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Abstract

The purpose of this article is to make a connection between the Pascal distribution series and some subclasses of
normalized analytic functions whose coefficients are probabilities of the Pascal distribution. To be more precise,
we investigate such connections with the classes of parabolic starlike and uniformly convex functions with positive
coefficients in the open unit disk U.
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1 Introduction and Preliminary Results

Let A be the class of analytic functions in the unit disk U = {z ∈ C : |z| < 1} of the form

f(z) = z +

∞∑
n=2

anz
n z ∈ U. (1.1)

We also let S be the subclass of A consisting of functions which are normalized by f(0) = 0 = f ′(0) − 1 and also
univalent in U. Denote by V the subclass of S consisting of functions of the form

f(z) = z +

∞∑
n=2

anz
n, an ≥ 0. (1.2)

For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∑∞

n=2 bnz
n, we define the Hadamard product (or

convolution) of f and g by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ U.
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We recall the following two subclasses of analytic functions with positive coefficients V, defined and studied by
Uralegaddi et al., [24] extensively.

A function f ∈ V is said to be starlike of order α (1 ≤ α < 4
3 ), if and only if

ℜ
(
zf ′(z)

f(z)

)
< α (z ∈ U).

This function class is denoted by VS∗(α). We also write VS∗(0) =: VS∗, where VS∗ denotes the class of functions
f ∈ V that f(U) is starlike with respect to the origin.

A function f ∈ V is said to be convex of order α (1 ≤ α < 4
3 ) if and only if

ℜ
(
1 +

zf ′′(z)

f ′(z)

)
< α (z ∈ U).

This class is denoted by VK(α). Further, VK = VK(0), the well-known standard class of convex functions.It is an
established fact that f ∈ VK(α) ⇐⇒ zf ′ ∈ VS∗(α).

Motivated by the earlier works of Ali et al., [1] and Murugusundaramoorthy et al., [11], we define the following
two new subclasses Pλ(γ, β) and Qλ(γ, β) of V.

For some γ (1 ≤ γ < 4
3 ), λ (0 ≤ λ ≤ 1), β ≥ 0 and functions of the form (1.1),we let Pλ(γ, β) be the subclass of S

satisfying the analytic criteria

ℜ
(

zf ′(z)

(1− λ)z + λf(z)
− γ

)
< β

∣∣∣∣ zf ′(z)

(1− λ)z + λf(z)
− 1

∣∣∣∣ , z ∈ U

and also let Qλ(γ, β), be the subclass of S satisfying the analytic criteria

ℜ
(

zf ′(z) + z2f ′′(z)

(1− λ)z + λzf ′(z)
− γ

)
< β

∣∣∣∣ zf ′(z) + z2f ′′(z)

(1− λ)z + λzf ′(z)
− 1

∣∣∣∣ , z ∈ U.

Also let VPλ(γ, β) = Pλ(γ, β) ∩ V and VQλ(γ, β) = Qλ(γ, β) ∩ V.
By suitably specializing the parameters λ, γ, β one can define the new subclasses as stated in the following Examples:

Example 1.1. For some γ (1 ≤ γ < 4
3 ), β ≥ 0 and choosing λ = 1 and functions of the form (1.2), we let VP1(γ, β) ≡

VSP(γ, β) be the subclass of V satisfying the analytic criteria

ℜ
(
zf ′(z)

f(z)
− γ

)
< β

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ z ∈ U.

and also let VQ1(γ, β) ≡ VUC(γ, β) be the subclass of V satisfying the analytic criteria

ℜ
(
1 +

zf ′′(z)

f ′(z)
− γ

)
< β

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U.

Note that
VSP1(γ, 0) ≡ VS∗(γ) and VQ1(γ, 0) ≡ VK(γ)

the subclasses studied by Uralegaddi et al., [24]and he proved the following necessary and sufficient conditions :

Lemma 1.2. [24] A function f ∈ V and of the form (1.2)
(i) belongs to the class VS∗(α) if and only if

∞∑
n=2

(n− α)|an| ≤ α− 1. (1.3)

(ii) belongs to the class VK(α) if and only if

∞∑
n=2

n(n− α)|an| ≤ α− 1. (1.4)
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By taking λ = 0 we define the following new subclasses of analytic functions with positive coefficients.

Example 1.3. For some γ(1 ≤ γ < 4
3 ), β ≥ 0, λ = 0 and f ∈ V of the form (1.2),we let

(i) VP0(γ, β) ≡ VSD(γ, β) the subclass of V satisfying the analytic criteria

ℜ (f ′(z)− γ) < β |f ′(z)− 1| , (z ∈ U)

and
(ii) VQ0(γ, β) ≡ VCD(γ, β) the subclass of V satisfying the analytic criteria

ℜ ((zf ′(z))′ − γ) < β |(zf ′(z))′ − 1| , z ∈ U.

Example 1.4. For some γ(1 ≤ γ < 4
3 ),β = 0, λ = 0 and f ∈ V of the form (1.2),we let

(i) VP0(γ, 0) ≡ VR(γ) the subclass of V satisfying the analytic criteria

ℜ (f ′(z)) < γ, (z ∈ U)

and
(ii) VQ0(γ, 0) ≡ VN (γ) the subclass of V satisfying the analytic criteria

ℜ (zf ′(z) + f ′′) < γ, z ∈ U.

It is well known that the special functions (series) play an important role in geometric function theory, especially in
the solution by de Branges of the famous Bieberbach conjecture. There is an extensive literature dealing with geometric
properties of different types of special functions, especially for the generalized, Gaussian hypergeometric functions
(see[6, 8, 19, 21, 22, 23]). Recently there has been triggering interest to study the geometric properties of analytic
functions associating with generalized distributions and Poisons distributions (see [2, 3, 10, 12, 13, 14, 15, 16, 17]).
In our present study we establish connections between Pascal distribution series and Geometric Function Theory due
to El-Deeb[7] and Bulboaca and Murugusundaramoorthy[5]. A variable x is said to be Pascal distribution if it takes

the values 0, 1, 2, 3, . . . with probabilities (1− q)m, qm(1−q)m

1! , q2m(m+1)(1−q)m

2! , q3m(m+1)(m+2)(1−q)m

3! , . . . respectively,
whereq and m are called the parameter,and thus

P (x = k) =

(
k +m− 1

m− 1

)
· qk(1− q)m, k = 0, 1, 2, 3, . . .

Very recently, El-Deeb[7] introduce a power series whose coefficients are probabilities of Pascal distribution

Φm
q (z) = z +

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)mzn, z ∈ U (1.5)

where m ≥ 1; 0 ≤ q ≤ 1 and we note that, by ratio test the radius of convergence of above series is infinity. Now, we
consider the linear operator due to Bulboaca and Murugusundaramoorthy[5]

Im
q (z) : A → A

defined by the convolution or hadamard product

Im
q f(z) = Φm

q (z) ∗ f(z) = z +

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)manz

n, z ∈ U (1.6)

Motivated by result on connections between various subclasses of analytic univalent functions associating with gener-
alized distributions (see [2, 3, 10, 12, 13, 14, 15, 16, 17] and also the references cited therein), we establish a number
of connections between the classes VPλ(γ, β) and VQλ(γ, β) by applying the convolution operator given by (1.6)
involving Pascal distribution.
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2 Inclusion results

Lemma 2.1. (Characterization Property): A function f ∈ V and of the form (1.2)
(i) belongs to the class VPλ(γ, β) if and only if

∞∑
n=2

[n(1 + β)− λ(γ + β)]|an| ≤ γ − 1. (2.1)

(ii) belongs to the class VQλ(γ, β) if and only if

∞∑
n=2

n[n(1 + β)− λ(γ + β)]|an| ≤ γ − 1. (2.2)

Proof . Proof of Case (i):
Let f be of the form (1.1) belong to the class VQλ(γ, β). It suffices to show that

ℜ
(

zf ′(z)

(1− λ)z + λf(z)
− 1

)
− β

∣∣∣∣ zf ′(z)

(1− λ)z + λf(z)
− 1

∣∣∣∣ ≤ γ − 1.

We have

ℜ
(

zf ′(z)

(1− λ)z + λf(z)
− 1

)
− β

∣∣∣∣ zf ′(z)

(1− λ)z + λf(z)
− 1

∣∣∣∣
≤
∣∣∣∣(1 + β)

zf ′(z)

(1− λ)z + λf(z)
− 1

∣∣∣∣
=

(1 + β)
∞∑

n=2
(n− λ)|an|

1−
∞∑

n=2
λ|an|

.

The last expression is bounded above by γ − 1 if

∞∑
n=2

[n(1 + β)− λ(γ + β)]|an| ≤ γ − 1

Conversely,we need only to prove the if f ∈ VPλ(γ, β) and z is real then

ℜ

1 +
∞∑

n=2
n anz

n−1

1 +
∞∑

n=2
λ anzn−1

− γ

 < β

∣∣∣∣∣∣∣∣
∞∑

n=2
(n− λ) anz

n−1

1 +
∞∑

n=2
λ anzn−1

∣∣∣∣∣∣∣∣ .
Letting z → 1 along the real axis, we obtain the desired inequality

∞∑
n=2

[n(1 + β)− λ(γ + β)] |an| ≤ γ − 1,

where 0 ≤ λ < 1, 0 ≤ γ < 1 and β ≥ 0. This completes the proof of case(i).

Proof of Case (ii)
Let f ∈ VQλ(γ, β) be of the form (1.1).Then by definition we have

f ∈ VQλ(γ, β) ⇐⇒ zf ′ ∈ VPλ(γ, β),

thus we havef(z) =

(
z +

∞∑
n=2

(nan)z
n

)
∈ VPλ(γ, β). Hence by proceeding on lines similar to case (i), we easily get

(2.2). □

By using the result of Uralegaddi et al., [24],we state the following remark:
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Remark 2.2. A function f ∈ V and of the form (1.2) then f ∈ VPλ(γ, β) if and only if

∞∑
n=2

[
n− λ

(
γ + β

1 + β

)]
|an| ≤

(
γ + β

1 + β

)
− 1. (2.3)

We note that VS∗
(

γ+β
1+β

)
≡ VSP(γ, β) VK

(
γ+β
1+β

)
≡ VUC(γ, β) and USD(α) = VSD

(
γ+β
1+β

)
and using the above

identities we state (without proof) the following necessary and sufficient conditions for the subclasses defined in the
Examples 1.1to 1.4.

Lemma 2.3. A function f ∈ V and of the form (1.2),then
(i) f ∈ VSP(γ, β) if and only if

∑∞
n=2[n(1 + β)− (γ + β)]|an| ≤ γ − 1

(ii)f ∈ VUC(γ, β) if and only if
∑∞

n=2 n[n(1 + β)− (γ + β)]|an| ≤ γ − 1.

Lemma 2.4. A function f ∈ V and of the form (1.2), then
(i) f ∈ VSD(γ, β) if and only if

∑∞
n=2 n(1 + β)|an| ≤ γ − 1

(ii) f ∈ VCD(γ, β) if and only if
∑∞

n=2 n
2(1 + β)|an| ≤ γ − 1.

Lemma 2.5. A function f ∈ V and of the form (1.2)
(i) belongs to the class VR(γ) if and only if

∑∞
n=2 n|an| ≤ γ − 1

(ii) belongs to the class VN (γ) if and only if
∑∞

n=2 n
2|an| ≤ γ − 1.

For convenience throughout in the sequel,unless otherwise stated we let
m ≥ 1; 0 ≤ q ≤ 1 γ (1 ≤ γ < 4

3 ), λ (0 ≤ λ ≤ 1), β ≥ 0 and we use the following notations:

∞∑
n=0

(
n+m− 1

m− 1

)
qn =

1

(1− q)m
;

∞∑
n=0

(
n+m− 2

m− 2

)
qn =

1

(1− q)m−1
;

∞∑
n=0

(
n+m

m

)
qn =

1

(1− q)m+1
;

∞∑
n=0

(
n+m+ 1

m+ 1

)
qn =

1

(1− q)m+2
(2.4)

Theorem 2.6. If m ≥ 1 then Φm
q (z), is in the class VPλ(γ, β) if and only if

(1 + β)qm

(1− q)
+ [(1 + β)− λ(γ + β)] (1− (1− q)m) ≤ γ − 1. (2.5)

Proof . Since Φm
q (z) = z +

∞∑
n=2

(
n+m−2
m−1

)
qn−1(1− q)mzn ∈ VPλ(γ, β) by virtue of Lemma 2.1 and (2.1) it suffices to

show that
∞∑

n=2

[n(1 + β)− λ(γ + β)]

(
n+m− 2

m− 1

)
qn−1(1− q)m ≤ γ − 1.

Let L1(m,λ, β, γ) =
∑∞

n=2[n(1 + β)− λ(γ + β)]
(
n+m−2
m−1

)
qn−1(1− q)m, now by writing n = (n− 1) + 1 we get

L1(m,λ, β, γ) =(1 + β)

∞∑
n=2

n

(
n+m− 2

m− 1

)
qn−1(1− q)m − λ(γ + β)

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m

=(1 + β)(1− q)m
∞∑

n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1 + (1− q)m[(1 + β)− λ(γ + β)]

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1

=(1 + β)(1− q)m
∞∑

n=2

qm

(
n+m− 2

m

)
qn−2 + (1− q)m[(1 + β)− λ(γ + β)]

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1
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L1(m,λ, β, γ) =(1 + β)(1− q)m
∞∑

n=0

qm

(
n+m

m

)
qn + (1− q)m[(1 + β)− λ(γ + β)]

( ∞∑
n=0

(
n+m− 1

m− 1

)
qn − 1

)

≤(1 + β)(1− q)mqm
1

(1− q)m+1
+ (1− q)m[(1 + β)− λ(γ + β)]

(
1

(1− q)m
− 1

)
≤ (1 + β)qm

(1− q)
+ [(1 + β)− λ(γ + β)] (1− (1− q)m) .

But this expression is bounded above by γ − 1 if and only if (2.5) holds. Thus the proof is complete. □

Theorem 2.7. If m ≥ 1 then Φm
q (z), is in the class VQλ(γ, β) if and only if

(1 + β)m(m+ 1)q2

(1− q)2
+

[3(1 + β)− λ(γ + β)]qm

1− q
+ [(1 + β)− λ(γ + β)] (1− (1− q)m) ≤ γ − 1.

Proof . Since Φm
q (z) = z +

∞∑
n=2

(
n+m−2
m−1

)
qn−1(1− q)mzn ∈ VQλ(γ, β) by virtue of Lemma 2.1 and (2.2) it suffices to

show that
∞∑

n=2

n[n(1 + β)− λ(γ + β)]

(
n+m− 2

m− 1

)
qn−1(1− q)m ≤ γ − 1.

Let

L2(m,λ, β, γ) =

∞∑
n=2

(
n2(1 + β)− nλ(γ + β)

)(n+m− 2

m− 1

)
qn−1(1− q)m.

Writing n = (n− 1) + 1 and n2 = (n− 1)(n− 2) + 3(n− 1) + 1, we can rewrite the above term as

L2(m,λ, β, γ) = (1 + β)(1− q)m
∞∑

n=2

(n− 1)(n− 2)

(
n+m− 2

m− 1

)
qn−1

+[3(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1

+[(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

(
n+m− 2

m− 1

)
qn−1

L2(m,λ, β, γ)) = (1 + β)q2(1− q)m
∞∑

n=2

(n− 1)(n− 2)

(
n+m− 2

m− 1

)
qn−3

+[3(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

qm(n− 1)

(
n+m− 2

m

)
qn−2

+[(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

(
n+m− 2

m− 1

)
qn−1

= (1 + β)q2(1− q)m
∞∑

n=3

(n− 1)(n− 2)

(
n+m− 2

m− 1

)
qn−3

+[3(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

qm(n− 1)

(
n+m− 2

m

)
qn−2

+[(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

(
n+m− 2

m− 1

)
qn−1
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= (1 + β)q2(1− q)m
∞∑

n=3

(n− 1)(n− 2)

(
n+m− 2

m− 1

)
qn−3

+[3(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

qm(n− 1)

(
n+m− 2

m

)
qn−2

+[(1 + β)− λ(γ + β)](1− q)m
∞∑

n=2

(
n+m− 2

m− 1

)
qn−1

= (1 + β)m(m+ 1)q2(1− q)m
∞∑

n=0

(
n+m+ 1

m+ 1

)
qn + [3(1 + β)− λ(γ + β)]qm(1− q)m

∞∑
n=0

(
n+m

m

)
qn

+[(1 + β)− λ(γ + β)](1− q)m
(

1

(1− q)m
− 1

)
=

(1 + β)m(m+ 1)q2

(1− q)2
+

[3(1 + β)− λ(γ + β)]qm

1− q
+ [(1 + β)− λ(γ + β)] (1− (1− q)m) .

But this expression is bounded above by γ − 1 if and only if (2.6) holds. Thus the proof is complete. □

Corollary 2.8. If m ≥ 1 then Φm
q (z), is in the class

(i) is in the class VSP(γ, β) if and only if

(1 + β)qm

(1− q)(2− (1− q)m)
≤ γ − 1.

(ii) is in the class VUC(γ, β) if and only if

(1 + β)m(m+ 1)q2

(2− (1− q)m)(1− q)2
+

[3 + 2β − γ)]qm

(1− q)(2− (1− q)m)
≤ γ − 1.

Proof . The proof follows by taking λ = 1 and proceeding as in Theorems 2.6 and 2.7 respectively. □ By taking
λ = 0 in Theorem 2.6 and Theorem 2.7 we state the following:

Corollary 2.9. If m ≥ 1 then Φm
q (z), is in the class

(i) is in the class VSD(γ, β) if and only if

(1 + β)

[
qm

(1− q)
+ 1− (1− q)m

]
≤ γ − 1

(ii) is in the class VCD(γ, β) if and only if

(1 + β)

[
m(m+ 1)q2

(1− q)2
+

3qm

1− q
+ 1− (1− q)m

]
≤ γ − 1.

3 Image Properties of Im
q and L(m, z) Operators

A function f ∈ A is said to be in the class Rτ (µ, δ), (τ ∈ C\{0}, 0 < µ ≤ 1; δ < 1), if it satisfies the inequality∣∣∣∣∣ (1− µ) f(z)z + µf ′(z)− 1

2τ(1− δ) + (1− µ) f(z)z + µf ′(z)− 1

∣∣∣∣∣ < 1, (z ∈ U).

The class Rτ (µ, δ) was introduced earlier by Swaminathan [22](for special cases see the references cited there in) and
obtained the following estimate.

Lemma 3.1. [23] If f ∈ Rτ (µ, δ) is of form (1.1), then

|an| ≤
2 |τ | (1− δ)

1 + µ(n− 1)
, n ∈ N \ {1}. (3.1)

The bounds given in (3.1) is sharp.
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Making use of the Lemma3.1, we will study the action of the Pascal distribution series on the class VQλ(α, β) in the
following theorem.

Theorem 3.2. If m ≥ 1 and f ∈ Rτ (µ, δ), if the inequality

[
(1 + β)qm

(1− q)
+ [(1 + β)− λ(γ + β)] (1− (1− q)m)

]
≤ µ(γ − 1)

2 |τ | (1− δ)
(3.2)

is satisfied, then Im
q f(z) ∈ VQλ(α, β).

Proof . Let f be of the form (1.1) belong to the class Rτ (µ, δ). By virtue of Lemma 2.1 and (2.2) it suffices to show
that

∞∑
n=2

n[n(1 + β)− λ(γ + β)]

(
n+m− 2

m− 1

)
qn−1(1− q)m|an| ≤ γ − 1

Since f ∈ Rτ (µ, δ) then by Lemma 3.1 we have

|an| ≤
2 |τ | (1− δ)

1 + µ(n− 1)
, n ∈ N \ {1}.

Let L3(m,λ, β, γ) =

∞∑
n=2

n[n(1 + β)− λ(γ + β)]

(
n+m− 2

m− 1

)
qn−1(1− q)m|an|

≤ 2 |τ | (1− δ)

∞∑
n=2

n
[n(1 + β)− λ(γ + β)]

1 + µ(n− 1)

(
n+m− 2

m− 1

)
qn−1(1− q)m.

Since 1 + µ(n− 1) ≥ nµ, we get

L3(m,λ, β, γ) ≤ 2 |τ | (1− δ)

µ

∞∑
n=2

[n(1 + β)− λ(γ + β)]

(
n+m− 2

m− 1

)
qn−1(1− q)m.

Proceeding as in Theorem 2.6, we get

L3(m,λ, β, γ) ≤ 2 |τ | (1− δ)

µ

[
(1 + β)qm

(1− q)
+ [(1 + β)− λ(γ + β)] (1− (1− q)m)

]
.

But this expression is bounded above by γ− 1 if and only if (3.2) holds. Thus the proof is complete. □ Putting λ = 1
and proceeding as in Theorem 3.2 ,we obtain the next special case:

Corollary 3.3. If m ≥ 1 and f ∈ Rτ (µ, δ), if the inequality

[
(1 + β)qm

(1− q)
− (γ − 1) (1− (1− q)m)

]
≤ µ(γ − 1)

2 |τ | (1− δ)
(3.3)

is satisfied, then Im
q f(z) ∈ VUC(γ, β).

Corollary 3.4. If m ≥ 1 and f ∈ Rτ (µ, δ), if the inequality

(1 + β)

[
qm

1− q
+ (1− (1− q)m)

]
≤ µ(γ − 1)

2 |τ | (1− δ)

is satisfied, then Im
q f(z) ∈ VCD(γ, β).
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The proof follows by taking λ = 0 and proceeding as in Theorem 3.2.

Theorem 3.5. Let m ≥ 1, then L(m, z) =
∫ z

0

Im
q (t)

t dt is belong to the class VQλ(γ, β) if and only if

(1 + β)qm

(1− q)
+ [(1 + β)− λ(γ + β)] (1− (1− q)m) ≤ γ − 1. (3.4)

Proof . Since

L(m, z) = z −
∞∑

n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m

zn

n

then by Theorem 2.6 we need only to show that

∞∑
n=2

n[n(1 + β)− λ(γ + β)]
1

n

(
n+m− 2

m− 1

)
qn−1(1− q)m ≤ γ − 1.

That is,

∞∑
n=2

[n(1 + β)− λ(γ + β)]

(
n+m− 2

m− 1

)
qn−1(1− q)m ≤ γ − 1.

Now by writing n = (n− 1) + 1 and Proceeding as in Theorem 2.6, we get

∞∑
n=2

[n(1 + β)− λ(γ + β)]

(
n+m− 2

m− 1

)
qn−1(1− q)m =

[
(1 + β)qm

(1− q)
+ [(1 + β)− λ(γ + β)] (1− (1− q)m)

]

which is bounded above by γ − 1 if and only if (3.4) holds. □

By fixing λ = 1 and λ = 0 in above theorem respectively, we state the following corollary:

Corollary 3.6. Let m ≥ 1, then L(m, z) =
∫ z

0

Im
q (t)

t dt is belong to the class

1. VUC(γ, β) if and only if
(1 + β)qm

(1− q)(2− (1− q)m)
≤ γ − 1

and

2. VCD(γ, β) if and only if (1 + β)
(

qm
1−q + 1− (1− q)m

)
≤ γ − 1.

Concluding Remark: By specializing λ = 0 or λ = 1 analogously one can deduce above results for various
subclasses with positive coefficients similar to the classes defined in [4, 20] . Further,by taking β = 0 and specializing
λ = 0 or λ = 1 we can deduce above results for the subclasses studied in [24].
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