,∗, SHVN Krishna Kumarib

aAssistant Professor, Department of Science and Humanities, Siddhartha Institute of Technology and Sciences, Narapally,
Hyderabad-500088, Telangana.
bProfessor, Department of Mathematics, Koneru Lakshmaiah Education Foundation, R.V.S Nagar, Aziznagar Telangana-
500075.

(Communicated by Madjid Eshaghi Gordji)

Abstract

Flow is considered in the moving frame of reference with constant velocity along the wave. The
developed mathematical model is presented by a set of partial differential equations. A numerical
algorithm based on finite element method is implemented to evaluate the numerical solution of the
governing partial differential equations in the stream-vorticity formulation.This paper is about the
study of Numerical analysis of the peristaltic conveyance of a casson fluid in a skewed tube under
the consideration of low Reynolds and long wavelength .The problem is discussed on the inclination
angle and yield stress of a fluid are examined for different qualitative and quantitative effects on
pressure and also the trapping bolus creation analyzed by changing various parameters, the equation
of flux analyzed in a wave frame moving at wave speed. Expressions are derived for the frictional
force, change in volume flow rate, rise and drop in pressure. The impact of frictional force on various
parameters on the pumping characteristics and pressure flow curves discussed through graphs.
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1. Introduction

The transfer of peristalsis is an extension and a contraction of an extending fluid tube induced by a
constant surface contraction waveSarkar B.C et al. [15].The physicists know that the peristalsis is one
of the main processes in many biological processes for the transfer of fluids.Bhatti M.M., Ellahi R et al.
and Ijaz N et al. [3, 10]. The operation of the ureter, food-and-chyme-motion mixing in the stomach,
ovarian motion in the fallopian tube, sperm transfer to the cervical canal, transfer of cilia and blood
flow in the arteries of the blood are usually apparentAkbar et al. [2].For industrial uses, such as
hygienic fluid transmission, heart lung blood pumps and corrosive liquid transportation for which
fluid interaction with the mechanical components is forbidden, a peristaltic transport mechanism
has been utilizedEllahi et al. [7].Blood and other physiological fluids have been taken as Newtonian
fluid in most compute physics.This strategy, even though it can provide a model appropriate of
the ureter’s peristaltic process KrishnaKumari et al. [11], does not offer a satisfactory model for
small blood vessels and lymphatic vessels, intestines, efferentes in male reproductive transport and
transport of the spermatogenesis Gnaneswara Reddy et al. and Vajravelu et al. [14, 16] to the
cervical canal when the peristaltic technique has a negative impact.Most physiologic liquids have
now been recognized to be non-Newtonian Mekheimer et al. and Vajravelu et al. [12, 9].

2. Review of Literature

Sarkar et.al [15] discussed the numerical result on hydro magnetic nanomagnetic peristaltic move-
ment in the asymmetric channel for the effect of thermal radiation and forces acting.While the exis-
tence of surface lubricants through micro channels or tiny capillaries in peristaltic fluid motion leads
to a speed shift, and hence no slip conditions for this type of flux cannot be used.

Bhattiet.al[3] have studied the impact of the embedded solid particles on the hydrate magnetic
movement and thermal expansion of ReeEyring fluid into a channel was investigated using the varied
features and circumstances. Peristalsis magnetic field produced their results showed a decrease in
the speed profiles.

Ijaz et.al[10] analyzed the influence of nanoparticles on non-Newtonian hydro magnetic flow and
analysis for the Jeffrey fluid peristaltic flow in the slip asymmetrical tilt channel.The mathematical
models are theoretically determined and resolved.

Akbar et.al [2] to include the magnetic field, slip-speed, porous medium and uniform heat source
impacts of heat transfer. Due to its broad use in the utilized sector, especially in the recovery of
petroleum oil and syrup medicines as well as in the manufacturing of plastic goods, the study on Non-
Newtonian fluids has received greater interest.Casson’s fluid is one of the distinctive non-Newtonian
fluids and was established by Casson in the development of its rheological model.

Agrawalet. al [1] discussed the impact of a magnetic field externally applied on the peristaltic
fluid-conducting movement of a stenosed channel evenly branching. Their results indicate that the
magnetic field is suitable for cardiac procedures.

Hariharanet.al, [8] discussed the Non-Newtonian fluid peristaltic transfer into a different waveform
tube.

Hayat et al. [9] investigated peristaltic flow in a canal with various wave patterns and a peristaltic
Jeffrey fluid channel flow with porous media supporting walls was explored. The flow in a peristaltic
canal was examined.

Vajravelu et.al [16] discussed the channels and the slanted tube of a Herschel-Bulkley fluid flow.
The entrapment bounds for Bingham and power law fluids have been determined.The pumping fluid
is considered as non-Newtonic fluid and the influence of wall characteristics on the physiological
conduit is ignored by all these studies on peristaltic flow.
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S.V.H.N.KrishnaKumari.P et.al [11] was dedicated to studying the Casson fluid peristaltic motion
in a slanted channel under magnetic field influence.The problem will be resolved by long wave length
and low number assumptions of Reynolds.Pressure increase, volume flow rate and frictional force
expressions are calculated.The influence on the theses is addressed of magnetic parameters, amplitude
ratio, rendering stress, inclination angle and plugs.

3. Mathematical Formulation

We examine at the peristaltic transfer of the fluid Casson across a two-dimensional tube with a
width of 2a and an angle β to a horizontal one [4]. We assume an indefinite wave train along the wall
at speed c.We have chosen a rectangle channel X coordinative system along the centerline towards
wave spread and Y orthogonal to it and assume axisymmetric channel [1].As illustrated in figure 1
the geometry of the wall is intended to be

Y = S(X, t) = a+ b sin sin
2π

λ
(X − ct) (3.1)

where b is the amplitude of the wave and λ is the wavelength.

Figure 1: Schematic diagram of the inclined channel

The equations of motion are provided by assuming the infinite wavelength and the inertial com-
ponents are neglected

ρ
∂U

∂t
= − ∂P

∂X
− ∂εy
∂Y

+ ρg sin sin β (3.2)

∂P

∂Y
= 0 (3.3)

Where ρ is the density, U is the axial velocity, t is the time, P is the pressure and ε is the shear
stress and g is acceleration due to gravity. The composite equation of the Casson corresponds to the
flow

ε
1
2 = ε

1
2
y +

(
−σ∂U

∂Y

) 1
2

if ε ≥ εy (3.4)
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and

∂U

∂Y
= 0 if ε ≤ εy (3.5)

Where εy the yield stress and σ is is the viscosity of the fluid. The appropriate limit criteria are
specified by

U(Y = S) = 0 (3.6)

−ε(Y = −Yp) = εy = ε(Y = Yp) (3.7)

U(Y = Yp) = Up (3.8)

where Up is the plug flow velocity and Y p is the half width of the plug flow region.
Assuming that the channel length is an integral multiple of wavelength λ and that there is

a constant pressure differential between the ends of the channel, the flow in the wave frame is
constant.The difference between O(X, Y ) standard and o(x, y) moving frame is indicated.

x = X − ct, y = Y (3.9)

u(x, y) = U(X − ct, Y )− c, v(x, y) = V (X − ct, Y ) (3.10)

and

p(x) = P (X, t) (3.11)

The P pressure is constant throughout each axial position of the channel, perhaps because to the
enormous wavelength and the negligible curvature effects [8], where the velocity parts (u, v) and
(U, V ). p and P are the wave or the fixed referral frame pressures, respectively. As non-dimensional,
the following equations are introduced [13]

x =
x

λ
, y =

y

a
, u =

u

c
, v =

v

cδ
, δ =

b

λ
, p =

p
σcλ
a2

, ε =
ε
σ∞c
a

,

εy =
εy
σ∞c
a

, s =
S

a
, yp =

yp
a
, Ø =

b

a
, F =

σc

ρga2
, up =

up
c

(3.12)

where σ∞ is the Newtonian viscosity of the fluid. The non-dimensional wall formulas are provided
after eliminating bars

y = s(x) = 1 + Ø sin sin(2πx) (3.13)

In dimensionless form the equations of motion become

∂ε

∂y
= −dp

dy
+

sin sin β

F
(3.14)

0 =
dp

dy
(3.15)

The non-dimensional version of Casson’s constitutive equation is

∂u

∂y
= −

(
ε+ εy − 2ε

1
2
y ε

1
2

)
if yp ≤ y ≤ s(x) (3.16)

∂u

∂y
= 0 if 0 ≤ y ≤ yp (3.17)
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The respective limits in non-dimensional form are

u(y = s) = −1 (3.18)

−ε(y = −yp) = εy = ε(y = yp) (3.19)

u(y = yp) = up (3.20)

The volume flow rate is determined in a fixed frame

N =

∫ S

0

Udy =

∫ Yp

0

Updy +

∫ S

Yp

Udy (3.21)

If n is the rate of flow independent of x and t in wave frame then

n =

∫ s

0

udy =

∫ yp

0

updy +

∫ s

yp

udy (3.22)

It follows that N = n+ s.
The average flow rate for the peristaltic wave for one period is defined as

T = λ/c (3.23)

θ =
1

T

∫ T

0

Ndt = n+ 1. (3.24)

4. Method of Solution

The solution of the Eq. (4.1) and (4.2) by using (4.3)

ε =

[
dp

dx
+

sin sin β

F

]
y (4.1)

The velocity distribution expressions in different locations may be obtained by substitutions for
ε from (4.1) in the Eq. (3.16) and (3.17) constitutive and integrating with the aid of boundary
conditions (3.18) and (3.20), as

u(y) = −1 +
1

2

[
−dp
dx

+ f

]
{

(s2 − y2) + 2yp(s− y)− 8

3

√
yp(8

3
2 − y

3
2 )

}
for yp ≤ y ≤ s(x) (4.2)

up = −1 +
1

2

[
−dp
dx

+ f

]
{
s2 + 2syp −

8

3
s

3
2y

1
2
p −

1

3
y2p

}
for 0 ≤ y ≤ yp (4.3)

where

yp =
sy

− dp
dx

+ F
and f = −sin sin β

F
(4.4)
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The Eq. (4.2) and (4.3) are integrated with the condition ϕ = 0 at y = 0 and also with continuity
of the stream function, the stream function is given as an equation as

ϕ = −y +
1

2

[
−dp
dx

+ f

]
s3{

y

s
− 1

3

(y
s

)3
+ 2

yp
s

[
y

s
− 1

2

(y
s

)2]
− 8

3

√
yp
s

[
y

s
− 2

5

(y
s

) 5
2

]
− 1

15

(yp
s

)3}
for yp ≤ y ≤ s(x)

ϕp = −y +
1

2

[
−dp
dx

+ f

]
y

{
s2 + 2yps−

8

3

√
yps

3
2 − 1

3
y3p

}
for 0 ≤ y ≤ yp (4.5)

The gradient of pressure is achieved by applying Eq. (3.22), (4.2) and (4.3)

dp

dx
= −3(n+ s)

s3z(X)
= f (4.6)

Where

z(x) = 1 +
3

2

(yp
s

)
− 12

5

√
yp
s
− 1

10

(yp
s

)3
(4.7)

The pressure rise per wavelength is provided by

∆P =

∫ 1

0

dp

dx
dx = f − 3[nK1 +K2] (4.8)

Where

K1 =

∫ 1

0

1

s3z(x)
dx (4.9)

K2 =

∫ 1

0

1

s2z(x)
dx (4.10)

And θ can be written as

θ =
f −∆P − 3(K2 −K1)

3K1

(4.11)

The dimension time mean flow θ0 for zero pressure rise is given by

θ0 =
f − 3(K2 −K1)

3K1

(4.12)

Also the dimensionless pressure rise for zero time mean flow is obtained as

(∆P )θ−0 = ∆P = f − 3(K2 −K1) (4.13)

The frictional force Fλ at the wall is obtained as

Fλ =

∫ 1

0

s
dp

dx
dx = f − 3(θ − 1)K2 − 3K3 (4.14)

Where

K3 =

∫ 1

0

1

sz(x)
dx (4.15)
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5. Results and Discussion

The fluctuation in dimensional pressure drop ∆P , and the trapping phenomena for the fluctuation
of half plug width yp, angle of inclination β and amplitude ratio ϕ are observed and visually evaluated
by selecting the variable F .In yp = 0, the findings decreased to Newtonian fluid, and in case of straight
channels if β = 0 the results were reduced.

Pumping Characteristics

When the ∆P = 0 pressure is referred to as the free pumping and matching average time stream
is referred to as θ0.The pressure increases needed to generate zero time, averaged flux of ∆P0 shown.
When ∆P0 < 0, the pressure helps the flow and is referred to as co-pumping.The change in flux
rate in figure 2-4 is shown to show that all curves are uniform. The change of ∆P with θ when
β = π/4, ϕ = 0.3 can be observed from figure 2 with modification of half plug width yp interestingly,
all curves in the area of free pump (∆P > 0) are intersected at θ = 0.15. For 0 ≤ θ ≤ 0.15 we
observed that ∆P increases with yp i.e. pumping region increases with yp and greater than the
Newtonian fluid and in the rest of the region ∆P decreases with yp i.e larger the free pumping flux
with larger yp. = 0.

Figure 2: Variation of ∆P with θ when F = 0.2, β = π/4, ϕ = 0.3.

The fluctuation of a value of ∆P with θ with a value of yp = 0.1, ϕ = 0.3 for various values of
β shown in Figure 3. It was noted that with increasing angles of inclination β, the pumping area
(0 ≤ ∆P ≤ P0) Was increasing, with β increasing, and that for various β,∆P = 0 with varied β = 0,
and β to take ∆P = 0.

Figure 4 shows the change in the amplitude ratio of ϕ with ∆P with θ for yp = 0.1, β = π/10.The
region grows and also observes that increase is greater with ϕ. As ϕ increases the pumping.The lines
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Figure 3: Variation of ∆P with θ when F = 0.2, yp = 0.1, ϕ = 0.3.

Figure 4: Variation of ∆P with θ when F = 0.2, yp = 0.1, β = π/10.
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in the co pumping region are crossed by a value of θ = 0.5.The collective effects of angle and plug
width thereby increases the area of free pumping.

The pressure increase needed to provide a zero average flow rate ∆P0 depending on ϕ is seen in
Figure 5. ∆P0 increases with ϕ and β as well as with ϕ→ 1, it is found that it increases for a fixed
value of β forever.

Figure 5: Variation of ∆P with ϕ when F = 0.1, yp = 0.1.

Frictional Force

In all these graphs the reverse behaviour observed with the case of ∆P , as β increases the
resistance to flow, and also in fixed a as θ steadily increases the strength of friction, but ∆P reduces
by θ, similar result for the variation from ϕ and also with yp, is found in figures 6-8. Comparable
results have been obtained in the non-dimensional force Fλ versus θ, as shown in figure 6-8.

Streamlines and Fluid Trapping

The creation by closed streamlines of an inner circulating fluid bolus is called trapping, and
together with the peristaltic waving is pushed this trapped bolus forward. Figures 9-11 demonstrate
streamline patterns for various values of β and yp and ϕ using P = 1 and F = 0.2. Figure 9 illustrates
the shape and fluctuation of trapped bolus at β = π/6 and yp = 0.8. The bolus is shown at different
levels of ϕ. The trapped bolus is identified for ϕ = 0, but the trapping of all f > 0 values is noticed
and the bolus size is increased by ϕ.

Figure 10 (where β = π/6, ϕ = 0.4), the bolus is not trapped at yp ≤ 0.15 and recirculation zone
creation is found at yp = 0.3 and the recirculating area volumes decrease and the boundary shift is
noticed with the increase and extinction of yp = 0.9

Figure 11 illustrates several β streamline profiles with ϕ = 0.5, yp = 0.6.For all β. values from 0
to π/2 the production of trapped bolus is seen, with an increase in β the bolus size.
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Figure 6: Variation of Fλ with θ when F = 0.2, β = π/4, ϕ = 0.3.

Figure 7: Variation of Fλ with θ when F = 0.2, yp = 0.2, ϕ = 0.3.
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Figure 8: Variation of Fλ with θ when F = 0.2, yp = 0.2, β = π/4.

Figure 9: Streamline Profiles when P = 1, F = 0.2, β = π/6, yp = 0.8, ϕ = 0.8.

6. Conclusion

The flow of the Casson fluid pipe walls is assessed according to the long wave length and low
Reynolds.In a wave frame moving at wave speed, the problem is analyzed.The inclination angle and
the yield stress of the fluid are noticed as the factors which have a quantitative and qualitative
effect on the pressure, frictional power and forming of trapped bolus.In the existence and presence
of plug width and angle of inclination, the pressure-flow curves are seen straight, with results for
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Figure 10: Streamline Profiles when P = 1, F = 0.2, β = π/6, ϕ = 0.4 (a) yp = 0.3 (b) yp = 0.5 (c) yp = 0.9.

Figure 11: Streamline Profiles when P = 1, F = 0.2, ϕ = 0.5, yp = 0.6 (a) β = π/6 (b) β = 0.
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adjustment of various parameters addressed.Trapping bolus creation is analyzed by changing the
many parameters which occur in the issue.It is noted that the quantity of the bolus is increased and
the angle and phase variation is increased and the bolus diameter reduces.
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