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Abstract

This article sheds light on the single phrase, logical thinking, which came to be understood in so
many diverse ways. To assist explain the many distinct meanings, how they arose, and how they are
connected, we trace the emergence and evolution of logical thinking in mathematics. This article
is also, to some extent, a description of a movement that arose outside of philosophy’s mainstream,
and whose beginnings lay in a desire to make logic practical and an essential part of learners’ lives.

Keywords: Logical thinking, Thinking, Cognition, Paradox.
2010 MSC: Primary 90C33; Secondary 26B25.

1. Introduction

The mathematical logic’s fundamental goal is a precise and appropriate grasp of the concept of
mathematical proof. At the beginning of a subject’s study, impeccable definitions are of little use.
The best method to learn what mathematical logic is all about is to practice it yourself, therefore
students should start reading the book even if (or especially if) they have reservations about the
subject’s meaning and purpose. Only after a certain amount of expertise with mathematical logic
can the relevance of a need for constructive proofs be assessed. The processes of objectively assess-
ing circumstances, logical thinking based on evidence in hand, reasoning through critical decisions,
creating new ideas, defining goals, and coming up with practical solutions are vital talents in our
lives. They allow you to solve issues, focus on activities, set priorities, find connections between
data points, and use those relationships to find appropriate answers. Those talents, like critical
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thinking, is ultimately the most necessary for a range of vocations despite its advantages to each
individual. The more professionals engage in rational thinking, the better off they will be. We strive
to improve logical thinking by effectively applying mathematical principles, so that anybody may
become a stronger professional by following advice on strengthening thinking abilities. Daily chal-
lenges demand logical thinking talents, which help professionals to provide answers, plans, and ideas
that enhance their workplaces rapidly. Getting into the profession or progressing in a job comes with
a slew of challenges. Questioning, associating with learners or teachers, spending time on creative or
technical interests, acquiring new abilities, and predicting decision outcomes all aid in the dynamic
development of logical thinking skills. An argument is a zealous debate between opposing viewpoints
where a variety of interpretations are present to establish correct premises (propositions mathemati-
cally) and hence conclusions. We want to teach students how they can reconstruct their arguments in
standard form, verbatim logical form. Paraphrasing sentences–either premises or conclusions- using
different words in order to grab clearer ideas helps in easing argument. Assuming that the premises
are true, a valid argument is one whose conclusion cannot possibly be incorrect. Validity depicts
the correlation between the premises and the conclusions, the conclusion is implied by the premises,
whether or not that it is correct. Logic is more concerned with the structure of an argument than with
its content, logicians are unconcerned about the validity or falsehood of certain premises and conclu-
sions, they simply want to know if the premises lead to the conclusion [10]. A major job of logicians
is the systematic formalization and cataloguing of legitimate techniques of reasoning. It is considered
mathematical logic if the work employs mathematical procedures or is primarily concerned with the
study of mathematical reasoning. Some scholars believe that strengthening logical thinking abilities
should be a priority in mathematics and science education [13]. Furthermore, logical thinking will
improve students’ academic achievement not just in mathematics and science courses, but also in
other subjects. Similarly, logical thinking abilities are required to solve challenges in everyday life
[25]. An instructor should not only use a lesson topic to answer a question on an exam, but should
also convey it properly. The instructor, on the other hand, should ensure that all of the concepts
are understood by the students. Since we are living in a golden period, this structure should be
constructed. Because they teach a lesson basis, especially mathematics, an instructor should have
stronger teaching abilities. Students will not be able to tackle increasingly complicated mathematics
issues if they do not grasp the fundamentals of mathematics. As a result, logical thinking skills are
required, particularly for instructors. The goal of this study is to check if prospective teacher’s pupils
have strong logical thinking skills or not. We utilized the descriptive qualitat to accomplish so [21].

2. Emergence of Mathematical Logic

Logic has two meanings-from the ancient Greek: λoγική , logike. The first explains the use of
sound reasoning in a certain task, it also refers to the normative study of reasoning or a subset of
it. Many cultures throughout history have produced logic theories, including China, India, Greece,
and the Islamic world. For millennia, Greek techniques, notably Aristotelian logic (or term logic) as
described in the Organon, have gained widespread acceptance and use in Western science and math-
ematics. The Stoics, particularly Chrysippus, were the first to create predicate logic. Philosophical
mathematicians such as Leibniz and Lambert attempted to handle the processes of formal logic in a
symbolic or algebraic fashion in 18th-century Europe, but their efforts remained isolated and little
recognized [5]. Mathematical logic research frequently focuses on the mathematical features of formal
logic systems, such as their expressive or deductive capacity. It can, however, incorporate the appli-
cation of logic to describe sound mathematical reasoning or to construct mathematical foundations
and has both contributed to and been driven by the study of mathematical foundations since its
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start. The creation of axiomatic frameworks for geometry, arithmetic, and analysis began in the late
nineteenth century.

It is particularly prevalent in the fields of philosophy, mathematics, and computer science in
the latter meaning. Logic is frequently broken down into three parts: inductive, abductive and
deductive reasoning. It’s rare to have such a wide variety of meaning. Although there are some
parallels, formal logic or inductive logic do not have such a wide range of application [9]. Is possibly
this variation has contributed to some misunderstanding [19]. In any case, it will be beneficial to
continue chronologically to grasp the vast range of meanings ascribed to informal logic [18]. Logic
in mathematics is a branch of symbolic logic that studies model, proof, set and recursion theory.
The influence of computability on the younger discipline of computer science has been the greatest
of the four. Much of computability has arguably been taken over by academics in computer science
departments, but with different focus. Computer scientists are more concerned with tractability or
feasible computability, but mathematical logicians are more concerned with computability as a more
theoretical term, with problems like no computability and degrees of insolvability. The term ”theory
of computation” usually refers to more practical sub-areas of computability - some of which fall
outside of mathematical logic proper and are closer to combinatorics, number theory, and probability
theory - that computer scientists have largely developed on their own in recent years. Randomness
in computing, resource-bounded computation, combinatorial complexity, and other topics have been
studied for decades. The polynomial hierarchy, as well as several modifications of the previous with
a focus on real-world applications. Distinct fields have varied incentives for learning logic, as well as
different notation and rigor norms. We have opted to remove some of the longer explanations in order
to keep the within normal boundaries. Proofs found in standard logic texts in favor of introducing
subjects that are thought to be more interesting ’advanced,’ which are crucial in current computer
science. Many of the definitions and methods are implemented as computer programs in two different
programming languages. We picked Prolog and SML partially because they are both very concise
and easy to understand not just because they are appropriate languages for the operations we wish
to convey, but also because they have. Their roots are in logic and the calculus, two of the most
fundamental mathematical disciplines. Despite the fact that logic is crucial to all other fields of study,
its fundamental and seemingly self-evident nature precluded any thorough logical inquiries until the
late nineteenth century. The discovery of non-Euclidean geometry, as well as the aim to provide a
formal foundation for calculus and higher analysis, reignited interest in logic. However, until about
the turn of the century, when the mathematical community was jolted by the discovery of paradoxes
- that is, reasoning that lead to contradictions - this new interest was still fairly sluggish. The most
significant paradoxes are presented:

1. Russell’s paradox (known as Russell’s antinomy) is a set-theoretic paradox found by Bertrand
Russell, a British philosopher and mathematician, in 1901, it demonstrates that every set theory
with an unlimited comprehension principle produces paradoxes [20]. Russell did not abandon
logic as a result of his discovery of the dilemma. Russell, on the other hand, attempted to
offer new foundations for reasoning. To overcome his dilemma, he developed what is known as
the theory of types, and he used this theory to build a new enormous system of formal logic
with A.N.Whitehead, in which it was anticipated that the whole field of mathematics could be
derived.

2. Cantor’s paradox says that there is no set of all cardinalities in set theory. The theorem that
there is no largest cardinal number leads to this conclusion. In layman’s words, the paradox is
that the collection of all potential ”infinite sizes” is not only infinite, but also so vast that any
of the infinite sizes in the collection cannot be its own infinite size [1].
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3. The Burali-Forti paradox illustrates that constructing the set of all ordinal numbers results in
a contradiction, revealing an antinomy in the system that permits it to be constructed [6].

4. The liar paradox, liar’s paradox, or antinomy of the liar is a liar’s declaration that they are
lying, such as stating ”I am lying.” If the liar is lying, then he or she is also stating the truth,
which implies the liar has just lied. The contradiction is reinforced in ”this phrase is a lie” in
order to make it more susceptible to rigorous logical examination [16].

5. Richard’s paradox is a set theory and natural language semantic antinomy first articulated by
French mathematician Jules Richard in 1905. The paradox is frequently invoked to emphasize
the necessity of making a clear distinction between mathematics and metamathematics [7].

These paradoxes are all real in the sense that they have no evident logical errors. Various ideas
for avoiding the paradoxes have emerged as a result of the analysis. All of these approaches limit
the ’naive’ concepts that go into the formation of the paradoxes in one way or another. Whatever
method one chooses to the paradoxes, it is important to first analyze the logic and mathematics
languages to understand what symbols may be utilized and how these symbols are put together to
produce the paradoxes, words, formulae, statements, and proofs, as well as determining what can and
cannot be done. If specific axioms and inference rules are established, the proof may be made. This
is one of the problems of mathematical logic, and there is no basis for comparing the underpinnings
of logics and mathematics until it is completed. An overview of some of the basic nomenclature,
ideas, and findings utilized throughout the text will be provided here for the absolute newbie. To
make arguments more rigorous, we need to create a language that allows us to articulate statements
in a way that highlights their logical structure.
The language we start with is propositional logic. It’s based on propositions, or declarative phrases
that may be debated in theory as if it were true or false. The reader is advised to skip these explana-
tions for now and refer to them later if required. Members or elements refer to the items that make
up a set. Sets can be members of other sets; for example, the set of all sets of integers contains sets.
Most sets are not members of themselves; for example, the set of cats is not a cat, thus it is not a
member of itself. There are, however, sets that actually belong to themselves, such as the set of all
sets. Consider the set A of all those X sets in which X is not a member. A is clearly a member of
A if and only if A is not a member of A, as defined by definition. So, if A is a member of A, A is
not a member of A, and if A is not a member of A, A is a member of A. In each instance, A belongs
to A and A does not belong to A. Consider the set A of all the X sets that X does not belong to.
If and only if A is not a member of A as defined by definition, A is obviously a member of A. As a
result, if A is a member of A, then A is not a member of A, and if A is not a member of A, then
A is a member of A. A belongs to A in each case, and A does not belong to A. Sentences may be
linked in a variety of ways to create longer sentences, a logical operator (or connective) is a word or
combination of words that joins one or more mathematical assertions to form a new mathematical
statement. A compound statement is one that has one or more operators in it. We give operators
names and use special symbols to symbolize them because they are used so frequently in logic and
mathematics.

Negation is one of the most basic sentence operations. Despite the fact that a phrase in natural
language can be negated in a variety of ways, we will follow a standard approach. The conjunction
is another frequent truth-functional operation.
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The formula A ⇒ B means ”if A then B ” or ”if A then B,” with A and B being two assertions.
When we say A ⇒ B, we mean that if A is accepted, we must also accept B. The essential thing to
remember is that the implication’s direction should never be reversed. When A ⇒ B, the argument
shifts from A to B, implying that if A is true, so is B. (We cannot have A without B) [17].

”If and only if,” commonly abbreviated ”iff,” is a mathematical expression A ⇔ B that states
that if A is true, then B is true as well, and vice versa. We must demonstrate the implications
in both directions to establish theorems of this type, thus the argument is broken into two parts:
demonstrating that and that A ⇒ B and B ⇒ A2

3. How has Logic been influenced by Computer Science?

Philosophy has had a significant impact on computer science. This impact comes mostly from
prior work in the philosophy of mathematics in the first three or four decades of the computer.
However, in the recent two decades, there has been a growing impact of concepts from scientific
philosophy, particularly those related to induction, probability and causality. Computer science and
the theory of computation are based on theoretical advancements computability, the goal of logic
in computer science is to create languages that reflect the problems we face as computer scientists
so that we can reason about them explicitly. We wish to accomplish this explicitly, such that the
arguments are legitimate and can be thoroughly argued, or even run on a computer. Let us talk
about Frege’s introduction of the predicate calculus in his Begriffsschrift of 1879, which marked the
beginning of the foundational period in mathematics philosophy. This has become one of computer
science’s most widely used theoretical tools. Automated theorem proving is one area where it may
be used. Alan Robinson created a variant of the predicate calculus (the clausal form) for use in
computer theorem proving in his 1965 work, and it has also proven beneficial in other applications of
logic to computers [24]. Robinson has an intriguing part at the start of his work where he explores
how computer logic differs from human reasoning. Robinson begins by pointing out that the rules of
inference in logic meant for humans are often quite basic. The condition that the rules of inference
be simple no longer apply if the reasoning is to be employed by a machine. A machine can apply a
rule of inference that takes a lot of processing, but it would be difficult for a person to do so. For
computer applications, however, it may be beneficial to limit the number of inference rules as much
as feasible. A human gifted with some intuitive talent might discern which of a system’s many basic
rules of inference would be the most suited to use in a given circumstance if it had a huge number
of them. If a machine lacked this intuitive ability, it could have to attempt each of the list’s rules
before settling on the right one. As a result, a logic for humans may contain a large number of easy
inference rules, but a logic for computers would benefit from fewer but more sophisticated rules.
In automated theorem proving, Alan Robinson’s version of the predicate calculus has proven quite
successful. It also led to the logic programming language PROLOG, thanks to the efforts of Kowalski
and Colmerauer and his colleagues. Inductive logic programming was invented by Muggleton as a
result of inverting Robinson’s deductive logic to generate an inductive logic [10]. So far, we’ve looked
at how logical principles from the logicist program for mathematics philosophy have been applied
to computer technology. The application of these logical ideas to computer science, on the other
hand, led to modifications in the concepts themselves. We’ll look at some of these changes next. The
challenge of adapting conventional classical 1st-order logic for the computer had been the focus of
prior theoretical work by Robinson, Kowalski, and others. When it came to actually implementing
PROLOG, it turned out that a distinct form of negation termed negation as failure had to be used
instead of classical negation. Clark clarified this problem in his 1978, which includes a study of
this new form of negation. One example of a new form of logic known as non-monotonic logic is a
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logic that treats negation as failure. Since the early 1980s, computer scientists have been developing
nonmonotonic logic, which is an example of a completely new type of logic that emerged as a result
of applying logic to computer science [8]. PROLOG was discovered to be a nonmonotonic logic due
to its negation as failure. Next, we’ll look at a far more significant change: PROLOG’s introduction
of control into deductive reasoning. As we will see, negation as failure is only one of the control
aspects of PROLOG. Comparing a paragraph from Frege with one from Kowalski is arguably the
easiest way to explain the concept of logic and control. Frege argues in the conclusion of his 1884
book The Foundations of Arithmetic that he has made it possible to carry out his logicist goal [12].
Consider the following scenario: we have a PROLOG database (including programs). If the user
types in a query, such as? - p (a). (i.e., is p(a) true?) PROLOG will attempt to generate a proof
of p(a) from the database automatically. If it succeeds in proving p(a), the answer is ‘yes,’ but if
it fails, the answer is ‘no’ (negation as failure). PROLOG includes a set of instructions (commonly
referred to as the PROLOG interpreter) for searching methodically through numerous alternatives
in order to generate these proofs. The instructions for conducting such searches are clearly part
of a control system that has been integrated into the logic’s inference procedures. One sign of the
incorporation of control is that logic programs frequently include symbols for control that would not
appear in conventional classical logic. The cut facility, written! is an example of this. In many cases,
the PROLOG translator automatically backtracks while doing searches. However, in some cases, we
may not want the program to do so much backtracking since it might waste time, provide useless
answers, and so on. The facility! regulates the amount of backtracking that happens in a precise but
fairly complex manner. Negation as failure can be described in terms of! and another control element
in PROLOG: fail, a primitive that simply causes the interpreter to crash. The following is a logic
program that defines negation as failure:!, fail, not X :- X, X is not the case. This is how the software
works. When given the goal of proving not p, it sets X = p to match the leftmost section of the first
statement. It then attempts to prove the first half of the right side of the conditional, which is just
p with the substitution X = p. If PROLOG is successful in proving p, it executes! which controls
backtracking, and then reaches fail, which terminates the sentence. The interpreter is not permitted
to consider the following sentence, i.e. not X, due to the action of! As a result, PROLOG has failed
to demonstrate that p is not true. To summarize, PROLOG fails to prove not p if it can show p.
If PROLOG, on the other hand, fails to establish p, the first sentence fails before! is reached. As a
result, backtracking is not prohibited, and the PROLOG interpreter continues to regard the second
phrase to be not X. This statement may be proved not to be p by replacing X = p. PROLOG succeeds
in demonstrating not p if it fails to prove p. As a result, the logic program considers negation to be
a failure. The intriguing thing about this is that the control components are used to define negation
as failure! and fail. Thus, PROLOG’s non-classical negation is derived from its control aspects, and
the difference in negation between PROLOG and classical logic may be regarded as a symptom of
the more fundamental difference that PROLOG brings control into deductive reasoning. PROLOG’s
advancements are a logical extension of the mechanization process that gave rise to contemporary
logic in the first place. In the preceding section, I suggested that Frege and Russell’s work may be
viewed as a mechanization of the process of testing a proof’s validity. Their classical logic nevertheless
leaves the proof building entirely in the hands of the human mathematician, who must utilize his or
her craft skills to complete the assignment. PROLOG automates the production of evidence, taking
the mechanization process one step further. In this way, it differs from classical logic, which is why
PROLOG is required to incorporate control into logic. The differences in conceptual needs between
a computer and a human mathematician have been a key subject in this work. This issue will be
illuminated further by analyzing an argument against logic that Wittgenstein developed later in his
life. This will be the topic of the paper’s fifth and final part12 . Conclusion In this work, important
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features to be observed, sciences such as computer has seen a significant increase in vocabulary in
recent years. This is because to growing interdisciplinary and important scientific advancements.
Indeed, life science language has progressed to the point where data processing and sharing are
severely hindered since numerous parties can no longer be assured to interpret data in the same
manner or using the same vocabulary. There is a growing trend to create reference terminology to
solve this challenge. Mathematics is frequently marketed as providing students with a variety of broad
thinking abilities, including the ability to think rationally, analytically, critically, and abstractly, as
well as the ability to assess evidence impartially. This is a perspective on mathematics that sees it
as a source of transferable abilities that may be found in educational institutions, governments, and
businesses all around the world. A material perspective on the role of mathematics in curriculum.

4. Logical Mathematical Learning

In developmental psychologist Howard Gardner’s theory of Multiple Intelligences [27], the logical-
mathematical learning style is one of eight types of learning styles, or intelligences, logical mathemat-
ical intelligence is one of the qualities of pupils that plays an essential part in studying mathematics
[2]. It refers to a learner’s capacity to employ numbers, abstract visual information, and cause-and-
effect linkages to reason, solve problems, and learn. This idea questioned the conventional wisdom
that there is only one sort of intelligence, commonly referred to as ”g” for general intelligence, which
is solely concerned with cognitive ability. Logical-mathematical learners may acquire knowledge via
reasoning and sequencing. Your child may like exploring arithmetic, working with numbers, and
figuring out logical ways to solve issues. Some examples of areas of strength are: concepts that
are abstract, categorization, classification, memory, recognizing patterns, problem-solving and visual
evaluation. Gardner considers intelligence to be a biological component that is influenced by the
environment, culture, community, and people with whom he or she interacts [11].

Learners with high logical-mathematical intelligence love arithmetic, computer science, technol-
ogy, drawing, design, chemistry, and other ”hard sciences” in school. You may note that they
like logical sequence in education and that they do best in structured, organized settings. Logical-
mathematical learners are natural tinkerers and builders who like putting mathematical and concep-
tual ideas into practice through hands-on projects. The learner could enjoy making computer-aided
designs, developing electrical gadgets, utilizing computer programs, or programming computers, for
example: a statistical research would appeal to logical-mathematical learners more than reading
fictional literature or maintaining a journal. Youngster may also like graphing, charting, and time-
lines, as well as data analysis. Games like chess or science kits that allow experimenting may appeal
to them [22]. Visual materials, computers, statistical and analytical tools, and hands-on projects
help learners with logical-mathematical learning styles process knowledge more effectively. They
prefer organized, goal-oriented activities based on mathematical reasoning and logic over unstruc-
tured, creative ones with ill-defined learning objectives. Consider the difference between creating a
specific Lego model and sketching without prompting. Making an agenda or list, setting numerical
objectives, rating ideas, placing actions into a sequence, keeping track of progress, or producing data
reports are all things that a mathematical logical learner would wish to do as part of a collaborative
project. Additionally, your kid may enjoy utilizing reasoning, analysis, and their math skills to solve
issues. You can help your logical-mathematical learner in a variety of ways. During family time,
engage them in strategic games and logic puzzles, equip them with classroom planners, and establish
clear rules at home. Ask your youngster to answer arithmetic problems whenever feasible. Have
your youngster, for example, try to add up the amount before you get to the cashier while you’re
out shopping. Have them compute a discount on one or two things if they’re older and understand
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percentages. Whether you’re dealing with education or entertainment, you may encourage learners
to think critically by asking them to explain why they made certain decisions. It’s interesting to
watch your youngster solve issues with inventive ways that you might not have considered.

5. Mathematical issues in logical reasoning are possible

General methodological principles of work on development logical knowledge and abilities in
teaching mathematics have been identified in a number of methodological research. The following
essential principles of organizing logical instruction based on the examination of these works is taking
into consideration the characteristics of current primary school [23]:

1. Taking into account age differences. It is important to examine the age characteristics of junior
class learners while providing logical training, and to use the approach appropriate for their
age. It is important to employ systematic approaches that will enable us to teach youngsters
how to compare items, construct definitions, classify objects, and reach simple conclusions and
proofs.

2. Consistency. The purpose of propaedeutical logical work with learners in junior classes is to
establish continuity with the school’s middle level. This is owing to the fact that the current
school mathematics course follows a ”through” content-logic path.

3. Systematicity. Work aimed at promoting logical thinking in juniors should be planned and
carried out in a methodical manner. This means that in junior high school mathematics, the
study of logical knowledge cannot be focused on a single topic. It is carried out progressively
and systematically on material from diverse program areas, ensuring the steady development
of general logical abilities and laying the groundwork for the development of increasingly so-
phisticated logical forms of thinking.

4. Availability. Without specific logical knowledge and abilities, it is difficult to study portions of
the mathematics course for junior levels. As a result, logical thoughts and activities must be
given a shape that allows youngsters to assimilate them.

Learners’ logical thinking techniques cannot be created independently at the level of cognitive
development when they attend school. The teacher’s job is to establish the groundwork for logical
thinking and abilities [26]. Every activity should be worked out in a tangible and realized plan,
with the necessary pronunciation of each operation, taking into account the age opportunities of
youngsters. The work on forming logical conceptions and acts is propaedeutic in nature since it
lacks logical terminology and definitions; moreover, learners are not expected to grasp specific logical
principles. This activity aims to develop their basic logical knowledge and abilities, which serve as the
foundation for higher education. To help junior high school students develop logical knowledge and
abilities, we should employ a range of learning aids that include content at various levels of abstraction
[4]. The mathematical problem may be used to investigate not just cognitive processes, but also the
growth and creation. Any issue solution does not lead to the development of logical thinking. To
effectively develop learners’ logical thinking, a system of activities must be in place, with learners
being confronted with and resolving challenging circumstances. Obviously, the content of the tasks
and the methodology for the formulation should be such that the logic of learners’ search activity, or
ways of finding an answer to the problem’s question, were related to learners’ cognitive efforts, which
represented a sequence of inductive and deductive cognitive actions in various combinations, were
related to learners’ cognitive efforts. Furthermore, both inductive and deductive logical processes
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invariably involve a slew of other interconnected thinking operations (comparison, synthesis, analysis,
generalization, etc. . . ), so the formation of these thinking processes should be considered both in the
problem’s content and in the method of its formulation. The organic relationship of logical training
with other areas of professional and pedagogical training of pupils, its integral nature; the bilateral
nature of the logical training process; consideration of development features of junior learners is some
of the peculiarities of future teachers’ logical training. The framework of a genuine lesson should not
exclude logical thought, but it is important to actively incorporate the topic matter of the training
material in its development. learners’ logical thinking and educational - logical skills can be continued
outside of the classroom. The content of such lectures should contain not just mathematics, but also
material from other disciplines, such as languages, natural sciences, and empirical material from the
students’ daily lives, such as hobbies and games. Junior learners believe that the process of learning
and cognition is not limited by mathematics classes and textbooks, but rather pervades their entire
lives as a result of this type of education [3].
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