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Abstract

In this investigation, shear-thinning and shear-thickening inelastic fluids through a contraction chan-
nel are presented based on a power-law inelastic model. In this regard, Navier–Stokes partial differ-
ential equations are used to describe the motion of fluids. These equations include a time-dependent
continuity equation for the conservation of mass and time-dependent equations for the conservation of
momentum. Numerically, a time-stepping Taylor Galerkin-pressure correction finite element method
is used to treat the governing equations. A start-up of Poiseuille flow through axisymmetric 4:1
contraction channel for inelastic fluid are taken into consideration as instances to satisfy the method
analysis. Here, the impacts of different parameters, such as Reynolds number (Re), the consistency
parameter (k), and the power-law index (n), are examined. Mainly, the effect of these parameters
on the convergence levels of solution components considering it the most important point of view.
The findings demonstrate that the inelastic parameters have a significant influence on the rates of
velocity and pressure temporal convergence, and this effect is observed significantly. Fundamentally,
the rate of convergence for shear-thickening flow is found to be greater than of the convergence for
shear-thinning flow. In addition, the critical level of Reynolds number is also determined for shear-
thinning and shear-thickening situations. In this context, we captured that the critical level of Re
for shear-thickening case is much higher than that found for shear-thinning case.
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1. Introduction

In recent years, numerical studies on flow differential equations with viscous properties have
elicited considerable attention among scholars due to the highly nonlinear nature of these equations.
Most recent studies are based on the finite element method, which adopts different formulations.
Among these studies, numerical research on inelastic equations has been particularly successful and
widely conducted using the finite element method. These inelastic equations are presented in the
form of mass conservation, momentum partial differential equations and inelastic constitutive model
[16]. The Taylor Galerkin-pressure correction (TG-PC) method, which presented firstly by Townsend
and Webster [19] is one of the most popular formulations. Accordingly, this method is implemented
to deal with Newtonian and non-Newtonian viscous incompressible flows. This method is consisted
of two approaches: Taylor Galerkin and pressure correction methods. A two-step Lax–Wendroff
time-stepping method is used in the former (predictor-corrector) that off prints in time via a Taylor
series expansion [10, 14]. By contrast, the latter ensures second-order accuracy in time by broadening
the incompressibility constraint [11, 1]. Thus, this method has elicited considerable attention with
regard to treat different flow problems (for more details see [2, 11, 12, 18]). To reduce time errors in
the time-stepping scheme, the algorithm used in the solution is based on the Crank–Nicolson method,
which is given more accurate and good stability compared to others [30].

In the inelastic fluid the simplest basic constitutive equation is one that represents the viscous
shear stress response as a power-law function is used to depict the shear-thinning and shear-thickening
behavior of fluids. Such types of fluid were proposed by Ostwald–de Waele [4]. In power-law fluids,
shear stress is related to shear rate (γ̇).

µs = k(γ̇)n−1

where, k is a consistency parameter, and n is a power-law index. Higher k values in this model indi-
cate that the fluid is more viscous. When n = 1, the Newtonian limiting approximation is obtained
without shear rate dependence; when n < 1, shear thinning is observed, and when n > 1, shear
thickening is seen [17]. Generally, the power-law fluids across the contraction of circular cylinders
represent an idealization of many chemical and industrial processes encountered in polymers, miner-
als, foods, and biological industries. Thus, the present study is focused on the flow characteristics of
power-law fluids across an axisymmetric contraction channel for a wide range of physical parameters
such as, power-law index (n), consistency parameter (k) and Reynolds number (Re). The influences
of these parameters on the behavior of fluid have been examined and reported herein. The main idea
of the current study is to determine the temporal convergence-rate of the solution components that
is taken to be steady state, which did not treat by authors before. For that purpose, Poiseuille()
flow through axisymmetric contraction channel under isothermal condition has been conducted. Ad-
ditionally, the study of inelastic fluid behavior by applying the TG-PC method with a constitutive
power-law equation for a 4:1 contraction channel with an axisymmetric coordinate (r, z) is a new
topic that has not yet been researched. We also determine the influence value changes of a consis-
tency parameter (k), power-law index (n), and Reynolds number (Re) on the behavior of inelastic
fluids. Furthermore, we identify the critical level of Re(Recri) and the relationship between critical
Re(Recri) and the value of n in both cases shear thinning and shear thickening.

The mathematical modeling of non-Newtonian flow motion is presented in 2.1. The cylindrical
coordinate system is used to introduce these equations. The numerical method is described in
Section 2.2 since these equations must be investigated numerically. Sections 2.3 and 3 discuss the
discretization of the problem and the numerical findings that resulted as a consequence of this
discretization.
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2. Methodology

2.1. Mathematical modeling

The forms of the continuity and momentum equations of incompressible inelastic flow under
isothermal conditions when body forces are disregarded can be given as [16]:

∇ · u = 0 (2.1)

ρ

(
∂v

∂t
+ u · ∇u

)
= −∇p+∇ · (2µs(γ̇, ε̇)d). (2.2)

Where, u, ρ, p, and µs denote velocity, density, hydrodynamic pressure, and solvent viscosity,
respectively. In addition, d = 1

2
(∇u + ∇uτ ) is the rate of the deformation tensor, and ∇ is the

derivative operator (gradient). Furthermore, γ̇ and ε̇ represent the shear rate and strain rate of
simple shear flow and extensional flow, respectively, such that

γ̇ = 2
√
IId

ε̇ = 3
IIId
IId

(2.3)

where, IId and IIId represent the second and third invariants of the rate of strain tensor d, which
can be defined in an axisymmetric coordinate system as follows [4]:
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In addition, the constitutive equation (Power Law Equation) is

µs = k(γ̇)n−1, (2.6)

where, k is a consistency parameter and n is a power-law index.
In contrast, the equation can be also defined by the non-dimensional groups of Reynolds number

(Re) by using the scaling Re = ρUL
µ
, such that (U), (L) and (ρ) characteristic velocity, length and

density, respectively. Thus, in this case, the non-dimensional form of the momentum equation in
general Newtonian may be expressed as:

Re

(
∂v

∂t
+ u · ∇u

)
= −∇p+∇ · (2µs(γ̇, ε̇)d). (2.7)

2.2. Numerical method

The Taylor Galerkin-pressure correction (TG-PC) method algorithm is a fractional step approach
with three phases. In the first phase, u∗ components are computed via a two-step predictor-corrector
procedure by providing the initial velocity and pressure fields. In the second phase, pressure difference
(P n+1 − P n) is evaluated by using u∗ and applying the Choleski method. In the third phase, u∗ and
pressure difference (P n+1−P n) are adopted to determine the velocity field un+1 via Jacobi iteration.
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Then the fractional step can be written as

Stage 1a:
2Re

∆t
[un+

1
2 − un] = L(un, dn)−∇pn, (2.8)

Stage 1b:
Re

∆t
[u∗ − un] = L(un+

1
2 , dn+

1
2 )−∇pn, (2.9)

Stage 2:∇2(pn+1 − pn) =
Re

θ∆t
∇ · u∗, (2.10)

Stage 3:un+1 = u∗ − θ∆t

Re
[∇(pn+1 − pn)]. (2.11)

Where,

L(u, d) = [∇ · (2µs(γ̇, ε̇)d)−Re u · ∇u]. (2.12)

Also, θ ∈ [0, 1], if choosing θ = 1
2
is chosen, the following technique is popular: the Crank–Nicolson

scheme (a second-order temporal technique) and is referred to as the Crank–Nicolson parameter [8, 5].
It is possible to approximate velocity and pressure using the following formulas:

u(x, t) =
Ju∑
j=1

uj(t)ϕj(x), (2.13)

p(x, t) =

Jp∑
j=1

pj(t)ψj(x), (2.14)

where, Ju indicates the total number of nodes, and Jp denotes the number of vertices of triangles.
uj(t) and pj(t) represent the vector of velocity and pressure nodal values. The functions that serve
as their foundation (shape or interpolation) are ϕj(x) and ψj(x). u∗ and pressure difference are
represented by forms that are similar. The domain Ω is split into trigonometric elements., and the
velocity at the mid-side and vertex nodes is calculated, whereas just the vertex nodes of a triangular
are used to calculate pressure. Among the shape functions, ϕj(x) have been chosen as the quadratic
basis function and ψj(x) as the linear basis function Then, the corresponding TG-PC from Equations
(2.8), (2.9), (2.10), and (2.11) may be written in matrix form as follows [11]).

Stage 1a:

[
2Re

∆t
M +

1

2
S

](
Un+ 1

2 − Un
)
= {−[S +Re N(U)]U + PTP}n, (2.15)

Stage 1b:

[
Re

∆t
M +

1

2
S

]
(U∗ − Un) = {−SU + PTP}n −Re[N(U)U ]n+

1
2 , (2.16)

Stage 2:K(P n+1 − P n) = − Re

θ∆t
PU∗, (2.17)

Stage 3:
Re

θ∆t
M(Un+1 − U∗) = θPT (P n+1 − P n), (2.18)

where, Un, Un+1 and P n, P n+1 are nodal vectors of velocity and pressure at the time tn and tn+1,
respectively; and U∗ is an intermediate nodal velocity vector introduced in Step 1b. M,S,N,P , and
K respectively represent mass, momentum diffusion, convective, divergence/pressure gradient, and
pressure stiffness matrices [9, 3, 15].
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2.3. Problem specification and boundary conditions

The benchmark problem of flow through a 2D 4:1 axisymmetric sharp-corner contraction channel
is selected for inelastic fluids under isothermal conditions in the current study. Accordingly, three
different triangular finite element meshes, namely, fine mesh (MF), medium mesh (MM), and cross
mesh (MC), are implemented, and diagrams for geometric configurations are provided in Fig. 1. The
typical characteristics of finite element meshes are listed in Table 1.

Boundary conditions (BCs): The following is the BC setting for the current channel problem:
(a) The flow is defined as Poiseuille (Ps) flow with zero radial velocity at the inlet.
(b) No-slip BCs are put to the bottom walls of the channel.
(c) Slip BCs are applied to the axisymmetric line of the channel for axial velocity (uz).
(d) The axisymmetric line has zero radial velocity, and zero pressure is applied at the channel’s

outlet.

Table 1: Parameters that affect the mesh

Mesh Total Elements Total Nodes Boundary Nodes Pressure Nodes

MF 1099 2318 239 610
MM 269 600 166 166
MC 121 282 81 81

Figure 1: Structured finite element meshes (a) Fine mesh (b) Medium mesh (c) Cross mesh
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Figure 2: Flow geometry

3. Results

The Taylor Galerkin-pressure correction finite element method is utilized to solve the problem
under consideration, and the numerical findings are concerned with the critical level of Reynolds
number (Recri) and the rate of error convergence for the solution components. It is explored in this
paper whether or not the parameters n, k, and Re have an impact on numerical convergence for
inelastic flows via an axisymmetric 4:1 contraction channel by using three different meshes (CM,
MM, and FM) (Fig. 1).

The critical level of Re is presented for FM, MM, and CMmeshes in both shear thinning, (n = 0.8)
and shear thickening, (n = 1.8) with fixed k = 2. The results shown that, a high (Recri) is observed
for FM (Recri = 2527), while Recri = 721 for MM, and CM has a lower Recri (see Table 2). Thus, a
conclusion can be drawn that different types of meshes provide varying outcomes [13], with a notable
preference for FM. Accordingly, we use FM in the current study.

Table 2: Recri for three different meshes with k = 2

Mesh Recri in shear thinning, (n = 0.8) Recri in shear thickening, (n = 1.8)

CM 6 424
MM 17 721
FM 50 2527

In Fig. 3, Recri is illustrated as a function of n for the three meshes with k = 2. As indicated
in the profiles, Re level increases as n increases with a high level has been seen for FM. In addition,
the profile shows that the Re level for the shear-thickening case (n > 1) is higher than that for the
shear-thinning case (n < 1). Additional comparative data are provided in Table 3.

n-variation: Fig. 4 shows the convergence rate for the axial velocity (uz) component with
different values of the power-law index (n), i.e., shear thinning (n = 0.6, 0.8, 01) and shear thickening
(n = 1.2, 2.8, 3), with fixed Re = 8 and k = 2. In general the results reveal that, the level of
convergence for velocity increases as the values of the power law index (n) are increasing for both
cases of shear thinning and shear thickening. Here one can see that, the time step increases as the
value of n increases, which is particularly apparent in the case of shear thickening. In addition,
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Figure 3: Relationship between Recri and type of mesh with k = 2 and n = [0.2, 3]

Table 3: Values of n with Recri maximum velocity, maximum pressure, and time step with k = 2

N Recri Maximum velocity Maximum pressure Time step

0.2 3 23.56 665.51 106
0.4 8 23.8 1667.15 75
0.6 21 24.1 4164.6 118
0.8 50 24.7 9785.8 104
1 108 25.3 21357.8 118
1.2 177 25 37547.7 55
1.4 562 26.3 107105 1239
1.6 1129 26.2 220955 995
1.8 2527 26.4 489769 883
2 5548 26.5 1.07187e+06 992
2.2 12650 26.4 2.41397e+06 3562
2.4 23312 26.3 4.69967e+06 1451
2.6 40002 26.02 8.5696e+06 2279
2.8 62354 25.4 1.42221e+07 2153
3 105007 25.01 2.48043e+07 7522

n-variation exerts no influence on velocity convergence in shear-thickening flows at beginning of the
time, such that a minor shift at (0 < Time−step < 15) is appeared as indicated in the zoomed section
(see Fig 4b). Meanwhile, Fig. 5 shows a same feature at the convergence level of pressure under
the same power-law index (n). In general for axial velocity and pressure, the rate of convergence
for shear thickening requires more time steps compared to shear thinning. This finding is consistent
with the results reported by Yasir et al., for shear thinning flows [20].

Fig. 6 illustrates the relationship between the maximum level of velocity at the top walls and the
power-law index (n) in shear-thinning and shear-thickening cases, with Re = 1 and k = 2. From the
profiles, one can see that the maximum velocity increases when n is increasing in both cases. Fig. 7
illustrates the criticial Re profile as a function of n at k = 2. The findings at the Re level demonstrate
the influence of shear thinning and shear thickening on the critical level of Re. Here, it is seen that
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Figure 4: Convergence of velocity; n variation, k = 2, Re = 8, (a) shear thinning, (b) shear thickening

Figure 5: Convergence of pressure; n variation, k = 2, Re = 8, (a) shear thinning, (b) shear thickening

the level of Re decreases as the power law index (n) increases, so that the highest Re corresponds
to the biggest power law index (n = 3). This finding is consistent with the results reported by Yasir
et al., [20]; Coelho and Pinho [6, 7]; and Sivakumar et al. [17]. Fig. 8, explains that the Newtonian
fluid has a lower time step than non-Newtonian fluid, and the time step increases when the power
low index n drifts away from 1 to the left or right of it, implying that the Newtonian fluid requires
less time step for convergence than non-Newtonian fluid.

Figure 6: Increasing correlation between n and maximum velocity with Re = 1, k = 2, (a) shear thinning, (b) shear
thickening
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Figure 7: Recri vs. power law index n, (a) shear thinning, (a) shear thinning

Figure 8: Power law index (n) vs. time step with Re = 1, k = 2

k-variation: Same features are observed of the effect of k-variation in both shear thinning case
(n = 0.8) and shear thickening (n = 2.8) with fixed Re = 10. In this situation, the convergence level
of axial velocity and pressure in the shear thinning and thickening flows is presented in Fig .9 and
Fig. 10 to inspect the evolution of the solution with k variation. The results reveal that, for all values
of k, the levels of convergence for velocity and pressure are virtually closed with gradually increasing
as k-value decreased. This indicates that n has a higher influence on the behavior of fluid than k,
and may be contrasted from (compare for example Fig. 4 and Fig. 9), which reflects a significant
influence of viscous fluid characteristics on the level of convergence. Also, one can see that there is
no effect at the beginning of the time (0 < Time − step < 5) for all solution components in both
shear-thinning and shear-thickening flows (see the zoomed sections), which is consistent with the
results reported by Yasir et al. [20].

Re-variation: Again the convergence of axial velocity for different Re in both shear thinning
with n = 0.8 and k = 2 and shear thickening with n = 1.2 and k = 2 is illustrated in Fig. 11. From
the profiles one can see that the level of time increments increases whenever you get increased in Re.
For example when Re = 2, the level of time steps is much less than that in Re = 20, so the level
of convergence of velocity is faster when Re is small. We note also that for the level of convergence
in the shear thickening is almost double compared to the case of shear thinning, which reflects the
difficulties of convergence for large Re number.

For same setting of parameters and flows, Fig. 12 illustrates the level of convergence for pressure
components for various levels of Re. From the results, we observe that the level of pressure conver-
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Figure 9: Convergence of velocity; k variation, (a) shear thinning, (b) shear thickening

Figure 10: Convergence of pressure; k variation, (a) shear thinning, (b) shear thickening

gence increased as Re increased with modest change in shear thickening situation. This finding is
consistent with the results reported by Yasir et al., for shear thinning flows [20].

Figure 11: Velocity convergence, k = 2, Re variation, (a) shear thinning with n = 0.8, (b) shear thickening with
n = 1.2

4. Conclusions

The Taylor Galerkin-pressure correction method is used to simulate an incompressible inelastic
contraction flows in cylindrical coordinates system. The main ides of this study is to detect the effect
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Figure 12: Pressure convergence, k = 2, Re variation, (a) shear thinning with n = 0.8, (b) shear thickening with
n = 1.2

of the power law index (n), the consistency parameter (k), and the Reynolds number (Re) on the
level of convergence in shear thinning and shear thickening cases. In addition, the critical Reynolds
number for both cases of flow is investigated.

In this context, the rate of convergence of velocity and pressure increases as power-law index (n)
rises in both cases of shear thinning and shear thickening. In addition, the rate of convergence in
shear thickening flow is higher than that in shear thinning flow. Same feature is observed for k-
variation and Re-variation. Moreover, impact of shear thinning and shear thickening behaviours on
critical level of Re is provided as well. In this situation, we observed that the level of (Re) increases
as increase in shear thinning and shear thickening tendency, which is agreement with experimental
results and findings of others.
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