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Abstract

In this paper, the lattice derivatives and their properties are introduced and next to the generalized
stability of lattice derivatives is investigated using the direct and fixed point method.
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1. Introduction

Functional equations and their stability are some of the classical and practical issues in the area of
mathematical analysis. About half a century ago, the stability of functional equations was raised with
the important question of Ulam [18]. It is said that a functional equation G is stable if each function
g satisfying the equation G−approximately is near to the true solution of G. Hyers developed Ulam’s
question and theorem [5]. He posed the following theorem:
Suppose that U and V be Banach spaces and ρ be a function from U to V such that the following
inequality satisfies for some δ > 0 and for every u, v ∈ U,

‖ρ(u+ v)− ρ(u)− ρ(v)‖ ≤ δ.

Then there is only one additive function T : U → V so that

‖T (u)− ρ(u)‖ ≤ δ

for any u ∈ U .
Mathematicians developed the results of the Hyers theorem. By changing space, norm, control
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function, and functional equation, they could prove more interesting theorems [1, 4, 7, 8, 9, 10, 11,
12, 13, 14, 15]. For example, the Jenson functional equation or the integral and differential equations
were used instead of the functional equation (in the theorem) and the validity of the theorem proved.
Now, we change the functional equation to different lattice functional equation and replacing various
control functions in the above theorem.

The first definition of Riesz spaces was done by Frigyes Riesz in 1930. In [16], Riesz introduced
the vector lattice spaces and their properties. A Riesz space (vector lattice) is a vector space which
is also a lattice, so that the two structures are compatible in a certain natural way. If, in addition,
the space is a Banach space, it is a Banach lattice. We present some of the terms and concepts of
the Riesz spaces used in this article, concisely. However, we relegate the reader to [2, 6, 17, 19], for
the fundamental notions and theorems of Riesz spaces and Banach lattices.

Let V be real vector space that is supposed to be a partially orderly vector space or an ordered
vector space, if it is equipped with a partial ordering ” ≤ ” that satisfies

1. u ≤ u for every u ∈ V.
2. u ≤ v and v ≤ u implies that u = v.
3. u ≤ v and v ≤ w implies that u ≤ w.

A Riesz space is an ordered vector space in which for all u, v ∈ U the infimum and supremum of
{u, v}, denoted by u ∧ v and u ∨ v respectively, exist in U . The negative part, the positive part,
and the absolute value of u ∈ U , are defined by u− := −u ∨ 0, u+ := u ∨ 0, and |u| := u ∨ −u,
respectively. Let U be a Riesz space. U is named Archimedean if inf{u

n
: n ∈ N} = 0 for every

u ∈ U+. If |x| ≤ |v| implies ‖u‖ ≤ ‖v‖ for all u, v ∈ U , then ‖.‖ is called a lattice norm or Riesz
norm on U .

1. u+ v = u ∨ v + u ∧ v , − (u ∨ v) = −u ∧ −v.
2. u+ (v ∨ w) = (u+ v) ∨ (u+ w) , u+ (v ∧ w) = (u+ v) ∧ (u+ w).
3. |u| = u+ + u− , |u+ v| ≤ |u|+ |v|.
4. u ≤ v is equivalent to u+ ≤ v+ and v− ≤ u−.
5. (u ∨ v) ∧ w = (u ∧ v) ∨ (v ∧ w) , (u ∧ v) ∨ w = (u ∨ v) ∧ (v ∨ w).

Let U be a Riesz space. The sequence {un} is called uniformly bounded if there exists an element
e ∈ U+ and sequence {an} ∈ l1 such that un ≤ an.e. A Riesz space U is named uniformly complete
if sup{

∑n
i=1 ui : n ∈ N} exists for every uniformly bounded sequence un ⊂ U+. Let U and Y be

Banach lattices. Then the function F : U → V is called a cone-related function if F (U+) = {F (|u|) :
u ∈ U} ⊂ V +.

Theorem 1.1. [2] For a function F : U → V defined between Riesz spaces, the conditions stated are
equivalent:

1. F is a lattice homomorphism.
2. F (u)+ = F (u+) for all u ∈ U .
3. F (u) ∧ F (v) = F (u ∧ v), for all u, v ∈ U .
4. If u ∧ v = 0 in U , then F (u) ∧ F (v) = 0 in V.
5. F (|u|) = |F (u)|, for every u ∈ U.

Definition 1.2. [14] A function d : U × U → [0,∞] is named a generalized metric on set U if d
satisfies the succeeding conditions

(i) for each u, v ∈ U , d(u, v) = 0 ⇔ u = v;
(ii) for all u, v ∈ U , d(u, v) = d(v, u);
(iii) for all u, v, w ∈ U , d(u,w) ≤ d(u, v) + d(v, w) .
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Notice that the just generalized metric significant difference from the metric is that the generalized
metric range contains the infinitude.

Theorem 1.3. [14] Let (U, d) be a complete generalized metric space and I : U → U be a contractive
mapping with Lipschitz constant L < 1. Then for every u ∈ U , either

d(In+1u, Inu) =∞

for all non-negative integers n or there exists an integer n0 > 0 so that
(i) For all n ≥ n0, d(Inu, In+1u) <∞;
(ii) In(u)→ v∗, where v∗ is a fixed point of I;
(iii) v∗ is the unique fixed point of I in the set V = {v ∈ U : d(In0(u), v) <∞};
(iv) For each v ∈ V , d(v∗, v) ≤ 1

1−Ld(Iv, v).

2. Main Results

Definition 2.1. Let L be a lattice. A derivation of L is a function ρ : L→ L such that

(D1) ρ(u ∨ v) = ρ(u) ∨ ρ(v),

(D2) ρ(u ∧ v) = (ρ(u) ∧ v) ∨ (u ∧ ρ(v)),

for all u, v ∈ L.

Theorem 2.2. Let L be a Riesz space. A function ρ : L→ L is a lattice derivation if and only if

(D3) ρ(u ∨ v ∨ w) = ρ(u) ∨ ρ(v) ∨ ρ(w),

(D4) ρ(u ∧ v ∧ w) = (ρ(u) ∧ v ∧ w) ∨ (u ∧ ρ(v) ∧ w) ∨ (u ∧ v ∧ ρ(w)),

for all u, v, w ∈ L.

Proof . It is clear to see that (D1) ⇔ (D3), we show that (D2) ⇔ (D4). Let (D2) is satisfied, so
we have

ρ(u ∧ v ∧ w) = (ρ(u ∧ v) ∧ w) ∨ (u ∧ v ∧ ρ(w))

= (ρ(u) ∧ v) ∨ (u ∧ ρ(v) ∧ w) ∨ (u ∧ v ∧ ρ(w))

= (ρ(u) ∧ v ∧ w) ∨ (u ∧ ρ(v) ∧ w) ∨ (u ∧ v ∧ ρ(w)), (2.1)

for all u, v, w ∈ L. Note that L is a Riesz space, so it has distributive low. For inverse, we substitute
w = v := w in (4), therefore we obtain

ρ(u) = (ρ(u) ∧ u),

this implies that ρ(u) ≤ u, for all u ∈ L. Putting w = u in (D4), we get

ρ(u ∧ v) = (ρ(u) ∧ v) ∨ (u ∧ ρ(v)),

so, ρ satisfies in (D2). �
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Corollary 2.3. Let L be a Riesz space. A function ρ : L→ L is a lattice derivation if and only if

(i) ρ

(
n∨
i=1

ui

)
=

n∨
i=1

ρ(ui), (ii) ρ

(
n∧
i=1

ui

)
=

n∨
i=1

(
ρ(ui) ∧

n∧
j=1,j 6=i

uj

)
for all u1, u2, ..., un ∈ L.
Proof . It is easy to show that above equalities is satisfied by Induction on n. �

Theorem 2.4. Suppose that L be a Banach lattice and ϕ, ψ : Ln → [0,∞) be two functions, so that

ϕ(q1u1, q2u2, ..., qnun) = (q1q2...qn)
α
nϕ(u1, u2, ..., un) (2.2)

and
ψ(qn1u1, q

n
2u2, ..., q

n
nun) = O(q1q2...qn) (2.3)

for some α ∈ [0, 1) and for all u1, u2, ...un ∈ L and q1, q2, ..., qn ≥ 1. Let f : L → L be a function
such that ∥∥∥∥ n∨

i=1

f

(
n∨
j=1

qiuj

)
+ f

(
n∨
i=1

qiui

)
− 2

n∨
i=1

qif (ui)

∥∥∥∥ ≤ ϕ(u1, u2, ..., un) (2.4)

and ∥∥∥∥f
(

n∧
i=1

ui

)
−

n∨
i=1

(
f(ui) ∧

n∧
j=1,j 6=i

uj

)∥∥∥∥ ≤ ψ(u1, u2, ..., un) (2.5)

for all u, v, u1, u2, ...un ∈ L and q1, q2, ..., qn ≥ 1. Then there exists a unique lattice derivation ρ : L→
L such that the following properties hold.

(1) For all u ∈ L and q1 ≥ 1;

‖f(u)− ρ(u)‖ ≤ 1

2(q1 − qα1 )
ϕ(u, u, ..., u) (2.6)

(2) ρn = ρ which ρn = ρoρo...oρ, furthermore ρ(u) ≤ u for all u ∈ L.

(3) ρ is increasing mapping. It means that if v ≤ u then ρ(v) ≤ ρ(u) for all u, v ∈ L.

(4) Fixρ(L) = {u ∈ L : ρ(u) = u} is an ideal of L, moreover Fixρ(L) ∩Ker(ρ) = {0}

Proof . We define the set ∆ := {g : L → L | g(0) = 0} and the function d : ∆ ×∆ → [0,∞] such
that

d(g, h) = inf{c ∈ R+ : ‖g(u)− h(u)‖ ≤ cϕ(u, u, .., u)},
for all u ∈ L. It has been proven the function d is generalized metric on ∆, moreover (∆, d) is
complete, [[3], theorem 2.5]. Next, we define the mapping I : ∆→ ∆, so that

Ig(u) :=
1

q1
g(q1u) (2.7)

for all u ∈ L and q1 ≥ 1.
Putting q1 = q2 = ... = qn := q1 and u1 = u2 = ... = un := u in (2.2), so we obtain∥∥Ig(u)− Ih(u)

∥∥ =
1

q1

∥∥g(q1u)− h(q1u)
∥∥

≤ 1

q1
cϕ(q1u, q1u, ..., q1u)

≤ 1

q1
cqα1ϕ(u, u, ..., u) = cqα−11 ϕ(u, u, ..., u), (2.8)
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for all u ∈ L. It means that
d(Ig, Ih) ≤ cqα−11 .

Thus, we see that
d(Ig, Ih) ≤ qα−11 d(g, h), (2.9)

therefore the mapping I is strictly contractive on ∆ with l = qα−11 ≤ 1. Putting u1 = u2 = ... =
un := u and q1 = q2 = ... = qn := q1 in (2.4), so we have∥∥2f(q1u)− 2q1f(u)

∥∥ ≤ ϕ(u, u, ..., u), (2.10)

therefore ∥∥ 1

q1
f(q1u)− f(u)

∥∥ ≤ 1

2q1
ϕ(u, u, ..., u).

Hence d(If, f) ≤ 1

2q1
. With theorem (1.3), there exists a mapping ρ : L→ L so that

(1) the mapping ρ is a unique fixed point of I in M = {g ∈ ∆ : d(g, h) <∞}, therefore

ρ(q1u) = q1ρ(u),

for all u ∈ L.
(2) d(Inf, ρ)→ 0 as n tends to ∞. This alludes that

lim
n→∞

f(qn1u)

qn1
= ρ(u) (2.11)

for all u ∈ L.
(3) d(f, ρ) ≤ 1

1−ld(f, If), therefore the following inequality holds.

d(f, ρ) ≤ 1

2q1
.

1

1− qα−11

=
1

2(q1 − qα1 )
. (2.12)

This alludes that ∥∥f(u)− ρ(u)
∥∥ ≤ 1

2(q1 − qα1 )
ϕ(u, u, ..., u), (2.13)

for all u ∈ L, so the inequality (2.6) is established. To prove ρ is lattice derivation, first, we show
that ρ is lattice homomorphism. Putting q1 = q2 = ... = qn := qn1 in (2.4), so we have∥∥∥∥ n∨

i=1

f

(
n∨
j=1

qn1uj

)
+ f

(
n∨
i=1

qn1ui

)
− 2

n∨
i=1

qn1 f (ui)

∥∥∥∥ ≤ ϕ(u1, u2, ..., un), (2.14)

therefore ∥∥∥∥f
(

n∨
i=1

qn1ui

)
−

n∨
i=1

qn1 f (ui)

∥∥∥∥ ≤ 1

2
ϕ(u1, u2, ..., un). (2.15)

In last inequality, we substitute ui := qn1ui for 1 ≤ i ≤ n, so∥∥∥∥f
(

n∨
i=1

q2n1 ui

)
−

n∨
i=1

qn1 f (qn1ui)

∥∥∥∥ ≤ 1

2
ϕ(qn1u1, q

n
1u2, ..., q

n
1un).

≤ 1

2
qnα1 ϕ(u1, u2, ..., un). (2.16)
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Then ∥∥∥∥ 1

q2n1
f

(
n∨
i=1

q2n1 ui

)
−

n∨
i=1

1

qn1
f (qn1ui)

∥∥∥∥ ≤ 1

2

qnα1
q2n1

ϕ(u1, u2, ..., un). (2.17)

Due to lattice operations are continuous and α ∈ [0, 1
2
) therefore by (2.11), as n→∞, we have

ρ

(
n∨
i=1

ui

)
=

n∨
i=1

ρ(ui). (2.18)

Hence, ρ is lattice homomorphism. Second, we show that ρ satisfies in the part (ii) of corollary (2.3).
Putting ui := qn1ui for i = 1, 2, ..., n in (2.6), so we have∥∥∥∥f

(
n∧
i=1

qn1ui

)
−

n∨
i=1

(
f(qn1ui) ∧

n∧
j=1,j 6=i

qn1uj

)∥∥∥∥ ≤ ψ(qn1u1, q
n
1u2, ..., q

n
1un) (2.19)

for all u ∈ L and q1 ≥ 1. If we divide both sides in last inequality by qn1 , we get∥∥∥∥ 1

qn1
f

(
n∧
i=1

qn1ui

)
−

n∨
i=1

(
1

qn1
f(qn1ui) ∧

n∧
j=1,j 6=i

uj

)∥∥∥∥ ≤ 1

qn1
ψ(qn1u1, q

n
1u2, ..., q

n
1un) (2.20)

for all u, v ∈ L. As n→∞, by (2.11) we have∥∥∥∥ρ
(

n∧
i=1

ui

)
−

n∨
i=1

(
ρ(ui) ∧

n∧
j=1,j 6=i

uj

)∥∥∥∥ ≤ 1

qn1
ψ(qn1u1, q

n
1u2, ..., q

n
1un),

→ 0. as n→∞ (by 2.35) (2.21)

Emphasizes that lattice operations are continuous. Therefore, we get

ρ

(
n∧
i=1

ui

)
=

n∨
i=1

(
ρ(ui) ∧

n∧
j=1,j 6=i

uj

)
(2.22)

Then by (2.18) and (2.22) and corollary (2.3), ρ is a lattice derivation on L, therefore,

ρ(u) = ρ(u ∧ u ∧ ... ∧ u) = (ρ(u) ∧ u) ∨ (u ∧ ρ(u)) = ρ(u) ∧ u, (2.23)

It means that ρ(u) ≤ u. Let v ≤ u then v ∨ u = u, thus

ρ(u) = ρ(v ∨ u) = ρ(v) ∨ ρ(u) for all u, v ∈ L

so ρ(v) ≤ ρ(u). Thus ρ is isotone derivation, as a result ρ2(u) ≤ ρ(u) ≤ u, so

ρ2(u) = ρ(ρ(u)) = ρ(ρ(u) ∧ u) (2.24)

= (ρ(u) ∧ ρ(u)) ∨ (u ∧ ρ2(u)) = ρ(u) ∨ ρ2(u) = ρ(u),

hence ρn(u) = ρ(u), this can be easily shown with induction on n. To prove (4), assume that
u ∈ Fixρ(L) and v ≤ u, then

ρ(v) = ρ(u ∧ v) = (ρ(u) ∧ v) ∨ (u ∧ ρ(v)) (2.25)

= (u ∧ v) ∨ ρ(v) = v ∧ ρ(v) = v.

It means that v ∈ Fixρ(L). If u, v ∈ Fixρ(L) then ρ(u ∨ v) = ρ(u) ∨ ρ(v) = u ∨ v, therefore
u∨v ∈ Fixρ(L), hence Fixρ(L) is an ideal in L. Finally, if u ∈ Fixρ(L)∩Ker(ρ) then 0 = ρ(u) = u,
which complete the proof. �
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Corollary 2.5. Assume that L be a Banach lattice and J : L→ L be a positive operator, such that

‖J(τu ∨ ηv)− τJ(u) ∨ ηJ(v)‖ ≤ Υ(τu ∨ ηv, τu ∧ ηv) (2.26)

and
‖J(u ∧ v)− ((J(u) ∧ v) ∨ (u ∧ J(v)))‖ ≤ θ(‖u‖r ∨ ‖v‖r) (2.27)

Where Υ : L× L→ [0,∞) be a function such that

Υ(u, v) ≤ (τη)
α
2 Υ

(
u

τ
,
v

η

)
for all u, v ∈ L, τ, η ≥ 1, θ > 0 and for which there are number α ∈ [0, 1

2
) and r ∈ [0, 1). Then there

is a unique isotone lattice derivation H : L→ L satisfies in

‖H(u)− J(u)‖ ≤ τα

τ − τα
Υ(u, u). (2.28)

Proof . It has been proven that J is lattice homomorphism i.e.

J(u ∨ v) = J(u) ∨ J(v) (2.29)

for all u, v ∈ L and the following equality is satisfied,

lim
n→∞

1

τn
J(τnu) = H(u) (2.30)

for all u ∈ L. Also the inequality (2.28) holds, [[11] Theorem 1]. Replacing u, v by τnu, τnv, respec-
tively in (2.6), so we have∥∥J(τn(u ∧ v))− (J(τnu) ∧ τnv) ∨ (τnu ∧ J(τnv))

∥∥
≤ θ(‖τnu‖r ∨ ‖τnv‖r) = τnrθ(‖u‖r ∨ ‖v‖r), (2.31)

for all u, v ∈ L and τ ≥ 1. With dividing both sides in above inequality on τn, we get∥∥∥∥ 1

τn
J(τn(u ∧ v))−

(
(

1

τn
J(τnu) ∧ v) ∨ (u ∧ 1

τn
J(τnv))

)∥∥∥∥ ≤ τn(r−1)θ(‖u‖r ∨ ‖v‖r), (2.32)

for all u, v ∈ L. As n→∞, by (2.11) we have∥∥∥∥H(u ∧ v)− ((H(u) ∧ v) ∨ (u ∧H(v)))

∥∥∥∥ ≤ lim
n→∞

τn(r−1)θ(‖u‖r ∨ ‖v‖r),

→ 0. (2.33)

Emphasizes that lattice operations are continuous. Therefore, we get

H(u ∧ v) = (H(u) ∧ v) ∨ (u ∧H(v)). (2.34)

Therefore H is a lattice derivation of L. �
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Theorem 2.6. Let L ba a Banach lattice. Conceive a cone-related functional J : L → L with
J(0) = 0, such that∥∥∥∥J (τ |u|+ ν|w|

2
∨ η|v|

)
∨ 2J

(
ν|w| − τ |u| ∧ η|v|

)
− νJ

(
|w|
)
∨ ηJ

(
|v|
)∥∥∥∥ (2.35)

≤ ϕ
(
τ |u|, η|v|, ν|w|

)
and∥∥J(|u| ∧ |v| ∧ |w|)− ((J(|u|) ∧ |v| ∧ |w|) ∨ (|u| ∧ J(|v|) ∧ |w|)

∨ (|u| ∧ |v| ∧ J(|w|)))
∥∥ ≤ θ ((‖u‖r ∨ ‖v‖r) ∧ ‖w‖r) (2.36)

for all u, v, w ∈ L and τ, η, ν ∈ [1,∞), θ > 0, and for some r ∈ [0, 1). Suppose that ϕ : L3 → [0,∞)
be a function satisfies in

ϕ(|u|, |v|, |w|) ≤ (την)
α
3ϕ

(
|u|
τ
,
|v|
η
,
|w|
ν

)
, (2.37)

for all u, v, w ∈ L and for which there is number α ∈ [0, 1
3
). Then there is an unique isotone

cone-related lattice derivation H : L→ L which satisfies in the following properties and inequality

‖H(|u|)− J(|u|)‖ ≤ τα

τ − τα
ϕ(|u|, |u|, |u|), (2.38)

for all u ∈ L and τ ∈ [1,∞).

Proof . It has been shown the mapping J : L→ L satisfies in cone-related lattice homomorphism.
i.e.

J(|u| ∨ |v| ∨ |w|) = J(|u|) ∨ J(|v|) ∨ J(|w|),
for any u, v, w ∈ L. Also, it have proven that the limit

lim
n→∞

J(τn|u|)
τn

= H(|u|) (2.39)

exists, for every u ∈ L, furthermore, the inequality (2.38) is hold. We show that J is cone-related
lattice derivation. Replacing u, v, w by τnu and τnv and τnw, respectively in (2.36). So we obtain∥∥J(|τnu| ∧ |τnv| ∧ |τnw|)− ((J(|τnu|) ∧ |τnv| ∧ |τnw|) ∨ (|τnu| ∧ J(|τnv|) ∧ |τnw|)

∨ (|τnu| ∧ |τnv| ∧ J(|τnw|)))
∥∥ ≤ θ ((‖τnu‖r ∨ ‖τnv‖r) ∧ ‖τnw‖r)

= θτnr ((‖u‖r ∨ ‖v‖r) ∧ ‖w‖r), (2.40)

for all u, v, w ∈ L and τ ≥ 1. With dividing both sides in above inequality on τn, we have∥∥∥∥ 1

τn
J(τn(|u| ∧ |v| ∧ |w|))− ((

1

τn
J(|τnu|) ∧ |v| ∧ |w|) ∨ (|u| ∧ 1

τn
J(|τnv|) ∧ |w|)

∨ (|u| ∧ |v| ∧ 1

τn
J(|τnw|)))

∥∥∥∥ ≤ θτn(r−1) ((‖u‖r ∨ ‖v‖r) ∧ ‖w‖r) (2.41)

for all u, v, w ∈ L and θ > 0 for some r ∈ [0, 1). As n→∞ by (2.39), we have∥∥J(|u| ∧ |v| ∧ |w|)− ((J(|u|) ∧ |v| ∧ |w|) ∨ (|u| ∧ J(|v|) ∧ |w|) (2.42)

∨(|u| ∧ |v| ∧ J(|w|)))
∥∥ ≤ lim

n→∞
θτn(r−1) ((‖u‖r ∨ ‖v‖r) ∧ ‖w‖r)

→ 0.
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Therefore

J(|u| ∧ |v| ∧ |w|) = (J(|u|) ∧ |v| ∧ |w|) ∨ (|u| ∧ J(|v|) ∧ |w|) ∨ (|u| ∧ |v| ∧ J(|w|))

for every u, v, w ∈ L. �

Theorem 2.7. Let U be a Banach lattice and Λ : U → U be a cone-related functional for which
there are numbers θ > 0, δ ≥ 0 and r < 2 such that

‖Λ(τ |u| ∨ η|v|)− (τ 2Λ(|u|) ∨ η2Λ(|v|))‖ ≤ δ + θ(‖u‖r + ‖v‖r) (2.43)

and
‖Λ(τ |u| ∧ η|v|)− ((τ 2Λ(|u|) ∧ η3|v|) ∨ (τ 3|u| ∧ η2Λ(|v|)))‖ ≤ θ(‖u‖r ∨ ‖v‖r) (2.44)

for all u, v ∈ U and τ, η > 1. Then there exists a unique isotone cone related lattice derivation
Π : U → U , which satisfies properties and inequality.

‖Π(|u|)− Λ(|u|)‖ ≤ 1

τ 2 − 1
δ +

2θ

τ 2 − τ r
‖u‖r (2.45)

and
Π(|τu|) = τ 2Π(|u|) (2.46)

for all u ∈ U

Proof . It is easy to prove that the sequence τ−2nΛ(τn|u|) is a Cauchy sequence so, it’s convergent
to Π(|u|) ∈ U . Also, we can show that

Π(|u| ∨ |v|) = Π(|u|) ∨ Π(|v|) (2.47)

for all u, v ∈ U . Moreover, we can see that (2.45) and (2.46) are satisfied. Next, by substituting τ
and η with τn in (2.44) so we obtain

‖Λ(τn|u| ∧ τn|v|)− ((τ 2nΛ(|u|) ∧ τ 3n|v|) ∨ (τ 3n|u| ∧ τ 2nΛ(|v|)))‖ ≤ θ(‖u‖r ∨ ‖v‖r). (2.48)

Replacing u with τnu and v with τnv, we get

‖Λ(τ 2n(|u| ∧ |v|))− ((τ 2nΛ(τn|u|) ∧ τ 4n|v|) ∨ (τ 4n|u| ∧ τ 2nΛ(|τnv|)))‖ ≤ θτnr(‖u‖r ∨ ‖v‖r). (2.49)

Thus ∥∥∥∥Λ(τ 2n(|u| ∧ |v|))
τ 4n

− ((
Λ(τn|u|)
τ 2n

) ∧ |v|) ∨ (|u| ∧ Λ(|τnv|
τ 2n

))

∥∥∥∥ ≤ θ
τnr

τ 4n
(‖u‖r ∨ ‖v‖r), (2.50)

by letting n→∞ and using the fact that lattice operators are continuous, we have

‖Π(|u| ∧ |v|)− ((Π(|u|) ∨ |v|) ∨ (|u| ∧ Π(|v|))‖ ≤ lim
n→∞

θτn(r−4)(‖u‖r ∨ ‖v‖r)

= 0. (2.51)

Therefore
Π(|u| ∧ |v|) = (Π(|u|) ∨ |v|) ∨ (|u| ∧ Π(|v|) (2.52)

for all u, v ∈ U . We come to the conclusion that Π is isotone cone-related lattice derivation by (2.47)
and (2.52). �
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