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Abstract

The interaction of dark energy in the LRS Bianchi type-I line element is explored on the back-
ground of f(R, T ) gravity, where R and T denotes the Ricci scalar together with the trace of en-
ergy momentum tensor of matter respectively. Here modified field equations are calculated using
f(R, T ) = f1(R) + f2(T ) together with inhomogeneous equation of state (EoS), p = ωρ − Λ(t),
where ω is constant. The solutions of modified Einstein field equations (EFE) obtained are solved by
taking a periodic time varying deceleration parameter (DP). Our model shows periodic nature with
Big-Bang prevailing at time t = 0. An investigation is done on the energy conditions and found that
the conditions of null energy and strong energy are found to be violated. We analyse the geometrical
and physical behaviours of these models.
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1. Introduction

In recent years, many observational evidences have come up for the cosmological acceleration of
the Universe’s expansion which has brought a revolution in understanding the evolution history of
Universe. These important findings are supported by the observational probes like Cosmic Microwave
Background Radiation (CMBR), Supernova Ia and Baryon Acoustic Oscillation (BAO) [33, 20, 34,
46, 32]. These observations indicate the existence of two cosmic epoch of accelerating expansion of
Universe i.e. the cosmological phase before radiation and the present cosmic phase after the matter
dominated era. As we know, it is assert that some unknown energy dubbed as the dark energy [16]
with unusual anti-gravitational force is inferred to be accountable for the late cosmological expansion
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of Universe. This dark energy (DE) which have the unusual characteristics like large negative pressure
and negative entropy, can be discovered only through its gravitational effects. Several models like
the cosmological constant (Λ) model, quintessence, phantom model, chaplygin gas, tachyon model
and many more [30, 31, 9, 29, 19] have been proposed to study ambiguous nature of DE. The late
time behaviour of Universe is a riddle to the cosmologists up to the present time. General relativity
(GTR) still fails to clarify the driving force of the present Universe’s accelerating expansion. Several
alternative theories of gravitation are introduced by applying the Einstein-Hilbert action as a modified
theories to GTR. In particular, some of the popular modified gravities are f(R) gravity [15, 10, 45],
f(τ) gravity [8, 27] and f(G) gravity [6, 35] where τ, R and G denote respectively the torsion scalar,
curvature scalar and the Gauss-Bonnet scalar. Harko in 2011, established an alternative construction
of f(R) theory known as f(R, T ) gravity, where R is the Ricci scalar and T is the trace of the energy
momentum tensor (EMT) of matter [21]. The inclusion of stiff fluid with time dependent vacuum
energy density in Bianchi type II Universe is studied and discussed the detailed solutions of the
model [4]. The behaviours of geometrical and physical solutions in the anisotropic model in the
background of f(R, T ) theory is investigated [1]. Bianchi type-V model is investigated in f(R, T )
gravity by taking the form f(R, T ) = f1(R) + f2(T ) [2]. The constant (Λ) is expressed in respect of
trace of the EMT of matter T . Modified f(R, T ) theory in Bianchi type-I model is investigated by
adopting a variable Λ(T ) with some fascinating results [39]. The geometrical and physical solutions
of anisotropic models in f(R, T ) theory was investigated by adopting varying DP [38].

In the evolution of the Universe, there are two types of singularities i.e. Big Bang singularity and
finite time singularity which take place at the final stage of the DE dominated Universe or a future
Crunch. It is understandable that models with DE also undergo the finite time singularity problem.
Various cosmological models have been developed to escape from these singularities, like the cyclic
Universe [47, 48, 26], the ekpyrotic model [24, 18] and the bouncing Cosmological model [12]. The
main motivation for the introduction of inhomogeneous equation of state is to develop the alternative
theory by modifying general relativity. In the proposed EoS, the inhomogeneous term is used to
examine the behaviours of distinct forms of singularities transition to others, future singularity,
phantom epoch, and the phantom barrier crossing. The inhomogeneous term’s dependency on the
Hubble parameter is useful for discussing the emerging oscillating Universe. The inhomogeneous
equation of state is introduced through viscosity terms and modified gravity theory [28]. They
discovered that the presence of an inhomogeneous term makes it easier for many models to cross
the phantom barrier. The Weierstrass and Jacobian elliptic functions were used to examine the EoS
and cyclic Friedmann-Robertson-Walker (FRW) Universes [7]. The Universe with time dependent
inhomogeneous EoS may occur in the accelerated phase of quintessence or phantom type [14]. They
assume the time dependent inhomogeneous EoS as p = ωρ(t) + Λ(t) where ω and Λ are time-
dependent parameters. The same inhomogeneous EoS was used to observe the transition of the
Universe from a phantom to a non-phantom era, as well as the occurrence of singularities [13]. The
exact solutions of viscous FRW model interacting with variable inhomogeneous EoS by assuming
viscous form and quadratic form of Hubble parameter is discussed [23]. The periodic cosmologies
had been investigated in many ways by many physicists. Investigation of periodic as well as an
inhomogeneous EoS for dark energy fluid leads to the development of an oscillating Universe. Hubble
parameter with periodic behaviour can be obtained for both the early Universe’s inflation as well
as the late phase cosmic acceleration [36]. According to the findings, oscillating DE models can
alleviate the coincidence problem by introducing periodic acceleration that varies naturally and is
consistent with observations [17]. They can be considered as good candidates for unifying early
Universe’s inflation together with accelerated expansion at late epoch. The cosmological solutions
of f(R, T ) theory in respect of periodic varying deceleration parameter was found and physical
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kinematic properties of the model are discussed [40]. Again, LRS Bianchi-I transit Universe is studied
by considering periodic time dependent DP in the f(R, T ) theory [11]. The cosmological parameters
of anisotropic DE model in the construction of f(R, T ) gravity constrained with latest observational
data of Plank are investigated and calculated the values of Ωm and Ωde [43]. The phase transition of
an anisotropic cosmological model in f(R, T ) gravity from deceleration in early Universe to late time
acceleration was examined using a specific type of a time changing deceleration parameter which
expressed in terms of Hubble parameter [49]. Many authors [5, 44] study the DP in order to learn
more about the Universe’s accelerated expansion. FRW Universe is the generalisation of the flat
Universe. However, Universe at early epoch is assumed to be not uniform, as evidenced by CMB
measurements. Also, according to WMAP data analysis, the Universe is anisotropic and a slightly
anisotropic shape. Thus early Universe is assumed to be anisotropic because of this background
anisotropy. Although there may be expansion or contraction based on direction, the simplest model
of the anisotropic flat Universe is the Bianchi type-I model.

With reference to an inhomogeneous EoS, p = ωρ−Λ(t) and time dependent DP which is periodic,
we are focussed to investigate a LRS Bianchi type-I in f(R, T ) theory where f(R, T ) = λR + λT
with Ricci scalar (R) and trace of EMT (T ) as well as constant (λ) The work is presented as follows:
The gravitational field equations of f(R, T ) theory is formulated in Sec.2. In Section 3, we derived
the field equations and looked at the solutions. In Section 4, we look at DE models with a periodic
DP. In Section 5, we talk about our model’s energy conditions and several observational factors. In
Section 6, we give the paper’s final remark.

2. f(R, T ) gravity and its general formulation

With reference to the Hilbert-Einstein action, modified EFEs of f(R, T ) gravity are deducted.
For f(R, T ) theory, Harko et al. [21] apply the following action

S =
1

16π

∫
f(R, T )

√
−gd4x+

∫
Lm

√
−gd4x (2.1)

Here R, T, Lm and g denotes the Ricci scalar, the trace of the EMT of matter, the matter
Lagrangian density and the metric determinant respectively. The stress-energy tensor of matter is
given by

Tih = − 2√
−g

δ(
√
−gLm)

δgij
(2.2)

Taking the variation of action S w. r. t. metric tensor gij, the gravitational field equation is
obtained as

fR(R, T )Rij −
1

2
f(R, T )gij + (gij□−∇i∇j)fR(R, T ) = 8πTij − fT (R, T )Tij − fR(R, T )Θij (2.3)

with the Ricci tensor (Rij), fR(R, T ) = ∂f(R,T )
∂R

,□ denotes D Alembert’s operator and Θij is
defined as

Θij = −2Tij + gijLm − 2gαβ
∂2Lm

∂gij∂glm
(2.4)

The energy momentum tensor (Tij) is expressed as
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Tij = (ρ,−p,−p,−p) (2.5)

Here, p together with ρ denoted the pressure and energy density of the fluid respectively. Here
we take the matter Lagrangian Lm = −p. Thus equation (2.4) may be rewritten as

Θij = −2Tij − pgij (2.6)

Several models based on different forms of f(R, T ) may be studied with respect to the nature of
the matter source. Harko in 2011 [21] established the functional from of f(R, T ):

f(R, T ) =


R + 2f(T )
f1(R) + f2(T )
f1(R) + f2(R)f3(T )

Here, the following special form is considered and is given by

f(R, T ) = f1(R) + f2(T ) (2.7)

with f1(R) = λR and f2(T ) = λT , where λ is arbitrary constant [2, 43]. We employ the
aforementioned reconstruction method to represent the rapid expansion of the late time Universe
by adding the corresponding function based on the trace of the stress-energy tensor.

3. Field equations for the functional form f(R, T ) = f1(R) + f2(T )

The line element of LRS Bianchi type-I is considered in this model as

ds2 = dt2 − A2(t)(dx2 + dy2)−B2(t)dz2 (3.1)

Expressions of average scale factor (a), the spatial volume (V ) as well as Hubble parameter (H)
are obtained as

a = (A2B)
1
3 , V = a3 = A2B, H =

1

3
(2Hx +Hz) (3.2)

Here, Hx = Hy =
Ȧ
A
and Hz =

Ḃ
B
. Now equation (2.4) can be rewritten as

Rij −
1

2
Rgij =

(
p+

1

2
T

)
gij +

(
8π + λ

λ

)
Tij (3.3)

From the equation (3.3) for the metric (3.1) with the use of equations (2.5) and (2.7), the conse-
quent equations are obtained as (

Ȧ

A

)2

+ 2
Ȧ

A

Ḃ

B
=

(
p+

1

2
T

)
+ αρ (3.4)

Ä

A
+

B̈

B
+

Ȧ

A

Ḃ

B
=

(
p+

1

2
T

)
+ αp (3.5)

2
Ä

A
+

(
Ȧ

A

)2

=

(
p+

1

2
T

)
− αp (3.6)
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Here an overhead dot denotes first derivative together with the overhead dots (··) denote the
second derivative w. r. t. ′t′ and α = 8π+λ

λ
. Many authors have studied the inhomogeneous equation

of state [28, 14, 13, 23] and are proved to be quite useful in describing various cosmological phenomena.
Here the inhomogeneous EoS is supposed in the following form

p = ωρ− Λ(t) (3.7)

where −1 ≤ ω ≤ 1, is constant and Λ denotes the time-dependent cosmological parameter. Also,
the trace of the EMT(T ) in this model is obtained as T = ρ− 3p. Then the above field equations in
terms of Hubble directional parameters become

H2
x + 2HxHz =

1

2
Λ +

1

2
ρ(1− ω + 2α) (3.8)

Ḣx + Ḣz +H2
x +H2

z +HxHz =

(
1

2
+ α

)
Λ +

1

2
ρ(1− ω − 2ωα) (3.9)

2Ḣx + 3H2
x =

(
1

2
+ α

)
Λ +

1

2
ρ(1− ω − 2ωα) (3.10)

On solving equations (3.4), (3.5) and (3.6), we get

A = c
1
3
2 a exp

(
c1
3

∫
dt

a3

)
(3.11)

B = c
−2
3

2 a exp

(
−2c1
3

∫
dt

a3

)
(3.12)

where c1 and c2 are integration constants. The expressions of cosmological term, energy density
and pressure are calculated using eqns. (3.8),(3.9),(3.10) as

Λ =
1

α(α + 1)
[(ωα− ω + 3α + 1)H2

x + (1− ω + 2α)Ḣx + (2ωα + ω − 1)HxHz] (3.13)

ρ =
1

α(α + 1)
[(α− 1)H2

x − Ḣx + (2α + 1)HxHz] (3.14)

p = − 1

α(α + 1)
[(3α + 1)H2

x + (2ω + 2α− 1)Ḣx −HxHz] (3.15)

4. Dark energy model having periodic varying deceleration parameter

The value of deceleration parameter becomes positive at decelerated epoch and negative at ac-
celerated epoch. At redshift z ∼ 1, cosmic movement of the phase from decelerated universe to
accelerated phase of Universe is observed. This phenomenon of Universe clearly suggests the possi-
bility for variable periodic deceleration parameter. This character of periodic deceleration parameter
determines the scenario of signature flip. Because of this signature flipping behaviour of the Uni-
verse’s evolution, DP which is a function of time as well as periodic is considered as

q = m cos kt− 1 (4.1)
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Here both m > 0 and k > 0. k stands for periodic property of the periodic deceleration param-
eter. It can be treated as frequency parameter. Here, m increases the magnitude of the periodic
deceleration parameter. At initial epoch, DP (q = m − 1) is positive (for m > 1) and enter into a
maximum negative value of q = −m− 1. Following this maximum negative value, this raises again,
then returns to the early conditions. We can observe that a periodic evolutionary behaviour of the
deceleration parameter is repeated periodically. Thus we can develop the model that begins from a
decelerating epoch that evolves into an accelerating epoch of Universe. Integration of equation (4.1)
gives the relation as

H =
k

m sin kt+ k1
(4.2)

Here k1 denotes integration constant. We assume k1 = 0 as special case and Hubble parameter
becomes

H =
k

m sin kt
(4.3)

Here H shows the periodic character of expansion. The scale factor a is found by integrating
(4.3) as

a = a0 tan
1
m

(
kt

2

)
(4.4)

with the scale factor (a0) at present time and may be taken as unity. The scale factor appears to
rise over time, with no evident variation for different k values. Since it is very difficult to solve for A
and B from the field equations, we fixed m = 3 for simplicity. This result to

A = c
1
3
2 tan

1
3

(
kt

2

)
sin

2c1
3k

(
kt

2

)
(4.5)

B = c
−2
3

2 tan
1
3

(
kt

2

)
sin

−4c1
3k

(
kt

2

)
(4.6)

These show that the scale factor expands along x, y and z axes with different rates in the periodic
form. And the Hubble directional parameters are obtained as

Hx =
1

3

[
k csc(kt) + c1 cot

(
kt

2

)]
(4.7)

Hz =
1

3

[
k csc(kt)− 2c1 cot

(
kt

2

)]
(4.8)

Also the anisotropy parameter of our model is calculated as

∆ =
1

3

3∑
i=1

(
Hi −H

H

)2

=
8c21
k2

cos2
(
kt

2

)
(4.9)

We consider here the dark energy cosmological model (ω = −1). Taking ω = −1, above values of
Hx and Hz in equation (3.13), (3.14) and (3.15), the following parameters are calculated as follows:

Λ =
2

3α

[
c21 cot

2

(
kt

2

)
− k2 csc(kt) cot(kt)

]
(4.10)



Interacting anisotropic dark energy with time dependent inhomogeneous equation of state 2173

ρ =
1

3α(α + 1)

[
αk2 csc2(kt)− (α + 1)c21 cot

2

(
kt

2

)
+ k2 csc

(
kt

2

)
cot(kt)

]
(4.11)

p = − 1

3α(α + 1)

[
αk2 csc2(kt) + (α + 1)c21 cot

2

(
kt

2

)
− (1 + 2α)k2 csc

(
kt

2

)
cot(kt)

]
(4.12)

In this work, we plotted all the graphs by taking α = 1, c1 = 0.5 and k = 1.05, 1.10, 1.15. In
Figure 1, the evolutionary aspect of the DP (q) is plotted. It is clearly depicted the model has
periodic nature and oscillates in between 2 and -4. The geometrical behaviours of scale factor and
Hubble parameter are shown in Figure 2 and 3. Here the scale factor increases with the evolution
of time for varied value of k. On the contrary, the Hubble parameter demonstrates periodic nature
with time. As the scale factor as well as the Hubble parameter are determined by the tangent and
sine functions, both can be positive or negative at various epochs. It is observed that derived model
becomes anisotropic at early phase then enters into the isotropic phase at t = (2n+1)π

k
for all n ∈ I

in Figure 4. Thus we see the periodic nature that begins from anisotropy to isotropy. This nature is
repeated periodically.

Figure 1: Deceleration parameter (q) vs time (t) for k = 1.05, 1.10 and 1.15.

Figure 2: Scale factor a vs time (t) for k = 1.05, 1.10 and 1.15

The behaviour of Λ is shown in Figure 5. It is found that Λ gives positive value always and periodic
in nature which shows that Universe is expanding. It is clearly seen that it predicts singularities which
is periodic at time t = 2nπ

k
, n is non-negative integer. It begins with a low value Λmin at the beginning
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Figure 3: Hubble parameter (H) vs time (t) for k = 1.05, 1.10 and 1.15.

Figure 4: Anisotropic parameter (∆) vs time (t) for k = 1.05, 1.10 and 1.15 and c1 = 0.5

Figure 5: Cosmological constant (Λ) vs time (t) for k = 1.05, 1.10 and 1.15 and α = 1.

of the cycle and gradually grows with time. With the decrease of value of k, there occurs a decrement
in Λmin. Figure 6 shows the behaviour of density. The energy density’s positivity condition also holds,
which is consistent with observations. It is also seen to have periodic type of singularities at time
t = 2nπ

k
, n is non negative integer. It starts with a higher value at the beginning of a cycle, declines

to a minimum ρmin, and then grows with time. When the value of k decreases, the value of ρmin

decreases. Similarly Figure 7 shows the behaviour of pressure. It is also found to have a periodic
nature of singularities. During a specific period, the negative value of pressure declines at first, then
moves to almost positive before becoming more negative, confirming the presence of DE as well as
the Universe’s accelerating expansion.
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Figure 6: Energy density (ρ) vs time (t) for k = 1.05, 1.10 and 1.15, α = 1 and c1 = 0.5

Figure 7: Pressure (p) vs time (t) for k = 1.05, 1.10 and 1.15, c1 = 0.5 and α = 1.

Figure 8: Jerk parameter (j) vs time (t) for k = 1.05, 1.10 and 1.15

5. Some observational parameters and energy conditions

The Hubble parameter and the deceleration parameter are the fundamental cosmographic factors
that define how the cosmological model and the cosmological principle interact. Another important
parameter is the jerk parameter. The jerk parameter [37] is defined as

j =

...
a

aH3
10− 18 sin2

(
kt

2

)
+ 36 sin4

(
kt

2

)
(5.1)
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Figure 8 shows the periodic nature of jerk parameter having same maximum value for varied
k. The continuity equation of Fridemann models in general relativity for the energy conservation is
given by

ρ̇ = 3H(ρ+ p) = 0 (5.2)

which implicates d(ρV ) = −ρdV . Here V = a3 is the volume and ρV denotes the total energy of
the Universe. As Universe expands, increase of dark energy is proportional to the expanding volume.
When spacetime continues to exist, the total energy will remain constant. Now taking covariant
derivative of equation (2.3), we can obtain

∇iTij =
fT (R, T )

8π − fT (R, T )

[
(Tij +Θij)∇i ln fT (R, T ) +∇iΘij −

1

2
gij∇iT

]
(5.3)

It will be observed that if one considers fT (R, T ) = 0 i.e. λ = 0, then ∇iTij = 0. However,
for λ ̸= 0, the equation of energy conservation is violated. In recent years, many scholars have
looked into the consequences of modified gravity theories violating energy conservation equation
(i.e. ρ̇ = 3H(ρ + p) ̸= 0). The non-unitary alterations of quantum physics with spacetime in
phenomenological models are expected to lead to the non-conservation of EMT at the Planck scale.
This violation of conservation of EMT results in an efficient cosmological term which alters in terms
of the creation energy or annihilation energy of cosmological expansion and may become a constant
during matter density drops [22]. A non-conservation of energy momentum tensor is found in f(R, T )
gravity in the presence of the pressure less cosmic fluid, which may cause Universe’s accelerated
expansion [41]. Violation of energy conservation equation caused by the factor S is given by

S = ρ̇+ 3H(ρ+ p) (5.4)

In case, if S = 0 the model satisfies the energy-momentum conservation else the situation leads
to non-conservation. The deviation factor S might be negative or positive according to the energy
flows into or away from the matter field. The violation of EMT conservation equation with periodic
variable deceleration parameters is shown in Figure 9. The energy conditions are expressed as linear
combinations of the stress-energy tensor components which will be +ve or at the very least −ve. In
GTR, null (NEC), weak (WEC), strong (SEC) and dominant (DEC) are the leading energy conditions
which are expressed as

Figure 9: Non-conservation of Energy-momentum



Interacting anisotropic dark energy with time dependent inhomogeneous equation of state 2177

Figure 10: Violation of NEC (ρ+ p ≥ 0) vs. α and t.

Figure 11: Plot of ρ ≥ 0 vs. α and t.

Figure 12: Violation of SEC (ρ+ 3p ≥ 0) vs. α and t.

Figure 13: Plot of ρ− p ≥ 0 vs. α and t.

NEC ⇔ ρ+ p ≥ 0 (5.5)

WEC ⇔ NEC and ρ ≥ 0 (5.6)

SEC ⇔ ρ+ 3p ≥ 0 (5.7)
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DEC ⇔ ρ− p ≥ 0 (5.8)

Many authors [3, 42] have analysed the main conditions of energy in f(R, T ) theory. Figures
10,11,12,13 show the previously described energy conditions at certain values of k with an acceptable
value for α = 8π+λ

λ
. From the plot, it is clear that it is periodic in nature. The conditions of WEC

as well as DEC criteria are in agreement, however NEC and SEC are not satisfied. From the plots
for NEC and SEC, we can see singularities.

6. Conclusion

The interaction of dark energy is investigated in models of LRS Bianchi type-I on the background
of f(R, T ) theory. With the help of a periodic varying deceleration parameter, we calculated the
solutions of the modified EFEs that involves the inhomogeneous EoS p = ωρ − Λ(t). The model
begins with an epoch of deceleration then enters into a stage of super-exponential expansion with
periodic behaviour in this derived model. The model shows initial singularity at t = 0. Within a
particular cosmic epoch, the cosmological constant, energy density as well as pressure are observed
to fluctuate cyclically. Significance of these physical parameters turned out to be infinitely large at
some finite time which leads to a future singularity. There also appears to have a Big Rip which
takes place cyclically after an interval of t = 2nπ

k
where n is positive integer. Also the anisotropic

parameter and the jerk parameter are periodic in nature with the evolution of Universe. We studied
the energy conditions and found that WEC and DEC are found in agreement, but NEC and SEC
are not satisfied. We’ve also found the violation of conservation energy-momentum equation, which
results into the Universe’s accelerated expansion. Despite its simplicity, this model may be applicable
for a deeper perception about development of Universe.
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