A proposed conditional method for estimating ARMA(1, 1) model

Lamyaa Mohammed Ali Hameeda,*

aDepartment of Statistics, College of Administration and Economic, Baghdad University, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

This paper aims to study the parameters estimation methods of the stationary mixed model (autoregressive-moving average) of low order ARMA (1, 1) regarding to time domain analysis in univariate time series. Using the approximating methods: Back Forecasting (BF), Classical Conditional Maximum Likelihood (CC) and Proposed Conditional Maximum Likelihood (PC). A comparison is done among the three methods by Mean Squared Error (MSE) using several simulation experiments; the obtained results from the empirical analysis indicate that the accuracy of the proposed conditional method is better than the classical conditional method.

Keywords: ARMA model; Estimation; Conditional Maximum Likelihood; Back Forecasting; Sum Squared Error.

1. Introduction

The problem of parameter estimation is one of the required stages for modeling time series according to Box and Jenkins methodology\cite{4}, therefore after data representation, model selection and identification, the stage of parameters estimation is needed, so that this is the second stage of the model building stages. The accuracy of the next stages of the diagnostics and forecasting depends on the accuracy of the estimates obtained in the appropriate method. For estimating (ARMA) (Autoregressive Moving Average) model of N observation of Z process, there are three important steps are required for this stage \cite{5}:

Type Selection, order selection and parameter estimation. Choosing the appropriate method for estimating is not a simple matter and the ordinary methods may not be efficient and appropriate if the observations properties do not match, the assumptions that should be existing when using

*Corresponding author

Email address: lamiaa.mohammed@coadec.uobaghdad.edu.iq (Lamyaa Mohammed Ali Hameed)

Received: May 2021 Accepted: October 2021
these methods, and because there is a random error in ARMA model which is associated with the explanatory variable so the (Ordinary Least Square) (OLS) estimators are inconsistent, therefore the researchers have adopted other methods of estimation that are more efficient, and are often used in the analysis of time series. Estimation methods may require conditions such as stationarity or invertibility, and the model error are Normally distributed. Most ARMA estimation methods are approximate methods; one of these methods is Conditional Maximum Likelihood Method, in this method the initial values for the function representing the model are assumed as fixed values, therefore the (Ordinary Least Square) (OLS) estimators are predicted by Back Forecasting (BF) method, while the estimate in Exact Likelihood Method by attempt to calculate the exact likelihood function, or by using the fixed distribution in formation the likelihood function, in order to obtain high level estimators of efficiency. ARMA (1,1) model was studied theoretically and empirically using Simulation Technique with respect to time domain analysis of univariate time series and using different methods of estimation: Classical Conditional maximum likelihood (CC), Unconditional (Back forecasting) Method (BF) and proposed Conditional Method (PC). The methods were compared by simulation using Mean Squared Error (MSE) criterion to achieve the best estimation method. One of the basic assumptions adopted in the simulation is that the random errors (a_t) of the model are distributed normally identically and independently with zero mean and constant variance σ^2_a, assuming the coefficient of autoregressive ϕ_1 and moving average θ_1 both of them do not depend on the time, and lays inside the stationarity rejoin for ϕ_1 and invertibility region for θ_1, hence this research is concerned with an important stage of building model which is estimation stage, in order to studying conditional and unconditional methods for ARMA(1,1) and propose a conditional method for model estimation and then a comparison of estimation methods is made using simulation. The first to use the method of estimating time series parameters was Durban[7] in 1960 using ordinary least squares (OLS) applied sequentially by repeating steps and compensating for preliminary estimates in the original equation. In 1970, Box and Jenkins [4] gave an appropriate method of calculating the quadratic form of ARMA process(p,q), and they obtained appropriate expressions of future values as a conditional to previous values. In 1974, Newbold[19] derived the function of the exact maximum likelihood of ARMA processes (p,q) by generalizing the Box-Jenkins method[4] in the derivation of the exact maximum likelihood function for MA processes. In 1977, Ali[1] developed appropriate methods for calculating the exact likelihood function of the univariate variable and stationarity ARMA models. In 1979, Ansley[3] used cholesky decomposition to find the exact likelihood function of for ARMA processes, and in 1980 Hannan[2] used successive estimates based on ARMA models for stationary time series and in 1984 Melard[17] wrote a quick algorithm designed to calculate the likelihood function for stationary ARMA (p,q) models, in 2000, Karanasos[11] introduced a new method of calculating the theoretical of autocovariance function of ARMA model. In 2003, Davis and et al. [5] presented a research included an estimate of the MLE for observations derived from a time series model of calculations whose conditional distribution was based on past observations which follow Poisson Distribution. In (2008)[16] Mclead and Zhang gave a new likelihood based AR approximation for ARMA model and develop a new fast Algorithm easily implemented in high level quantitative programming environments, in 2009, Muler[18], et al. introduced a new class of robust estimation for ARMA models , they are M – estimates , these are closely related to those based on robust filter. In 2015 Lei[13], developed a robust Kalman filtering for ARMA modeling method. In 2016 Lei, et al. [14], used Whittle likelihood estimation with time series contain a serial correlation in the residuals. In (2017) Krone, et al. [12], compared five estimation methods: the r_1, C-statistic, ordinary least squares, maximum likelihood estimation and Bayesian MCMC estimation, they compared these estimators with regard to bias, variability and rejection rate. Finally, in (2019) Horner[10], et al. used expectation maximization to estimate parameter of
autoregressive exogenous and autoregressive modes subject to missing data. This paper is organized as follows: the ARMA model is introduced in section 2. The estimation methods, GLS, BF and the proposed method are in section 3. The efficient of these estimators using simulation are compared in Section 4. The conclusions are given in section 5.

2. Mixed ARMA models

The ARMA \((p, q)\) model is given by \[22\]:

\[Z_t = \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + \cdots + \phi_p Z_{t-p} + a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \cdots - \theta_q a_{t-q} \tag{2.1} \]

Where, \(Z_t = \hat{Z}_t - \mu \), \(a_t \sim IND(0, \sigma_a^2) \)

The First Order Mixed ARMA (1, 1) Model

In equation \[2.1\] when \(p=1, \) and \(q=1, \) then the form of the model becomes

\[Z_t = \phi_1 Z_{t-1} + a_t - \theta_1 a_{t-1} \tag{2.2} \]

The model can be written in form of Back Shift Operator as follows:

\[(1 - \phi_1 B)Z_t = (1 - \theta_1 B)a_t \tag{2.3} \]

Rewriting the model in form of autoregressive as follows

\[Z_t = \sum_{j=1}^{\infty} \theta_1^{j-1}(\phi_1 - \theta_1)Z_{t-j} + a_t , \quad j \geq 1 \tag{2.4} \]

Where,

\[a_t = Z_t - \sum_{j=1}^{\infty} \pi_j Z_{t-j} \tag{2.5} \]

So that

\[\pi_j = \theta^{j-1}(\phi_1 - \theta_1) , \quad j \geq 1 \tag{2.6} \]

Rewriting the model in form of moving average as follows:

\[Z_t = a_t + (\phi_1 - \theta_1) \sum_{j=1}^{\infty} \phi_1^{j-1} a_{t-j} \tag{2.7} \]

Where

\[Z_t = \sum_{j=0}^{\infty} \psi_j a_{t-j} \tag{2.8} \]

\[\psi_0 = 1 \]
\[\psi_j = (\phi_1 - \theta_1)\phi_1^{j-1} , \quad j \geq 1 \tag{2.9} \]
3. Estimation Methods

Most estimation methods depend on the maximum likelihood formulas, most of these formulas are approximated to the conditional or unconditional least square estimation with moderate sample size, and there are two types of maximum likelihood methods estimation: the exact and the approximate methods, in exact method the likelihood function have derived, whereas in approximate methods there are the conditional and unconditional methods, in conditional methods, the initial values of errors series \(a_t \) and the observation series \(Z_t \) as fixed values, and replaced it by unconditional expectations for \(a_t \) and \(Z_t \). These expectations are equal to zero\[4, 22\], In the unconditional method, the initial values of errors series \(a_t \) and the observations series \(Z_t \) are obtained by Back Forecasting.

Conditional Maximum Likelihood for ARMA (p,q) Process\[22\]

For the any stationary ARMA (p,q) model in (2.1)

\[
Z_t = \phi_1 Z_{t-1} + \ldots + \phi_p Z_{t-p} + a_t - \theta_1 a_{t-1} - \ldots - \theta_q a_{t-q}
\]

Where \(Z_t = \hat{Z}_t - \mu \) and \(\{a_t\} \) are i.i.d. N (0, \(\sigma_a^2 \)),
The joint probability density of \(a = (a_1, a_2, a_3, \ldots, a_n) \)' is:

\[
p(a|\phi, \mu, \theta, \sigma_a^2) = \left(\frac{1}{2\pi\sigma_a^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_a^2} \sum_{t=1}^{n} a_t^2\right] \tag{3.1}
\]

Rewriting (2.1) as

\[
a_t = \theta_1 a_{t-1} + \ldots + \theta_q a_{t-q} + Z_t - \phi_1 Z_{t-1} - \ldots - \phi_p Z_{t-p} \tag{3.2}
\]

We can write down the likelihood function of the parameters \((\phi, \mu, \theta, \sigma_a^2) \) as follows:

Let \(Z = (Z_1, Z_2, ..., Z_n)' \)

And assume the initial conditions

\[
Z_0 = (Z_{1-p}, ..., Z_{-1}, Z_0)'
\]

and

\[
a_0 = (a_{1-q}, ..., a_{-1}, a_0)'
\]

The conditional log likelihood function is:

\[
LnL_s(\phi, \mu, \theta, \sigma_a^2) = -\frac{n}{2} \ln 2\pi\sigma_a^2 - \frac{S_s(\phi, \mu, \theta)}{2\sigma_a^2} \tag{3.3}
\]

\[
S_s(\phi, \mu, \theta) = \sum_{t=1}^{n} a_t^2(\phi, \mu, \theta|Z_s, a_s, Z) \tag{3.4}
\]

The quantities: \(\hat{\phi}, \hat{\mu}, \hat{\theta} \) which minimize (3.3) are called the conditional maximum likelihood estimators. There are some alternatives for specifying the initial conditions \(Z_0 \) and \(a_0 \) based on the assumptions that \(\{Z_t\} \) is stationary and \(\{a_t\} \) is a series of i.i.d. N(0, \(a_t \)) random variables, by replacing the unknown \(Z_t \) with the sample mean \(\bar{Z} \) and the unknown \(a_t \) with its expected value of 0. For the model in (2.1) assume:

\[
E(a_t) = \mu = 0
\]

\[
a_p = a_{p-1} = \ldots = a_{p+1-q} = 0
\]
A proposed conditional method for estimating ARMA(1, 1) model

And Calculate \(a_t \) for \(t \geq (p+1) \) using (2.1). The conditional sum of squares function in (3.1) thus becomes

\[
S_*(\phi, \mu, \theta) = \sum_{t=p+1}^{n} a_t^2(\phi, \mu, \theta|Z) \quad (3.5)
\]

For ARMA (1, 1) model the conditional sum of square function becomes

\[
S_*(\phi_1, \mu, \theta_1) = \sum_{t=2}^{n} a_t^2(\phi_1, \mu, \theta_1|Z) \quad (3.6)
\]

The proposed Conditional Method (PC)

For the general stationary ARMA (p,q) model in (2.1) which is

\[
Z_t = \phi_1 Z_{t-1} + \ldots + \phi_p Z_{t-p} + a_t - \theta_1 a_{t-1} - \ldots - \theta_q a_{t-q}
\]

for specifying the initial conditions \(Z_* \) and \(a_* \) based on the same previous assumptions that \(\{Z_t\} \) is stationary and \(\{a_t\} \) is a white noise process of i.i.d. \(N(0, \sigma) \) random variables, by replace the unknown \(Z_t \) with the Harmonic mean \(H_z \) and the unknown \(a_t \) with its Harmonic mean, and assume that:

\[
a_p = a_{p-1} = \ldots = a_{p+1-q} \neq 0
\]

And calculate \(a_t \) for all \(t \geq (p+1) \) when \(p>q \), and calculate \(a_t \) for all \(t \geq (q+1) \) when \(q>p \), and assume \(H \) is the harmonic mean is that:

\[
H_z = \frac{n}{\sum_{t=1}^{n} \frac{1}{Z_t}} \quad (3.6)
\]

\[
H_a = \frac{n}{\sum_{t=1}^{n} \frac{1}{a_t}} \quad (3.7)
\]

Where, \(H_z \) is the Harmonic mean for the observations of the series \(Z_t \),

And \(H_a \) is the Harmonic mean for the observations of the series \(a_t \).

And after adding the unknown value to the series \(\{a_t\} \) subtract the mean and Divided on the standard deviation to insure keep the same distribution. And when is that \(p>q \) so the function of conditional sum square using (2.1) being

\[
S_*(\phi, \mu, \theta) = \sum_{t=p+1}^{n} a_t^2(\phi, \mu, \theta|Z_H) \quad (3.8)
\]

Where:

\(Z_H \): represented the new series of observations after substitute the previous values of \(Z_* \) with harmonic mean of the series observation \(Z_t \).

when \(q>p \) the function of sum square error will be:

\[
S_*(\phi, \mu, \theta) = \sum_{t=q+1}^{n} a_t^2(\phi, \mu, \theta|Z_H) \quad (3.9)
\]

It is one of the measures of central tendency, which differs from the arithmetic mean, median and mode whose values are equal in the Normal distribution. Zero values are treated as missing values.
And when $p=q$ we can use any one of the two equations, the degree of freedom of using equation (3.8) is:

$$d.f. = (n - p) - (p + q + 1) = n - (2p + q + 1)$$

the degree of freedom of using equation (3.9) is:

$$d.f. = (n - q) - (p + q + 1) = n - (2q + p + 1)$$

For ARMA (1, 1) model the sum square error function is:

$$S_s(\phi_1, \mu, \theta_1) = \sum_{t=2}^{n} a_t(\phi_1, \mu, \theta_1 | Z_H)$$ (3.10)

$$\hat{\sigma}^2_a = \frac{S_s(\hat{\phi}, \hat{\mu}, \hat{\theta})}{n - 4}$$

Unconditional Backcasting Method[22]

For the back cast the unknown values

$$Z_* = (Z_{1-p}, ..., Z_{-1}, Z_0)'$$,

$$a_* = (a_{1-q}, ..., a_{-1}, a_0)'$$

Required the sum of squares, for any ARMA model we can written also in the backward form:

$$(1 - \phi_1 B - ... - \phi_p B^p)Z_t = (1 - \theta_1 B - ... - \theta_q B^q)a_t$$ (3.11)

Or in the forward form:

$$(1 - \phi_1 F - ... - \phi_p F^p)Z_t = (1 - \theta_1 F - ... - \theta_q F^q)e_t$$ (3.12)

Where $F^j Z_t = Z_{t+j}$

Box and Jenkins[4] introduced the following unconditional function:

$$LnL(\phi, \mu, \theta, \sigma_a^2) = -\frac{n}{2} \ln 2\pi \sigma_a^2 - \frac{S(\phi, \mu, \theta)}{2\sigma_a^2}$$ (3.13)

So that $S(\phi, \mu, \theta)$ is the function which means unconditional sum of square, therefore:

$$S(\phi, \mu, \theta) = \sum_{t=-\infty}^{n} [E(a_t|\phi, \mu, \theta, Z)]^2$$ (3.14)

the equation (3.14) is approximated to:

$$S(\phi, \mu, \theta) = \sum_{t=-H}^{n} [E(a_t|\phi, \mu, \theta, Z)]^2$$ (3.15)

Where H is large integer so that $E(Z_t|\phi, \mu, \theta, Z) \approx H$

Therefore $E(a_t|\phi, \mu, \theta, Z)$ is ignoring when $t \leq - (H+1)$.
4. The simulation

Simulation experiments include writing a number of programs in Visual Basic language; using the following steps:

1. Generating random numbers that follow the continuous uniform distribution within the period (0,1) using cumulative distribution function (c.d.f.) that describes the model under study, when \(u_1 \) and \(u_2 \) are independent random numbers from a regular distribution \([20]\), the two variables:
 \[
 Z_1 = (-2 \log u_1)^{1/2} \cos(2\pi u_2) \\
 Z_2 = (-2 \log u_1)^{1/2} \sin(2\pi u_2)
 \]
 They will be independent with a standard Normal distribution with mean zero and constant variance equal 1. so one of these variables is used as a random errors to generate the model observation.

2. Compensate the values \(a_t \) which was generated by the form of ARMA (1, 1), to obtain the values of \(\{Z_t\} \) series,

3. Suppose \(Z_0 = a_0 = 0 \).

4. Choice three sample size, \(n = (25, 50, 150) \).

5. Using the three methods to obtain the parameters of ARMA (1, 1) model.

Using Mean Squared Error (MSE)\([2]\) for comparison among the methods

\[
MSE(\hat{\phi}) = \frac{1}{R} \sum_{i=1}^{R} (\hat{\phi}_i - \phi)^2
\]

Results Discussion of Simulation

The default values for ARMA (1, 1) coefficients are: \((\phi_1, \theta_1) = \{(0.5, 0.6), (-0.5, 0.5), (0.6, 0.5), (0.2, 0.8), (-0.2, -0.8), (0.9, 0.1)\} \)

Sum Squared Error (SSE)

The lowest value of the sum squared error within the boundaries of the stationarity rejoin for \(\phi_1 \) and the invertibility region for \(\theta_1 \), we find it when the value of the parameters \((\phi_1 \ and \ \theta_1) \) is equal to \(\mp 0.9 \). The highest value of the sum squared error we find it nearby the value in which \(\phi_1 \) is equal to \(\theta_1 \), so when \(\phi_1 \) is equal to \(\theta_1 \) The model becomes a White Noise, therefore the sum of squared error equal to the sample size \((n) \). Thus, the values above and below sample size appear the highest values. The following table shows some values of \(\phi_1 \) and \(\theta_1 \) at a sample size of 300.
Table 1: sum squares error of ARMA (1, 1) model for some values of (ϕ_1, θ_1) n=300

<table>
<thead>
<tr>
<th>Method (ϕ_1, θ_1)</th>
<th>(CC)</th>
<th>(PC)</th>
<th>Method (ϕ_1, θ_1)</th>
<th>(CC)</th>
<th>(PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1, -0.9)</td>
<td>142.47110</td>
<td>142.41252</td>
<td>(-0.9, -0.1)</td>
<td>69.04746</td>
<td>69.12391</td>
</tr>
<tr>
<td>(0.1, 0.5)</td>
<td>265.89560</td>
<td>265.89524</td>
<td>(-0.9, 0.5)</td>
<td>26.66932</td>
<td>25.88614</td>
</tr>
<tr>
<td>(0.1, 0.9)</td>
<td>189.57190</td>
<td>189.55236</td>
<td>(-0.9, 0.9)</td>
<td>16.73522</td>
<td>16.73692</td>
</tr>
<tr>
<td>(0.2, -0.9)</td>
<td>125.68150</td>
<td>125.59239</td>
<td>(-0.8, -0.9)</td>
<td>293.2932</td>
<td>293.2927</td>
</tr>
<tr>
<td>(0.2, 0.5)</td>
<td>281.05480</td>
<td>281.05453</td>
<td>(-0.8, 0.5)</td>
<td>49.88706</td>
<td>49.88752</td>
</tr>
<tr>
<td>(0.2, 0.9)</td>
<td>206.27340</td>
<td>205.22462</td>
<td>(-0.8, 0.9)</td>
<td>31.44528</td>
<td>31.44526</td>
</tr>
<tr>
<td>(0.3, -0.9)</td>
<td>109.09150</td>
<td>108.80731</td>
<td>(-0.7, -0.9)</td>
<td>279.7727</td>
<td>279.7729</td>
</tr>
<tr>
<td>(0.3, 0.5)</td>
<td>292.60930</td>
<td>292.60915</td>
<td>(-0.7, 0.5)</td>
<td>75.82188</td>
<td>75.82193</td>
</tr>
<tr>
<td>(0.3, 0.9)</td>
<td>222.64960</td>
<td>222.56546</td>
<td>(-0.7, 0.9)</td>
<td>48.13568</td>
<td>48.13580</td>
</tr>
<tr>
<td>(0.4, -0.9)</td>
<td>92.73707</td>
<td>92.73224</td>
<td>(-0.6, -0.9)</td>
<td>263.5587</td>
<td>262.6686</td>
</tr>
<tr>
<td>(0.4, 0.5)</td>
<td>299.45770</td>
<td>299.45769</td>
<td>(-0.6, 0.5)</td>
<td>102.9565</td>
<td>102.8342</td>
</tr>
<tr>
<td>(0.4, 0.9)</td>
<td>238.61930</td>
<td>237.35246</td>
<td>(-0.6, 0.9)</td>
<td>64.99726</td>
<td>64.99726</td>
</tr>
<tr>
<td>(0.5, -0.9)</td>
<td>76.67810</td>
<td>76.08848</td>
<td>(-0.5, -0.9)</td>
<td>246.3518</td>
<td>245.3884</td>
</tr>
<tr>
<td>(0.5, 0.1)</td>
<td>236.34590</td>
<td>236.23237</td>
<td>(-0.5, 0.5)</td>
<td>130.0255</td>
<td>129.8431</td>
</tr>
<tr>
<td>(0.5, 0.9)</td>
<td>254.04050</td>
<td>253.89418</td>
<td>(-0.5, 0.9)</td>
<td>84.03494</td>
<td>83.90942</td>
</tr>
<tr>
<td>(0.6, -0.9)</td>
<td>60.99521</td>
<td>59.88416</td>
<td>(-0.4, -0.9)</td>
<td>228.8512</td>
<td>228.8593</td>
</tr>
<tr>
<td>(0.6, 0.5)</td>
<td>291.87580</td>
<td>290.61642</td>
<td>(-0.4, 0.5)</td>
<td>156.3377</td>
<td>155.8421</td>
</tr>
<tr>
<td>(0.6, 0.9)</td>
<td>268.68410</td>
<td>268.68545</td>
<td>(-0.4, 0.9)</td>
<td>102.1447</td>
<td>102.3293</td>
</tr>
<tr>
<td>(0.7, -0.9)</td>
<td>45.75372</td>
<td>45.75423</td>
<td>(-0.3, -0.9)</td>
<td>211.3273</td>
<td>211.2246</td>
</tr>
<tr>
<td>(0.7, 0.5)</td>
<td>271.42190</td>
<td>271.42198</td>
<td>(-0.3, 0.5)</td>
<td>181.5353</td>
<td>181.4621</td>
</tr>
<tr>
<td>(0.7, 0.9)</td>
<td>282.19310</td>
<td>282.09297</td>
<td>(-0.3, 0.9)</td>
<td>120.0970</td>
<td>120.1392</td>
</tr>
<tr>
<td>(0.8, -0.9)</td>
<td>30.89482</td>
<td>30.89446</td>
<td>(-0.2, -0.9)</td>
<td>193.8860</td>
<td>193.7213</td>
</tr>
<tr>
<td>(0.8, 0.5)</td>
<td>232.05710</td>
<td>232.05744</td>
<td>(-0.2, 0.5)</td>
<td>205.3695</td>
<td>205.3246</td>
</tr>
<tr>
<td>(0.8, 0.9)</td>
<td>293.84040</td>
<td>293.74171</td>
<td>(-0.2, 0.9)</td>
<td>137.8349</td>
<td>136.6411</td>
</tr>
<tr>
<td>(0.9, -0.9)</td>
<td>16.20783</td>
<td>16.10663</td>
<td>(-0.1, -0.9)</td>
<td>176.5853</td>
<td>176.5699</td>
</tr>
<tr>
<td>(0.9, 0.5)</td>
<td>159.51560</td>
<td>159.51659</td>
<td>(-0.1, 0.5)</td>
<td>227.5897</td>
<td>227.5898</td>
</tr>
</tbody>
</table>

Comparison among the methods using MSE
Table 2: Mean Square Error (MSE) of the estimated ϕ_1 and θ_1 for ARMA(1,1) model of different values of ϕ_1 and θ_1 in all samples for the experiment repeated 1000 times.

<table>
<thead>
<tr>
<th>N</th>
<th>True value</th>
<th>ϕ_1</th>
<th>θ_1</th>
<th>ϕ_1</th>
<th>θ_1</th>
<th>ϕ_1</th>
<th>θ_1</th>
<th>ϕ_1</th>
<th>θ_1</th>
<th>ϕ_1</th>
<th>θ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>0.5</td>
<td>0.6</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.010570</td>
<td>0.005540</td>
<td>0.003295</td>
<td>0.032616</td>
<td>0.880970</td>
<td>0.700402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>0.005055</td>
<td>0.008501</td>
<td>0.002190</td>
<td>0.044352</td>
<td>0.208940</td>
<td>0.170817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>0.000160</td>
<td>0.154610</td>
<td>0.018961</td>
<td>0.027523</td>
<td>0.040361</td>
<td>0.019937</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.016589</td>
<td>0.001391</td>
<td>0.018279</td>
<td>0.002294</td>
<td>0.194128</td>
<td>0.003540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>0.008354</td>
<td>0.016693</td>
<td>0.012634</td>
<td>0.014787</td>
<td>0.127235</td>
<td>0.000906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>0.023994</td>
<td>0.038967</td>
<td>0.062800</td>
<td>0.025825</td>
<td>0.000005</td>
<td>0.003528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.000142</td>
<td>0.010221</td>
<td>0.000016</td>
<td>0.017083</td>
<td>0.014908</td>
<td>0.007140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>0.000031</td>
<td>0.021550</td>
<td>0.000024</td>
<td>0.027225</td>
<td>0.012634</td>
<td>0.006131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>0.001884</td>
<td>0.039085</td>
<td>0.018961</td>
<td>0.005868</td>
<td>0.000001</td>
<td>0.001706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td>ϕ_1</td>
<td>θ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.002043</td>
<td>0.009139</td>
<td>0.001747</td>
<td>0.010141</td>
<td>0.001498</td>
<td>0.004058</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>0.001673</td>
<td>0.001506</td>
<td>0.001421</td>
<td>0.016384</td>
<td>0.001444</td>
<td>0.004264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>0.000876</td>
<td>0.008668</td>
<td>0.001731</td>
<td>0.000256</td>
<td>0.003058</td>
<td>0.004409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Conclusions

1. Through simulation experiments we find that the BF method is the better at samples 150 and 50, whereas, the proposed conditional method (PC) is in the second order at the two sample sizes 150 and 50, so, (PC) method is the best of all the methods at sample size [3.15], while, the classical conditional method (CC) was in the last order at all sample sizes.

2. The MSE values of the two methods CC and PC were concentrated at moving average parameter θ_1 for the two sample sizes 150 and 50, while, the value of MSE was concentrated at the autoregressive parameter ϕ_1 at sample size 25. As for the back forecasting method, the value of MSE was concentrated in moving average parameter θ_1 for all sample sizes.

3. The lowest value of the sum squared error shows when the value of the parameters $(\phi_1, \theta_1) = (\pm 0.9, \pm 0.9)$. The highest value of the sum squared error we find it nearby the value in which ϕ_1 is equal to θ_1.

References

[6] S. De Waele & Broersen Modeling Radar Data with Time Series Models, Dept. of Applied Physics, Delft University of Technology, 2001, E-mail: s.dwaele@tn.tudelft.nl.