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Abstract

In this research we stated and proved the some escape criteria theorems of the one parameter family of
the transcendental meromorphic-functions F= {fk (z) = k csc (z) : k∈ C and z∈ C}. Furthermore,
we used non-standard iterations: Mann, Ishikawa and Noor iterations in the complex plane. This
research can be considered as an extension of [11].
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1. Introduction

A very important method of generating fractal in the complex plane is the repeated iteration of
a complex function. The most common example of such fractals is the Julia sets. Julia sets were
studied much earlier, namely in the early twentieth century by French mathematicians Pierre Fatou
[6] and Gaston Julia [7].
The Julia sets is not only interesting from a mathematical point of view. It has applications in other
fields also, e.g. physics [1], biology [2] and robotics [14]. One of the most natural applications of the
Julia sets – because of her beauty – was her use in computer graphics.
So many researchers have studied different properties of the Julia sets and proposed accordingly
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various generalizations. The first was the use of the zp+c function instead of the quadratic one used by
Mandelbrot [4, 9]. Further, additional types of functions were studied: rational [10], transcendental
[5], elliptic [8] and anti-polynomials [3] etc. They applied results that can be explained in fixed point
theory. In this theory, we can described methods of locating fixed points that change the feedback
process zn+1 = fk(zn) with other kinds of iteration processes. The obtain of different iteration
processes began in 2004 in the works of Rani and Kumar [12, 13]. To obtain how one can visualize
Julia sets, one will describe the well-known method called ”The escape criterion method” which
construct the filled in Julia sets do not have interiors, however, this method often ends up plotting
the interior along with the Julia sets. [11]displayed the Mann iteration and proved new escape criteria
for the generation of the Julia sets using this kind of iteration. Further studied different iteration as
Ishikawa, Noor, SP and CR processes.

In this research we established the some escape criterion which performed an important job to
generate the Julia sets. We take F= {fk (z) = k csc (z) : k∈ C and z∈ C} then we use the Mann,
Ishikawa and Noor iteration scheme.

2. Preliminaries

In this section we shall obtain some definitions from [15, 11]; for the sake of convenience those
definitions will be put here.

Definition 2.1 (Julia sets[11]). Suppose that f : C → C be a complex function and k∈ C is a
parameter. Hence the set of points

Jf = {z ∈ C : {|fn (z)|}∞n=0 is bounded} (2.1)

Such that fn (z) is the n-th iterate of zis called the filled Julia set. The set boundary points of Jf is
called Julia set.

Definition 2.2 (Picard-iteration [15]). Suppose thatf : C → C be a complex function. Then for
any z0∈ C the Picard-iteration in complex plane is defined as:

zn+1 = f(zn) (2.2)

for all n = 0, 1, 2, . . . .

Definition 2.3 (Mann-iteration [15]). Suppose that f : C → C be a complex function. Then for
any z0∈ C the Mann-iteration in complex plane is defined as:

zn+1 = (1− a1) zn + a1f(zn) (2.3)

such that a1 ∈ (0, 1] and n = 0, 1, 2, . . ..

Definition 2.4 (Ishikawa-iteration [15]). Suppose that f : C → C be a complex function. Then
for any z0∈ C the Ishikawa-iteration in complex plane is defined as:

zn+1 = (1− a1) zn + a1f (yn)

yn = (1− a2) zn + a2f(zn),
(2.4)

such that a1, a2 ∈ (0, 1] and n = 0, 1, 2, . . ..
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Definition 2.5 (Noor-iteration [15]). Suppose that f : C → C be a complex function. Then for
any z0∈ C the Noor-iteration in complex plane is defined as:

zn+1 = (1− a1) zn + a1f (yn)

yn = (1− a2) zn + a2f(xn)

xn = (1− a3) zn + a3f(zn),

(2.5)

such that a1, a2, a3 ∈ (0, 1] and n = 0, 1, 2, . . ..

There are many fixed point iterations process in mathematics, but note that, all one step iterations
have same escape criteria and same argument for two and three steps iterations, then we describe
our results in Mann, Ishikawa, Noor iterations.

3. Main Results

In this section, we will prove some escape criteria as mentioned for the functions in F =
{fk (z) = k csc (z) : k∈ C and z ∈ C}

Theorem 3.1. Let fk (z) be a meromorphic transcendental functions in Fwith |z| ≥ |k| > 1
|a| where

|a| ∈ (0, 1]. If the sequence of the iterates {zn}n∈N for Picard iteration is defined as follows:

zn+1 = fk(zn)

where n = 0, 1, 2, . . ., then |zn| → ∞ when n → ∞.
Proof .Let fk (z) = k csc z, then Picard iteration is

|zn+1| = |fk(zn)|

For n = 1, let z0 = z, then we have

|z1| = |fk(z)| = |k csc z| =
∣∣∣∣k(1

z
+

1

3!
z +

(
1

3!3!
− 1

5!

)
z3 + . . .

)∣∣∣∣
= |k| |z|

∣∣∣∣ 1z2 +
1

3!
+

(
1

3!3!
− 1

5!

)
z2 + . . .

∣∣∣∣ .
Let

∣∣ 1
z2

+ 1
3!
+
(

1
3!3!

− 1
5!

)
z2 + . . .

∣∣ > |a| where |a| ∈ (0, 1] and z∈ C, except those values of z wherefore
|a| = 0. So, we have |z1| ≥ |k| |a| |z|.

For n = 2, we get

|z2| = |fk(z1)| = |k csc z1| = |k| |z1|
∣∣∣∣ 1

z12
+

1

3!
+

(
1

3!3!
− 1

5!

)
z1

2 + . . .

∣∣∣∣
≥ |k| |a| |z1| ≥ |k| |a| (|k| |a| |z|) = |k|2 |a|2 |z| .

Now, we continue to nth term , we conclude that

|zn| ≥ |k|n |a|n |z| .

Since |z| > |k| > 1
|a| , then |k| |a| = |ka| > 1. Hence |zn| → ∞ when n → ∞. □
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Corollary 3.2. Let |zm| > max

{
|k| , 1

|a|

}
for some m ≥ 0.

Since |ak| > 1, then |zm+n| > |z| |ak|m+n. Therefore |zn| → ∞as n → ∞.

Theorem 3.3. Let fk (z)be a meromorphic transcendental functions in F with |z| ≥ |k| > 1
a1|a|where

|a| ∈ (0, 1]. If the sequence of the iterates {zn}n∈N for Mann iteration is defined as follows:

zn+1 = (1− a1) zn + a1fk(zn)

where a1 ∈ (0, 1]and n = 0, 1, 2, . . ., then |zn| → ∞ when n → ∞.
Proof .Let fk (z) = k csc z, then Mann iteration is

|zn+1| = |(1− a1) zn + a1fk(zn)|

For n = 1, let z0 = z, then we have

|z1| = |(1− a1) z + a1fk(z)| = |a1 (k csc z) + (1− a1) z|

≥ a1 |(k csc z)| − (1− a1) |z| = a1

∣∣∣∣k(1

z
+

1

3!
z +

(
1

3!3!
− 1

5!

)
z3 + . . .

)∣∣∣∣− (1− a1) |z|

≥ |z| (a1 |k| |a| − 1)

Where
∣∣ 1
z2

+ 1
3!
+
(

1
3!3!

− 1
5!

)
z2 + . . .

∣∣ > |a| such that |a| ∈ (0, 1] and z∈ C except those values of z
wherefore|a| = 0. So, we get |z1| ≥ |z| (a1 |k| |a| − 1).
Now, for n = 2, we have

|z2| = |(1− a1) z1 + a1fk(z1)| = |a1 (k csc z1) + (1− a1) z1| ≥ a1 |(k csc z1)| − (1− a1) |z1|

= a1

∣∣∣∣k( 1

z1
+

1

3!
z1 +

(
1

3!3!
− 1

5!

)
z1

3 + . . .

)∣∣∣∣− (1− a1) |z1| ≥ |z1| (a1 |k| |a| − 1) ≥ |z| (a1 |k| |a| − 1)2.

Since |z1| ≥ |z| (a1 |k| |a| − 1) and |z1| ≥ |z| ≥ |k| > 1
a1|a| , this yields

|z1| (a1 |k| |a| − 1) ≥ |z| (a1 |k| |a| − 1).

Then iterating up to nth term, we obtain

|zn| ≥ |z| (a1 |k| |a| − 1)n

This condition, |z| > 2
a1|a| , yields to (a1 |k| |a| − 1) > 1 and therefore |zn| → ∞ when n → ∞. □

Corollary 3.4. Let |zm| > max{|k| , 2

a1 |a|
} for some m ≥ 0. Since a1 |ak| > 2, then

|zm+n| ≥ |z| (a1 |k| |a| − 1)m+n. Therefore |zn| → ∞as n → ∞.

Theorem 3.5. Let fk (z) be a meromorphic transcendental functions in F with |z| ≥ |k| > 1
a1|b|and

|z| > |k| > 2
a2|a|where |a| , |b| ∈ (0, 1]. If the sequence of the iterates {zn}n∈N for Ishikawa iteration is

defined as follows:

zn+1 = (1− a1) zn + a1fk (yn)

yn = (1− a2) zn + a2fk(zn)
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where a1, a2 ∈ (0, 1]and n = 0, 1, 2, . . ., then |zn| → ∞ when n → ∞.
Proof .Let fk (z) = k csc z, then the first step of Ishikawa iteration is

|yn| = |(1− a2) zn + a2fk(zn)|

For n = 0, let z0 = z and y0 = y , then we have

|y0| = |(1− a2) z + a2fk(z)| = |a2 (k csc z) + (1− a2) z|

≥ a2 |(k csc z)| − (1− a2) |z| = a2

∣∣∣∣k(1

z
+

1

3!
z +

(
1

3!3!
− 1

5!

)
z3 + . . .

)∣∣∣∣− (1− a2) |z|

≥ a2 |k| |a| |z| − |z|

where
∣∣ 1
z2

+ 1
3!
+
(

1
3!3!

− 1
5!

)
z2 + . . .

∣∣ > |a| such that |a| ∈ (0, 1] and z∈ C except those values of z
wherefore |a| = 0.

|y0| ≥ |z| (a2 |k| |a| − 1).

The second step of Ishikawa iteration is

|zn+1| = |(1− a1) zn + a1fk(yn)| .

When n = 0, we consider

|z1| = |(1− a1) z + a1fk(y0)| = |a1 (k csc y0) + (1− a1) z|

≥ a1 |(k csc y0)| − (1− a1) |z| = a1

∣∣∣∣k( 1

y0
+

1

3!
y0 +

(
1

3!3!
− 1

5!

)
y0

3 + . . .

)∣∣∣∣− (1− a1) |z|

≥ a1 |k| |b| |y0| − |z| ≥ a1 |k| |b| |z| (a2 |k| |a| − 1)− |z| ,

where
∣∣∣ 1
y02

+ 1
3!
+
(

1
3!3!

− 1
5!

)
y0

2 + . . .
∣∣∣ > |b|and (a2 |k| |a| − 1) = 1. Hence, |z1| ≥ |z| (a1 |k| |b| − 1).

Iterating up to nth term, we have

|zn| ≥ |z| (a1 |k| |b| − 1)n.

Since |z| > |k| > 2
a1|b| and |z| > |k| > 2

a2|a| , |zn| → ∞ when n → ∞. □

Corollary 3.6. Let |zm| > max

{∣∣∣∣ 2

a2 |a|

∣∣∣∣ , 2

a1 |b|

}
for some m ≥ 0. Since a1 |bk| > 2 and a2 |ak| > 2,

then |zm+n| > a1 |bk|m+n |z|. Therefore |zn| → ∞ as n → ∞.

Theorem 3.7. Let fk (z) be a meromorphic transcendental functions in F with |z| ≥ |k| > 1
a1|b| ,

|z| ≥ |k| > 2
a2|c| and |z| ≥ |k| > 2

a3|a|where |a| , |b| , |c| ∈ (0, 1]. If the sequence of the iterates {zn}n∈N
for Noor iteration is defined as follows:

zn+1 = (1− a1) zn + a1fk (yn)

yn = (1− a2) zn + a2fk(xn)

xn = (1− a3) zn + a3fk(zn),

where a1, a2, a2 ∈ (0, 1]and n = 0, 1, 2, . . ., then |zn| → ∞ when n → ∞.
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Proof .Let fk (z) = k csc z, then the first step of Noor iteration is

|xn| = |(1− a3) zn + a3fk(zn)|

For n = 0, let z0 = z, x0 = x and y0 = y , then we have

|x| = |(1− a3) z + a3fk(z)| = |a3 (k csc z) + (1− a3) z|

≥ a3 |(k csc z)| − (1− a3) |z| = a3

∣∣∣∣k(1

z
+

1

3!
z +

(
1

3!3!
− 1

5!

)
z3 + . . .

)∣∣∣∣− (1− a1) |z|

≥ |z| (a3 |k| |a| − 1),

where
∣∣ 1
z2

+ 1
3!
+
(

1
3!3!

− 1
5!

)
z2 + . . .

∣∣ > |a| such that |a| ∈ (0, 1] and z∈ C except those values of z
wherefore|a| = 0.

|x| ≥ |z| (a3 |k| |a| − 1).

Because |z| > 2
a3|a| , this yields a3 |k| |a| − 1) > 1. So, we conclude

|x| ≥ |z| .

Now the second step of Noor iteration is

|yn| = |(1− a2) zn + a2fk(xn)| .

For n = 0, we have

|y| = |(1− a2) z + a2fk(x)| = |a2 (k csc x) + (1− a2) z|

≥ a2 |(k csc x)| − (1− a2) |z| = a2

∣∣∣∣k(1

x
+

1

3!
x+

(
1

3!3!
− 1

5!

)
x3 + . . .

)∣∣∣∣− (1− az) |z|

≥ a2 |k| |c| |z| − |z|

Since
∣∣k ( 1

x
+ 1

3!
x+

(
1

3!3!
− 1

5!

)
x3 + . . .

)∣∣ ≥ |c| where |c| ∈ (0, 1] and x∈ C except those values of x
wherefore |c| = 0.

|y| ≥ |z| (a2 |k| |c| − 1).

Since |z| > 2
a2|c| , this yields |y| ≥ |z|. Now for the last step of Noor iteration we have

|zn+1| = |(1− a1) zn + a1fk(yn)| .

For n = 1, we have

|z1| = |(1− a1) z + a1fk(y)| = |a1 (k csc y) + (1− a1) z|

≥ a1 |(k csc y)| − (1− a1) |z| = a1

∣∣∣∣k(1

y
+

1

3!
y +

(
1

3!3!
− 1

5!

)
y3 + . . .

)∣∣∣∣− (1− a1) |z|

≥ a1 |k| |b| |y| − (1− a1) |z| ≥ a1 |k| |b| |y| − |z| ≥ a1 |k| |b| |z| − |z|

Iterating up to nth term, we get
|zn| ≥ |z| (a1 |k| |b| − 1)n.

Since |z| > |k| > 2
a1|b| , |z| > |k| > 2

a2|c| and |z| > |k| > 2
a3|a| , a1 |k| |b| − 1 > 1. Hence |zn| → ∞

when n → ∞. □

Corollary 3.8. Let |zm| > max

{∣∣∣∣ 2

a2 |c|

∣∣∣∣ , 2

a1 |b|
,

2

a3 |a|

}
, for some m ≥ 0. Since a1 |bk| > 2,

a2 |ck| > 2 and a3 |ak| > 2, |zm+n| > (a1 |bk| |z|)m+n. Therefore |zn| → ∞ as n → ∞.
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