On some topological concepts via grill

Saad S. Suliman*, R. B. Esmaeel

*Department of Mathematics College of Education for Pure Science, Ibn Al-Haitham University of Baghdad, Iraq

(Communicated by Ali Jabbari)

Abstract

In this work, the new grill concepts are studied using grill topological spaces and by using some defined sets where the set \(\alpha \)-open sets are defined. Properties of this set and some relationships were presented, in addition to studying a set of functions, including open, closed and continuous functions, finding the relationship between them and giving examples and properties that belong to this set, which will be a starting point for studying many topological properties using this set.

Keywords: Grill, \(\alpha \)-open sets, \(\alpha \)-closed sets, \(\mathcal{C} \)-\(\alpha \)-open function, \(\mathcal{C} \)-\(\alpha \)-c function.

1. Introduction

Choquet [1] developed the concept of a grill on a topological space, and it has proven to be a useful tool for exploring several topological problems. A grill on \(\mathcal{Q} \) is a family of non-empty subsets of a topological space \((\mathcal{Q}, \tau) \). If (i) \(\mathcal{A} \in \mathcal{C} \) and \(\mathcal{A} \subseteq \mathcal{B} \) so \(\mathcal{B} \in \mathcal{C} \), and (ii) \(\mathcal{A}, \mathcal{B} \subseteq \mathcal{Q} \) and \(\mathcal{A} \cup \mathcal{B} \in \mathcal{C} \), then \(\mathcal{A} \in \mathcal{C} \) or \(\mathcal{B} \in \mathcal{C} \). A triple \((\mathcal{Q}, \tau, \mathcal{C}) \) is said to be a grill topological space.

Roy and Mukherjee [6] used a grill to define a unique topology and researched topological ideas. For any topological space point \(x \), \((\mathcal{Q}, \tau), \tau(q) \) represents a compilation of \(x \)'s open neighborhoods. A mapping \(\phi: \mathcal{P}(\mathcal{Q}) \rightarrow \mathcal{P}(\mathcal{Q}) \) is defined as \(\phi(\mathcal{A}) = \{ q \in \mathcal{Q}: \mathcal{A} \cap \mathcal{S} \in \mathcal{C} \text{ for all } \mathcal{S} \in \tau(q) \} \) for each \(\mathcal{A} \in \mathcal{P}(\mathcal{Q}) \). A mapping \(\Psi: \mathcal{P}(\mathcal{Q}) \rightarrow \mathcal{P}(\mathcal{Q}) \) is defined as \(\Psi(\mathcal{A}) = \mathcal{A} \cup \phi(\mathcal{A}) \) for all \(\mathcal{A} \in \mathcal{P}(\mathcal{Q}) \). The map \(\Psi \) satisfies Kuratowski closure axioms:

i. \(\Psi(\phi) = \phi \),

ii. If \(\mathcal{A} \subseteq \mathcal{B} \) so \(\Psi(\mathcal{A}) \subseteq \Psi \),

iii. If \(\mathcal{A} \subseteq \mathcal{X} \), so \(\Psi(\Psi(\mathcal{A})) = \Psi(\mathcal{A}) \),

*Corresponding author

Email address: saadsadeq05@gmail.com (Saad S. Suliman)

Received: December 2021 Accepted: February 2022
iv. If $A, B \subseteq X$, so $\Psi(A \cup B) = \Psi(A) \cup (B)$.

There are some types of a grill topological space as like a cofinite topology and discrete topology \cite{6}. In the shape of a grill G on a topological space (Q, τ), there is a one kind of a topology. \(\tau_G \) on Q a gift $\tau_G = \{ s \subseteq Q: \Psi(Q_{-s}) = Q_{-s} \}$, for any reason $A \subseteq Q$, $\Psi(A) = A \cup \phi(A) = \tau_G \cdot \text{cl}(A)$ and $\tau \subseteq \tau_G$. We can find τ_G by used the base as following $\beta(\tau_G, \emptyset) = \{ V - A; V \in \tau, A \notin \} \ [9]$.

In any topological space (Q, τ), there is a grill $\tau \subseteq \beta(\emptyset, \tau) \subseteq \tau_G$, where $\beta(\emptyset, \tau) = \{ V - A: V \in \tau, A \notin \tau, A \notin G \}$ is open base for τ_G.

As an example, let (Q, τ) be a topological space, if $G = P(\emptyset)$, then, $\tau_G = \tau$, because for any τ_G basic open set $V = Q - A$ with $u \in \tau$ and $A \notin \tau_G$. We have $A = \emptyset$, in order for $V = s \in \tau$, so we have this case $\tau = \beta(\emptyset, \tau) = \tau_G$. A subset A of a topological space Q is alleged to be: α-open \cite{2} if $A \subseteq \text{Int}(\text{cl}(A))$. The family of all α-open set denoted by τ.

There are many researchers who have used these combinations to obtain new generalizations \cite{3,4}. In this research used the symbol $\text{Int}(A)$ to interior of the set A and the symbol $\text{cl}(A)$ is the closure of A.

2. On α-open sets in topological spaces

Definition 2.1. The set A is said to be grill α-open if there exists $s \in \tau$ such that $s \cdot A \notin G$ and $A - \text{Int}cl_G(s) \notin G$, and as indicated by G^α-open the complement G^α-open is G^α-closed. The set of all G^α-open symbolized by $G^\alpha \circ o(q)$ and the ensemble first and foremost G^α-closed shortly $G^\alpha c(q)$.

Example 2.2. Let (Q, τ, G) be a grill topological space, and let $Q = \{ q, q_2, q_3 \}, \tau = \{ Q, \phi,\{ q_1 \},\{ q_1, q_2 \} \}, \mathcal{F} = \{ Q, \phi,\{ q_3 \},\{ q_2, q_3 \} \}, G = \{ s \subseteq Q; q_2 \notin s \}, \phi: P(Q) \rightarrow P(Q), \phi(A) = (q \in Q; \forall s \in \tau_x; s \cap A \notin \emptyset), \Psi(A) = A \cup \phi, \tau_G =\{ Q, \phi,\{ q_1, q_2, q_3 \}\} , \mathcal{F}_G = \{ Q, \phi,\{ q_3 \},\{ q_1, q_2 \}\}$, then $G^\alpha \circ o(q) = \{ Q, \phi,\{ q_3 \},\{ q_1, q_2 \}\}$.

Remark 2.3.

(i) Every set that is open is $G^\alpha \alpha$-open set.

(ii) Every set that is closed is $G^\alpha \alpha$-closed set.

Proof. (i) Let $A \in \tau$, then there exists $s \in A$ such that $u \subseteq \text{Int} cl_G(\emptyset)$, but $s \in A \in \tau$, so $s - A = \emptyset \notin G \wedge A - \text{Int} cl_G(A) = \emptyset \notin G$.

(ii) Let A be a closed set. Then $A^c \in \tau, A^c$ is $G^\alpha \circ o(q)$ so, A is $G^\alpha c(q)$. \hfill \Box

The converse of Remark 2.3 is not true, see Example 2.4.

Example 2.4. Let $Q = \{ q_1, q_2, q_3, q_4 \}, \tau = \{ Q, \phi,\{ q_3 \},\{ q_2, q_3 \}\}, G = P(Q) \setminus \{ \emptyset \}$. It's clear that $\{ q_1, q_2 \} \in G^\alpha \circ o(K)$, but $\{ q_1, q_2 \} \notin \tau$. And $\{ q_3 \} \in G^\alpha c(K)$ but $\{ q_1, q_2 \}$ is not a closed set.

Theorem 2.5. Every $G^\alpha \circ o$-open set is a $G \alpha$-open.

Proof. Let $s \in G$, so, $\text{Int} \circ cl_G(\emptyset) \subseteq \text{Int} \circ cl_G(s) \subseteq A - \text{Int} \circ cl_G(s) \notin G$. Let $A - \text{Int} \circ cl_G(s) \notin G$, thus by the definition of a grill we will have $A - \text{Int} \circ cl_G(s) \notin G$, a contradiction, so $A - \text{Int} \circ cl_G(s) \notin G$. \hfill \Box
Proposition 2.6. For any grill topology \((Q, \tau, G)\), \(A\) is a \(G^\alpha\)-open set if and only if \(A\) is a \(G^\ast\alpha\)-open set whenever \(G = p(Q) \setminus \{\emptyset\}\).

Proof. Let \(G\) be an \(\alpha\)-open set, then there exists \(s \in \tau\) such that \(s \subseteq A \subseteq \text{Int}_l(s)\), so \(s \cdot A = \emptyset \notin G\) and \(A - \text{Int}_l(s) = \emptyset \notin G\). Now since \(\tau = \tau_{\emptyset}\), we have \(A - \text{Int}_l_G(s) \notin G\).

Conversely, \(s \cdot A = \emptyset \land A - \text{Int}_l(s) \notin G(\tau) = \tau_{\emptyset}\). Since \(G = \rho(Q) \setminus \{\emptyset\}\), \(u \subseteq A\) and \(A \subseteq \text{Int}_l(s)\). So \(s \subseteq A \subseteq \text{Int}_l(s)\). □

Proposition 2.7. Let \(A\) be a \(G^\ast\alpha\)-open set and \(B \subseteq Q\) such that \(A \subseteq B \subseteq \text{Int}_l(e)(A)\), then \(B\) is a \(G^\ast\alpha\)-open set.

Proof. Suppose that \(s\) is an open set, as a result \(s \cdot A \notin G \land A - \text{Int}_l(e)(s) \notin G, (A\) is \(G^\ast\alpha\)-open set).

Since \(A \subseteq B \subseteq \text{Int}_l_G(A), s \cdot \text{Int}_l_G(A) \notin G \subseteq s \cdot B \notin G \subseteq s \cdot A \notin G\). Then there exists \(s \in \tau\) such that \(s \cdot B \notin G\), and since \(A \subseteq B\), \(\text{Int}_l(e)(A) \subseteq \text{Int}_l(e)(B)\). So \(s \cdot \text{Int}_l_G(B) \notin G\), hence \(B \in G^\ast\alpha\)-open set. □

Remark 2.8. The two concepts \(G^\ast\alpha\)-open set and \(\alpha\)-open set are independent. See Examples 2.9 and 2.10.

Example 2.9. Let \((Q, \tau, G)\) be any grill topology and \(Q = \{q_1, q_2, q_3\}\), \(\tau = \{Q, \phi, \{q_1\}\}\), \(G = \{s \in Q\}^\ast\alpha(o(Q) = P(Q)\) and \(o(Q) = \{Q, \phi, \{q_1\}\} \cup \phi\), hence it is clear that \(o(q_1) = G^\ast\alpha(o(Q))\) but \(\{q_2\} \notin o(Q)\).

Example 2.10. Let \((N, \tau), (q_1, \{q_1\})\), \(G = \{s \subseteq N ; s\) is an infinite set \}, it is clear that \(O\) (odd number) is an \(\alpha\)-open set, but it is not a \(G^\ast\alpha\)-open set.

Corollary 2.11. Suppose that \((Q, \tau, G)\) is a grill topological space and \(A\) subset of \(Q\). If \(G = p(q) \setminus \{\emptyset\}\). Then \(A\) is \(G^\ast\alpha\)-open set only if and only if \(A\) is \(\alpha\)-open set.

Proof. Let \(A\) be \(G^\ast\), so there exists \(s \in \tau\); \(s - A \notin G\) and \(A - \text{Int}_l_G(s) \notin G\); \(\emptyset \cdot A = \emptyset \notin G\) and \(A - \text{Int}_l_G(s) = \emptyset \notin G\).

Conversely, it is clear that \(A \subseteq B \subseteq \text{Int}_l_G(cs), u = A \notin G\) and \(A - \text{Int}_l_G(s) = \emptyset \notin G\). Then \(\emptyset \cdot A \notin G\) and \(A - \text{Int}_l(s) = \emptyset \notin G\). □

Definition 2.12. Let \((Q, \tau, G)\) be a grill topological space. A subset \(A\) in \(Q\) is called \(G^\ast\alpha\)-open if \(A \subseteq \Psi(\text{Int}(A))\).

Proposition 2.13. Every \(\Psi\alpha\)-open is a \(G^\ast\alpha\)-open.

Proof. Let \(A\) be \(\Psi\alpha\)-open, so there exists \(s \in \tau\) such that \(s \subseteq A \subseteq \Psi(s)\), so \(s \cdot A = \emptyset \land A - \Psi(s) = \emptyset \land s \cdot A \notin G \land A - \text{Int}_l_G(s) \notin G\). □

Proposition 2.14. Every \(\Psi\alpha\)-open is an \(\alpha\)-open.

Proof. Since \(\Psi\alpha\)-open, there exists \(s \in \tau\) such that \(s \subseteq A \subseteq \text{Int}_l_G(s) \subseteq \text{Int}_l(s)\). Thus, \(\text{Int}_l_G(s) \subseteq \text{Int}_l(s)\) and \(s \subseteq A \subseteq \text{Int}_l_G(s) \subseteq \text{Int}_l(s)\), so \(s \subseteq A \subseteq \text{Int}_l(s)\). □

Theorem 2.15. A subset \(A\) of a grill \((Q, \tau, G)\) is a \(G^\ast\alpha\)-open set if and only if there exists \(s \in \tau\) in order for \(s \subseteq A \subseteq \Psi(s)\).

Proof. If \(A\) is a \(G^\ast\alpha\)-open set, so \(A \subseteq \Psi(\text{Int}(A))\). Conversely, let \(s \subseteq A \subseteq \Psi(s)\) for \(s \in \tau\), therefore \(s \subseteq A \subseteq \text{Int}(A)\) as well as \(\Psi(s) \subseteq \Psi(\text{Int}(A))\), as a result, \(A \subseteq \Psi(\text{Int}(A))\). □
Lemma 2.16. \(\bigcup_{i \in A} \text{Int}(\varsigma\ell_i(A_i)) \subseteq \text{Int}(\varsigma\ell_i(\bigcup_{i \in A} A_i)). \)

Proof. We have \(A_i \subseteq \bigcup_{i \in A} A_i \). Then \(\varsigma\ell_i(A_i) \subseteq \varsigma\ell_i(\bigcup_{i \in A} A_i), \text{Int}(\varsigma\ell_i(A_i)) \subseteq \text{Int}(\varsigma\ell_i(\bigcup_{i \in A} A_i)). \) Thus,
\[
\bigcup_{i \in A} \text{Int}(\varsigma\ell_i(A_i)) \subseteq \text{Int}(\varsigma\ell_i(\bigcup_{i \in A} A_i)).
\]
\(\square \)

Theorem 2.17. The union of any family of \(G^\ast\alpha \) open sets is a \(G^\ast\alpha \) open set.

Proof. For any \(A_i \in G^\ast\alpha \) open set, we show that \(\bigcup_{i \in A} A_i \in G^\ast\alpha \) open set. Since, \(A_i \in G^\ast\alpha \) is a open set, there exists \(\varsigma \in \tau \) such that \((\varsigma_i^{-1}, A_i) \notin \mathbf{C} \) and \(\text{Int}(\varsigma\ell_i(\bigcup_{i \in A} A_i)) \notin \mathbf{C} \) (by Lemma 2.16). But \((\varsigma_i^{-1}, A_i) \subseteq (\bigcup_{i \in A} A_i) \in \mathbf{C} \supset (\bigcup_{i \in A} A_i) \notin \mathbf{C} \). So there exists an open set \(w = \bigcup_{i \in \varsigma} \mathbf{C} \) such that \((w \cup \bigcup_{i \in A}) \notin \mathbf{C} \). Now we prove \((\bigcup_{i \in A} A_i - \text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A_i)) \notin \mathbf{C} \). we have \(A_i - \text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A_i)) \notin \mathbf{C} \) and \(\text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A_i)) \subseteq \bigcup_{i \in A} A_i - \text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A_i)) \notin \mathbf{C} \). So \(\bigcup_{i \in A} A_i - \text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A_i)) \notin \mathbf{C} \). Since, \(\text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A_i)) \subseteq \bigcup_{i \in A} A_i - \text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A_i)) \notin \mathbf{C} \). So \(\bigcup_{i \in A} A_i - \text{Int}(\varsigma\ell_i(\bigcup_{i \in \varsigma} A)) \notin \mathbf{C} \). Thus, \(\bigcup_{i \in A} A_i \in G^\ast\alpha \) open set. \(\square \)

Remark 2.18. The collection of all \(G^\ast\alpha \) open sets is represented supra topology.

3. Several sorts of open functions

Definition 3.1. A function \(f : (\mathbb{Q}, \tau, \mathbf{C}) \rightarrow (Y, \tau', \mathbf{C}) \) is said to be:

1. \(G^\ast\alpha \) open function, symbolize by “\(G^\ast\alpha \) o function” if \(f(\varsigma) \in G^\ast\alpha o(y) \), whenever \(\varsigma \in G^\ast\alpha o(q) \).

2. \(G^\ast\alpha \) – o function, symbolize by “\(G^\ast\alpha \) – o function” if \(f(\varsigma) \in G^\ast\alpha o(y) \), whenever \(\varsigma \in \tau \).

3. \(G^\ast\alpha \) – o function, symbolize by “\(G^\ast\alpha \) – o function” if \(f(\varsigma) \in G^\ast\alpha o(y) \), whenever \(\varsigma \in \tau \).

Proposition 3.2. let \(f : (\mathbb{Q}, \tau, \mathbf{C}) \rightarrow (Y, \tau', \mathbf{C}) \) be a function

(i) If \(f \) is a \(G^\ast\alpha \) – o function, so \(f \) is an open function.

(ii) If \(f \) is a \(G^\ast\alpha \) – o function so \(f \) is \(G^\ast\alpha \) – o function.

(iii) If \(f \) is a \(G^\ast\alpha \) – o function so \(f \) is \(G^\ast\alpha \) – o function.

(iv) If \(f \) is an open function so \(f \) is \(G^\ast\alpha \) – o function.

Proof. (i) Let \(\varsigma \in \tau \). By Remark 2.3(i), \(\varsigma \in G^\ast\alpha \) – o(q). Since \(f \) is a \(G^\ast\alpha \) – open, \(f(\varsigma) \) is open in \((Y, \tau') \). Therefore, \(f \) is an open function.

(ii) If \(\varsigma \in G^\ast\alpha \) – o(q). Since \(f \) is a \(G^\ast\alpha \) – o function, \(f(\varsigma) \in \tau' \). By Remark 2.3(i), \(f(\varsigma) \in G^\ast\alpha o(y) \). So \(f \) is a \(G^\ast\alpha \) – o function.

(iii) Let \(\varsigma \in \tau \). By Remark 2.3(i), \(\varsigma \in G^\ast\alpha \) – o(q). because \(f \) is a \(G^\ast\alpha \) – o function, so \(f(\varsigma) \in G^\ast\alpha o(y) \). So \(f \) is a \(G^\ast\alpha \) – o function.

(iv) Suppose that \(\varsigma \in \tau \). Since \(f \) is an open function, \(f(\varsigma) \in \tau' \). By Remark 2.3(i), \(\varsigma \in G^\ast\alpha o(y) \). So \(f \) is a \(G^\ast\alpha \) – o function. \(\square \)
The following diagram, created to explain the connections that exist between numerous nations were presented in Definition 3.1.

Diagram 1

Example 3.3. Let \(Q = \{ q_1, q_2, q_3 \} \), \(\tau = \{ Q, \phi, \{ q_1 \} \} \), \(\mathcal{G} = \mathcal{P}(Q) \setminus \{ \phi \} \). Define \(f : (Q, \tau, G) \to (Y, \tau, \mathcal{G}) \), \(f(q) = q \). It is clear that \(f \) is an open function, \(\mathcal{G}^{o-o}(Q) = \{ \sigma \subseteq Q : q_1 \in \sigma \} \cup \{ \phi \} \). So there exists \(\{ q_1, q_2 \} \in \mathcal{G}^{o-o}(Q) \) such that \(f(\{ q_1, q_2 \}) \notin \tau \). Then we observe that \(f \) is not \(\mathcal{G}^{o-o} \) function.

Example 3.4. Let \(Q = \{ q_1, q_2, q_3 \} \), \(\tau = \{ Q, \phi, \{ q_1, q_2 \} \} \), \(\mathcal{G} = \{ \sigma \subseteq Q : q_3 \in \sigma \} \), \(\tau_\phi = \mathcal{P}(Q) \), \(\mathcal{G}^{o-o}(Q) = \mathcal{P}(Q) \), \(f : (Q, \tau, G) \to (Q, \tau, \mathcal{G}) \). Define \(f(q) = q_2 \). Then \(\tau_\phi = \{ Q, \phi, \{ q_2, q_1 \}, \{ q_3, q_2 \}, \{ q_2, q_1, q_1 \} \} \), \(\mathcal{G}^{o}(Q) = \{ Q, \phi, \{ q_2 \}, \{ q_3, q_2 \}, \{ q_2, q_1, q_1 \} \} \). So, \(f \) is a \(\mathcal{G}^{o} \) function, but \(f \) is not a \(\mathcal{G}^{*o} \) function, because there exist \(\{ q_3, q_2 \} \in \mathcal{G}^{*o} \alpha - o(\sigma) \), but \(f(\{ q_3, q_2 \}) = \{ q_1, q_3 \} \notin \mathcal{G}^{*o} \alpha - o(\phi). \)

Definition 3.6. The function \(f : (Q, \tau, G) \to (Y, \tau', \mathcal{G}) \) is called

(i) \(\mathcal{G}^{*} \alpha \)-closed function, symbolize by "\(\mathcal{G}^{*} \alpha \)-c function" if \(f(\sigma) \in \mathcal{G}^{*} \alpha \ c(y) \), whenever \(\sigma \in \mathcal{G}^{*} \alpha \).

(ii) \(\mathcal{G}^{*} \alpha \)-closed, symbolize by "\(\mathcal{G}^{*} \alpha \)-c function" if \(f(\sigma) \in \mathcal{G}^{*} \alpha \ c(y) \), whenever \(\sigma \) is a closed set in \((Q, \tau)\).

(iii) \(\mathcal{G}^{***} \alpha \)-closed function, symbolize by "\(\mathcal{G}^{***} \alpha \)-c function" if \(f(\sigma) \) is closed set in \((Y, \tau', \mathcal{G})\), whenever \(\sigma \in \mathcal{G}^{***} \alpha \).

Proposition 3.7. Let \(f : (Q, \tau, G) \to (Y, \tau', \mathcal{G}) \) be a function, then

(i) \(f \) is an closed function, when \(f \) is a \(\mathcal{G}^{***} \alpha - c \) function.

(ii) \(f \) is \(\mathcal{G}^{*} \alpha - c \) function, when \(f \) is a \(\mathcal{G}^{***} \alpha - c \) function.

(iii) \(f \) is \(\mathcal{G}^{*} \alpha - c \) function when \(f \) is a \(\mathcal{G}^{*} \alpha - c \) function.

(iv) \(f \) is \(\mathcal{G}^{**} \alpha - c \) function when \(f \) is a closed function.
Proof. By Remark 2.3(i) and Definition 3.6, the prove holds. □ The inverse of Proposition 3.7 is not true. See Examples 3.3 and 3.4.

Remark 3.8. When \(f \) is onto so:

(i) \(\mathcal{G}^*\alpha\)-open and \(\mathcal{G}^*\alpha\)-closed functions are identical.

(ii) \(\mathcal{G}^*\alpha\)-open and \(\mathcal{G}^{**}\alpha\)-closed functions are identical.

(iii) \(\mathcal{G}^{***}\alpha\)-open and \(\mathcal{G}^{***}\alpha\)-closed functions are identical.

Proof. Considering that \(f \) is an onto function together with Definitions 3.1, 3.6, prove the above statements. □

The following diagram explain the ties that bind these two types of closed functions

![Diagram 2](image)

4. Some types of continuous functions

In the following, new type of continuous functions will present their definitions and the relationships between those functions will explain.

Definition 4.1. The function \(f : (\mathcal{Q}, \tau, \mathcal{G}) \rightarrow (\mathcal{Q}, \tau, \mathcal{G}) \) is called

1. \(\mathcal{G}^*\alpha\)-continues function, shortly \(\mathcal{G}^*\alpha\)-continues function, if \(f^{-1}(\xi) \in \mathcal{G}^*\alpha_{oo}(\mathcal{Q}) \), for all \(\xi \in \tau \).

2. strongly \(\mathcal{G}^*\alpha\)-continues function shortly strongly \(\mathcal{G}^*\alpha\)-continuous function, if \(f^{-1}(\xi) \in \tau \), for every \(\xi \in \mathcal{G}^*\alpha_{oo}(Y) \).

3. \(\mathcal{G}^*\alpha\)-irresolute function, shortly \(\mathcal{G}^*\alpha\)-irresolute function, if \(f^{-1}(\xi) \in \mathcal{G}^*\alpha_{oo}(\mathcal{Q}) \), for every \(\xi \in \mathcal{G}^*\alpha_{oo}(Y) \).

Proposition 4.2. Let \(f : (\mathcal{Q}, \tau, \mathcal{G}) \rightarrow (\mathcal{Q}, \tau, \mathcal{G}) \) be a function. Then

1. \(f \) \(\alpha \)-is \(\mathcal{G}^*(\mathcal{Q})\alpha \)-irresolute function, when \(f \) is strongly-\(\mathcal{G}^*(\mathcal{Q})\alpha \)-continuous function.

2. \(f \) is continuous function, when \(f \) is strongly-\(\mathcal{G}^*(\mathcal{Q})\alpha \)-continuous function.
(3) f is $\mathcal{G}^*(\mathcal{Q})\alpha$–continuous function, when f is continuous function.

(4) if f is a $\mathcal{G}^*(\mathcal{Q})\alpha$–irresolute function, then f is $\mathcal{G}^*(\mathcal{Q})\alpha$–continuous function.

Proof. (1) Let $\xi \in \mathcal{G}^\alpha\alpha_o(Y)$, since f is a strongly $\mathcal{G}^*(\mathcal{Q})\alpha$–continuous function, $f^{-1}(\xi) \in \tau$. By Remark 3.8, $f^{-1}(\xi) \in \mathcal{G}^\alpha\alpha_o(Q)$, this implies that f is $\mathcal{G}^*(\mathcal{Q})\alpha$–irresolute function.

(2) Let $\xi \in \tau$. By Remark 2.3(i), $\xi \in \mathcal{G}^\alpha\alpha_o(Y)$. Since f is strongly-$\mathcal{G}^*(\mathcal{Q})\alpha$–continuous function, $f^{-1}(\xi)$ is an open set in (\mathcal{Q}, τ), this implies that f is a continues function.

(3) Let $\xi \in \tau$. Since f is a continues function, $f^{-1}(\xi)$ is an open set in (\mathcal{Q}, τ). By Remark 2.3(i) $f^{-1}(\xi) \in \mathcal{G}^\alpha\alpha_o(Q)$, so, f is $\mathcal{G}^*(\mathcal{Q})\alpha$–continuous function.

(4) Let $\xi \in \tau$. By Remark 2.3(i), $\xi \in \mathcal{G}^\alpha\alpha_o(Y)$. Since f is $\mathcal{G}^*(\mathcal{Q})\alpha$–irresolute function, $f^{-1}(\xi) \in \mathcal{G}^\alpha\alpha_o(Q)$, so, f is $\mathcal{G}^*(\mathcal{Q})\alpha$–continuous function. □

The inverse of Proposition 4.2 is not true in general.

Example 4.3. The function $f : (\mathcal{Q}, \tau, \mathcal{G}) \to (\mathcal{Q}, \tau, \mathcal{G}''')$ such that $f(q_1) = q_2$, for each $q_1 \in \mathcal{Q}$, where $\mathcal{Q} = \{q_1, q_2, q_3\}$, $\tau = \{\phi, \{q_1\}\}$, $\mathcal{G} = P(\mathcal{Q}) \setminus \{\phi\}$, $\mathcal{G}''' = \{\xi; q_1 \in \xi\}$, $\mathcal{G}^\alpha\alpha_o(\mathcal{Q}) = \{\xi; q_1 \in \xi\} \cup \{\phi\}$, $\mathcal{G}''''\alpha_o(\mathcal{Q}) = P(q_1)$, so that, f is $\mathcal{G}^\alpha\alpha_o(\mathcal{Q})$ continuous function and continuous function but it is not irresolute and not strongly because, there exists $\{q_2, q_3\} \in \mathcal{G}''''\alpha_o(\mathcal{Q})$, $f^{-1}(\{q_2, q_3\}) = \{q_2\} \notin \tau$.

Example 4.4. Consider the function $f : (\mathcal{Q}, \tau, \mathcal{G}) \to (\mathcal{Q}, \tau, \mathcal{G}''')$ such that $f(\{q_1\}) = \{q_2\} f(\{q_2\}) = \{q_1\}, f(\{q_3\}) = \{q_3\}$, where $\mathcal{Q} = \{q_1, q_2, q_3\}$, $\tau = \{\phi, \{q_1\}\}$, $\mathcal{G} = P(\mathcal{Q}) \setminus \{\phi\}$, $\mathcal{G} = \{\xi; q_1 \in \xi\}$, $\mathcal{G}^\alpha\alpha_o(\mathcal{Q}) = P(q_1)$, $\mathcal{G}''''\alpha_o(\mathcal{Q}) = \{\xi; q_1 \in \xi\} \cup \{\phi\}$. Then f is $\mathcal{G}^\alpha\alpha_o(\mathcal{Q})$ continuous function and irresolute function but it is not continues and not strongly function since $f^{-1}(\{q_1\}) = \{q_2\} \notin \tau$.

The following diagram, explains the relations between the concept in Definition 4.1.

![Diagram 3](attachment:image.png)
References