Some types of Smarandache filters of a Smarandache BH-algebra

Qasim Mohsin Luhaiba,, Husein Hadi Abbassb

aThi-Qar General Directorate of Education, Ministry of Education, Iraq
bDepartment of Mathematics, Faculty of Education for Girls, University of Kufa Najaf, Iraq

(Communicated by Ali Jabbari)

Abstract

In this paper, the notions of a Smarandache p-filter, a Smarandache \(n \)-fold \(p \)-filter, Smarandache \(q \)-filter, a Smarandache-\(n \)-fold \(q \)-filter of a Smarandache BH-Algebra are introduced. Some properties of them with some theorems, proportions and examples are given.

\textit{Keywords:} BCK-algebra, BH-algebra, Smarandache filter.

\textit{2020 MSC:} 13L99

1. Introduction

The idea of BCK-algebras was formulated first in \cite{4, 5}. In the same year another algebraic structure called BCI-algebra which was a popularization of a BCK-algebra was given by K. Iséki \cite{6}. In 1983, Hu and Li introduced the notion of a BCH-algebra which was a popularization of BCK/BCI-algebras \cite{8, 11}. Hoo show that the notions of an ideal and a filter in a BCI-algebra \cite{7}. A BH-algebra is an algebraic structure introduced by Jun et al in \cite{10} which was a popularization of BCH/BCI/BCK-algebras. The notions of a Smarandache BCI-algebra, Smarandache ideal of a Smarandache BCI-algebra are given by Jun in \cite{9}. Abbass and Dahham introduced the concept of completely closed filter of a BH-algebra in \cite{11}. Abbass and Luhaib introduced the idea of Smarandache filter of a Smarandache BH-Algebra in \cite{3}. In this paper, the notions of a Smarandache-\(p \)-filter, a Smarandache-\(n \)-fold \(p \)-filter, Smarandache \(q \)-filter, a Smarandache-\(n \)-fold \(q \)-filter and of a Smarandache BH-Algebra are given.
2. Preliminaries

In this section, several basic connotations about a BCI-algebra, a BCK-algebra, a Smarandache BH-algebra, and a Smarandache filter of a Smarandache are reviewed.

Definition 2.1. A BCI-algebra is an algebra $\langle X, \Box, 0 \rangle$, where X is a nonempty set, \Box is a binary operation and 0 is a constant, for all $x, y, z \in X$, satisfying the following axioms:

- i. $(x \Box y) \Box (z \Box y) = 0$,
- ii. $(x \Box (y \Box z)) \Box y = 0$,
- iii. $x \Box x = 0$,
- iv. $x \Box y = 0$ and $y \Box x = 0$ imply $x = y$.

Definition 2.2. A BCK-algebra is a BCI-algebra satisfying the axiom: $0 \Box x = 0$, for all $x \in X$.

Definition 2.3. A BH-algebra is a nonempty set X with a constant 0 and a binary operation \Box satisfying the following conditions:

- i. $x \Box x = 0$, for all $x \in X$.
- ii. $x \Box y = 0$ and $y \Box x = 0$ imply $x = y$, for all $x, y \in X$.
- iii. $x \Box 0 = x$, for all $x \in X$.

Definition 2.4. A nonempty subset S of a BH-algebra X is called a subalgebra of X if $x \Box y \in S$, for all $x, y \in S$.

Definition 2.5. A filter of a BH-algebra X is a non-empty subset F of X such that:

- (F1) if $x \in F$ and $y \in F$, then $y \Box (x \Box y) \in F$ and $x \Box (x \Box y) \in F$.
- (F2) If $x \in F$ and $x \Box y = 0$ then $y \in F$ for all $y \in X$.

Further F is a closed filter if $0 \Box x \in F$, for all $x \in F$.

Definition 2.6. Let X be a BH-algebra and F be a filter of X. Then F is called a p-filter denoted by $p-f$ if it satisfies:

$$\text{if } x, y \in F \text{ imply } (x \Box z) \Box (y \Box z) \in F \text{ for all } y, z \in X.$$

Definition 2.7. Let F be a filter of a BH-algebra X. If $x, y \in F$ and there exists a fixed $n \in N$ such that $z^n \in X$ imply $(x \Box z^n) \Box (y \Box z^n) \in F$, for all $z \in X$. Then F is said to be a n-fold p-filter of X.

Definition 2.8. Let X be a BH-algebra and F be a filter of X. Then F is called a q-filter denoted by $q-f$ if it satisfies:

$$\text{If } x \Box z \in F, y \in F \text{ imply } x \Box (y \Box z) \in F, \text{ for all } x, z \in X.$$

Definition 2.9. Let X be a BH-algebra, F be a filter of X, and there exists a fixed $n \in N$ such that $x \Box z^n \in F, y \in F$, for all $x, z \in X$ imply $x \Box (y \Box z^n) \in F$. Then F is called a n-fold q-filter of X.

Definition 2.10. A Smarandache BH-algebra is defined to be a BH-algebra X in which there exists a proper subset Q of X denoted by S, BH-algebra such that

- i. $0 \in Q$ and $|Q| \geq 2$.
- ii. Q is a BCK-algebra under the operation of X.

Definition 2.11. A non-empty subset F of a S. BH-algebra X is called a **Smarandache filter** of X denoted by $S.f$, if it satisfies (F_1) and

$$(F_3) \text{ If } x \in F \text{ and } x \triangleleft y = 0 \text{ then } y \in F, \forall y \in Q.$$

Proposition 2.12. Let X be a S. BH-algebra and let $\{F_\beta, \beta \in \Omega\}$ be a family of $S.f$ of X. Then $\bigcap_{\beta \in \Omega} F_\beta$ is an $S.f$ of X.

Proposition 2.13. Let X be a $S.f$ and let $\{F_i, i \in \lambda\}$ be a chain of $S.f$ of X. Then $\bigcup_{\beta \in \Omega} F_\beta$ is a $S.f$ of X.

Theorem 2.14. Let X be a S. BH-algebra, and F be a $S.f$ of X such that $x \triangleleft y \neq 0$, for all $y \notin F$ and $x \in F$. Then F is a filter of X.

3. Main Results

In this section, the notions of a Smarandache-p-filter, a Smarandache n-fold p-filter, Smarandache q-filter, a Smarandache-n-fold q-filter and of a Smarandache BH-Algebra of a Smarandache BH-Algebra are introduced. Also, some properties of these notions are studied.

Definition 3.1. Let X be a S. BH-algebra and F be a Smarandache filter of X. Then F is called a **Smarandache p-filter** of X and denoted by $S.p.f$ of X if it satisfies:

$$\text{If } x, y \in F \text{ imply } (x \triangleleft z) \circ (y \triangleleft z) \in F \text{ for all } z \in Q.$$

Further F is a Smarandache closed p-filter if $0 \triangleleft x \in F$, for all $x \in F$.

Example 3.2. Let $X = \{0, 1, 2, 3\}$. Define \triangleleft as follows:

\[
\begin{array}{cccc}
\triangleleft & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 2 & 3 \\
1 & 1 & 0 & 1 & 2 \\
2 & 2 & 2 & 0 & 1 \\
3 & 3 & 3 & 2 & 0 \\
\end{array}
\]

where $Q = \{0, 1\}$, the subset $F = \{0, 1, 2\}$ is a $S. p.f$ of X. But is not $p.f$ of X, since $z = 3, x = 3, y = 0, (3 \triangleleft 3) \circ (0 \triangleleft 3) = 3 \notin F$.

Proposition 3.3. Let X be a S. BH-algebra and F be a p-f of X. Then F is a $S.p.f$ of X.

Proof. Directly since $Q \subseteq X$. □

Theorem 3.4. Let X be a S. BH-algebra, and F be a $S.p.f$ of X such that $x \triangleleft y \neq 0$, $y \notin F$ if $(x \triangleleft z) \circ (y \triangleleft z) \notin F$ and $x \in F, z \in X$. Then F is a $p.f$ of X.
Proof. Let F be a S.p-f of X it follows that By Definition 3.1 is a S.f of X. Since $x \boxdot y \neq 0, y \notin F, x \in F$, by Theorem 2.14, F is a filter of X.

Now, let $x, y \in F, z \in X$, then we have two cases:

Case (I): If $z \in Q$, imply $(x \boxdot z) \cap (y \boxdot z) \in F$ because by definition 3.1 F is S.p-f of X.

Cases (II): If $z \notin Q$, then either $(x \boxdot z) \cap (y \boxdot z) \notin F$ or $(x \boxdot z) \cap (y \boxdot z) \in F$.

Suppose $(x \boxdot z) \cap (y \boxdot z) \notin F$, then $y \notin F$, this is a contradiction. Thus $(x \boxdot z) \cap (y \boxdot z) \in F$.

Therefore, is a p.f of X. □

Proposition 3.5. Let X be a Smarandache BH-algebra, and let $\{F_\beta, \beta \in \Omega\}$ be a family of S.p-fs of X. Then $\bigcap_{\beta \in \Omega} F_\beta$ is a S.p-f of X.

Proof. Let $\{F_\beta, \beta \in \Omega\}$ be a family of S.p-fs of X, imply $\{F_\beta, \beta \in \Omega\}$ be a family of Smarandache filters of X. Hence, By Proposition 2.12 $\bigcap_{\beta \in \Omega} F_\beta$ is a S.f of X. Now, let $x, y \in \bigcap_{\beta \in \Omega} F_\beta$ and $z \in Q$. Then $x, y \in F_\beta$ and $z \in Q, \forall \beta \in \Omega$ implies that $(x \boxdot z) \cap (y \boxdot z) \in F_\beta, \forall \beta \in \Omega$, because F_β is a S.p-f of X, for all $\beta \in \Omega$, this mean that $(x \boxdot z) \cap (y \boxdot z) \in \bigcap_{\beta \in \Omega} F_\beta$. Therefore $\bigcap_{\beta \in \Omega} F_\beta$ is a S.p-f of X. □

Example 3.6. Let $X = \{0, 1, 2, 3, 4, 5\}$. Define \boxdot as follows:-

<table>
<thead>
<tr>
<th>\boxdot</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

where $Q = \{0, 2\}$. The subset $F_1 = \{0, 2, 3\}$ and $F_2 = \{0, 2, 5\}$ are two S.p-f of X, but $F_1 \cup F_2 = \{0, 2, 3, 5\}$ is not a S.p-f of X, since $x = 3, y = 5, z = 0 \notin Q$ but $(3 \boxdot 0) \cap (5 \boxdot 0) = 1 \notin F_1 \cup F_2$,

Proposition 3.7. Let X be a S. BH-algebra, and let $\{F_\beta, \beta \in \Omega\}$ be a chain of S.P.f of X. Then $\bigcup_{\beta \in \Omega} F_\beta$ is a S.P.f of X.

Proof. Let $\{F_\beta, \beta \in \Omega\}$ be a chain of S.P.f of X. it follows that $\{F_\beta, \beta \in \Omega\}$ be a chain of Smarandache filters of X [By definition 3.1]. This together with Proposition 2.13 implies that $\bigcup_{\beta \in \Omega} F_\beta$ is a Smarandache filter of X.

Now, let $x, y \in \bigcup_{\beta \in \Omega} F_\beta, z \in Q$, then there exists $F_n, F_m \in \{F_\beta, \beta \in \Omega\}, \text{such that } x \in F_j$ and $y \in F_k$. Then either $F_n \subseteq F_m$ or $F_m \subseteq F_n$. If $F_n \subseteq F_m$, it follows that $x, y \in F_m$ and $z \in Q$. So, there exists $m \in \Omega$ such that $(x \boxdot z) \cap (y \boxdot z) \in F_m$, because F_i is a S.P.f of $X, (\forall \beta \in \Omega)$. Then $(x \boxdot z) \cap (y \boxdot z) \in \bigcup_{\beta \in \Omega} F_\beta$. Similarly, $F_m \subseteq F_n$ implies that $\bigcup_{\beta \in \Omega} F_\beta$ is a S.P.f of X. □
Definition 3.8. Let \(F \) be a Smarandache filter of a S. BH-algebra \(X \). If \(x, y \in F \) and there exists a fixed \(n \in N \) such that \(z^n \in Q \) imply \(x \triangle z^n \triangle (y \triangle z^n) \in F \), for all \(z \in Q \). Then \(F \) is said to be a Smarandache \(n \)-fold p-filter of \(X \), denoted by a **S. \(n \)-fold. p-f** of \(X \).

Example 3.9. Let \(X = \{0, 1, 2, 3, 4\} \) be as in example 3.6. The filter \(F = \{0, 2, 3\} \) is a S. 2-fold. p-f of \(X \).

Theorem 3.10. Let \(X \) be a S. BH-algebra, and \(F \) be a S. \(n \)-fold. p-f of \(X \) such that \(x \triangle y \neq 0, y \notin F \) if \(x \triangle z^n \triangle (y \triangle z^n) \notin F \) and \(x \in F, z^n \in X \), for a fixed \(n \in N \). Then \(F \) is a \(n \)-fold p-filter of \(X \).

Proof. Let \(F \) be a S. \(n \)-fold. P.f of \(X \), then By Definition 3.8, \(F \) is a S.f of \(X \). Since \(x \triangle y \neq 0, y \notin F, x \in F \), By Theorem 2.14, \(F \) is a filter of \(X \). Now, let \(x, y \in F, z^n \in X \), then we have the following two cases:

- **Case (I):** If \(z^n \in Q \), then \((x \triangle z^n) \triangle (y \triangle z^n) \in F \), because by Definition 3.8, \(F \) is S. \(n \)-fold. P.f of \(X \).
- **Cases (II):** If \(z^n \notin Q \), then either \((x \triangle z^n) \triangle (y \triangle z^n) \notin F \) or \((x \triangle z^n) \triangle (y \triangle z^n) \in F \).

Suppose that \((x \triangle z^n) \triangle (y \triangle z^n) \notin F \), then \(y \notin F \), this a contradiction. Thus \((x \triangle z^n) \triangle (y \triangle z^n) \in F \), consequently \(F \) is a \(n \)-fold p-filter of \(X \). \(\square \)

Proposition 3.11. Let \(X \) be a S. BH-algebra, and let \(\{F_\beta, \beta \in \Omega\} \) be a family of S. \(n \)-fold. p-f of \(X \). Then \(\bigcap_{\beta \in \Omega} F_\beta \) is a S. \(n \)-fold. p-f of \(X \).

Proof. Straightforward. \(\square \)

Proposition 3.12. Let \(X \) be a Smarandache BH-algebra, and let \(\{F_\beta, \beta \in \Omega\} \) be a chain of S. \(n \)-fold. p-f of \(X \). Then \(\bigcup_{\beta \in \Omega} F_\beta \) is a S. \(n \)-fold. p-f of \(X \).

Proof. Straightforward. \(\square \)

Definition 3.13. Let \(X \) be a S. BH-algebra and \(F \) be a Smarandache filter of \(X \). Then \(F \) is called a **Smarandache q-filter** and denoted by a **S.q-f** of \(X \) if it satisfies: If \(x \triangle z \in F, y \in F \) imply \(x \triangle (y \triangle z) \in F \) for all \(x, z \in Q \).

Example 3.14. Let \(X = \{0, 1, 2, 3, 4\} \). Define \(\triangle \) as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Where \(Q = \{0, 2\} \). The subset \(F = \{0, 1, 2\} \) is a S.q-f of \(X \) but it is not a q-filter of \(X \). Since \(x = 3, y = 0, z = 3 \) and \(3 \triangle (0 \triangle 3) = 3 \notin F \).
Proposition 3.15. Let X be a S. BH-algebra and F is a q-filter of X. Then F is a S.q.f of X.

Proof. Since $Q \subseteq X$, the proof is clear. \qed

Remark 3.16. Consider the $Q_1 - S$. BH-algebra and Q_2-Smarandache BH-algebra X such that $Q_1 \subseteq Q_2$. The Q_1-Smarandache q-filter of X may be not a Q_2-Smarandache q-filter of X as in the following example. Consider $X = \{0, 1, 2, 3\}$ in example 3.14, where $Q_1 = \{0, 1\}$, $Q_2 = \{0, 2, 3\}$ are BCK-algebras and $Q_1 \subseteq Q_2 : F = \{0, 1, 2\}$ is a Q_1-Smarandache q-filter of X, but it is not Q_2-Smarandache q-filter of X. Since $x = 3, y = 2, z = 3$ implies that $3 \cdot (2 \cdot 3) = 3, 3 \notin F$.

Proposition 3.17. Let X be a S. BH-algebra and F be a S.q.f of X, such that $F \subseteq Q$. Then F is a subalgebra of X.

Proof. Let $x, y \in F$. Since $z \in Q$, choose $z = 0$, we have $x = x \cdot 0 \in F, y \in F, x, 0 \in Q$, because $F \subseteq Q$. This implies that $x \cdot (y \cdot 0) \in F$, because by Definition 3.13 F is a S.q.f of X. Then $x \cdot y \in F$. Hence, F is a subalgebra. \qed

Theorem 3.18. Let X be a S. BH-algebra, and be a S.q.f of X such that $x \cdot y \neq 0, x \cdot z \notin F$, and $y \notin F \cap x \cdot (y \cdot z) \notin F$ and $x \in F, z \in X$. Then F is a q-filter of X.

Proof. Let F be a S.q.f of X, then by Definition 3.13 it is a S.f of X. Since $x \cdot y \neq 0, y \notin F, x \in F$, By Theorem 2.14 F is a filter of X.

Now, let $x \cdot z \in F, y \in F, x, z \in X$, then we have the following two cases:

Case (I): If $x, z \in Q$, then by Definition 3.13 $x \cdot (y \cdot z) \in F$.

Cases (II): If $x, z \notin Q$, then either $x \cdot (y \cdot z) \notin F$ or $x \cdot (y \cdot z) \in F$.

If $x \cdot (y \cdot z) \notin F$, then $y \in F$, or $x \cdot z \notin F$, contradiction. Since $x \cdot z \in F, y \in F$, we have $x \cdot z \notin F$. Hence, it is a q-filter of X. \qed

Proposition 3.19. Let X be a S. BH-algebra, and let $\{F_\beta, \beta \in \Omega\}$ be a family of S.q.f of X. Then $\bigcap_{\beta \in \Omega} F_\beta$ is a S.q.f of X.

Proof. Let $\{F_\beta, \beta \in \Omega\}$ be a family of S.q.fs of X, then by Definition 3.13 $\{F_\beta, \beta \in \Omega\}$ be a family of S.f of X. Thus, By Proposition 2.12 $\bigcap_{\beta \in \Omega} F_\beta$ is a S.f of X.

Now, let $x \cdot z \in \bigcap_{\beta \in \Omega} F_\beta$, $y \in \bigcap_{\beta \in \Omega} F_\beta$ such that $x, z \in Q$, it follows that $x \cdot z \in F_\beta, y \in F_\beta$, such that $x, z \in Q$, imply $x \cdot (y \cdot z) \in F_\beta, (\forall \beta \in \Omega)$, because F_β is a S.q.f of X. Hence, $x \cdot (y \cdot z) \in \bigcap_{\beta \in \Omega} F_\beta$.

Therefore, $\bigcap_{\beta \in \Omega} F_\beta$ is a S.q.f of X. \qed

Remark 3.20. Let X be a S. BH-algebra and let F_1, F_2 be a S.q.f of X. Then $F_1 \cup F_2$ is not necessary a S.q.f of X.

Example 3.21. Consider $X = \{0, 1, 2, 3, 4, 5\}$ be as in example 3.6, where $Q = \{0, 1\}$. The subset $F_1 = \{0, 1, 3\}$ and $F_2 = \{0, 1, 4\}$ are two S.q.s of X, but $F_1 \cup F_2 = \{0, 1, 3, 4\}$ is not a S.q.f of X, because $3, 4 \in F_1 \cup F_2$, but $3 \cdot (3 \cdot 4) = 2 \notin F_1 \cup F_2$. Then $F_1 \cup F_2$ it is not a S.q.f.
Proposition 3.22. Let X be a S. BH-algebra and let $\{F_\beta, \beta \in \Omega\}$ be a chain of S.q.f of X. Then $\bigcup_{\beta \in \Omega} F_\beta$ is a S.q.f of X.

Proof. Let $\{F_\beta, \beta \in \Omega\}$ be a chain of S.q.f of X. Then by Definition 3.13 $\{F_\beta, \beta \in \Omega\}$ is a chain of S.f of X. Thus, by Proposition 3.13 $\bigcup_{\beta \in \Omega} F_\beta$ is a S.f of X.

Now, let $x \sqcap z \in \bigcup_{\beta \in \Omega} F_\beta$, $y \in \bigcup_{\beta \in \Omega} F_\beta$, such that $x, z \in Q$, then there exist $F_n, F_m \in \{F_\beta : \beta \in \Omega\}$, such that $x \sqcap z \in F_n$ and $y \in F_m$. Thus either $F_n \subseteq F_m$ or $F_m \subseteq F_n$.

If $F_n \subseteq F_m$, then $x \sqcap z \in F_m$, $y \in F_m$, such that $x, z \in Q$, thus there exists $m \in \Omega$ such that $x \sqcap (y \sqcap z) \in F_m$, because F_β is a S.q.f of X, for all $\beta \in \Omega$. Consequently, $x \sqcap (y \sqcap z) \in \bigcup_{\beta \in \Omega} F_\beta$.

Similarly, $F_m \subseteq F_n$. Hence, $\bigcup_{\beta \in \Omega} F_\beta$ is a S.q.f of X. \qed

References

