Fuzzy partial differential equations

Mayada Abualhomos
Department Basic Science, Applied Science Private University, Amman, Jordan

(Communicated by Madjid Eshaghi Gordji)

Abstract

We will consider a type of elementary fuzzy partial differential equation that we wish to solve. The classical solution and the extension solution are discussed.

Keywords: Fuzzy partial differential equations, fuzzy numbers, classical solution, extension solution 2020 MSC: 35R13

1 Introduction

To define the elementary fuzzy partial differential equation, we are interested in. Let $I_{1}=\left[0, M_{1}\right]$ and $I_{2}=\left[0, M_{2}\right]$ for some $M_{1}, M_{2}>0, f(x, y, k)$ be a continuous function for $(x, y) \in I_{1} \times I_{2}$ and $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ a vector of constants with k_{i} in the interval $J_{i}, 1 \leq i \leq n$. The operator $\varphi\left(D_{x}, D_{y}\right)$ will be a polynomial, with constant coefficients, in D_{x} and D_{y}, where D_{x}, D_{y} stands for the partial derivative with respect to x, y respectively.

Also, let $u(x, y)$ be a continuous function, having continuous partial derivatives with respect to both x and y, with $(x, y) \in I_{1} \times I_{2}$. The crisp partial differential equation is

$$
\begin{equation*}
\varphi\left(D_{x}, D_{y}\right) u(x, y)=f(x, y, k) \tag{1.1}
\end{equation*}
$$

subject to certain boundary conditions. These boundary conditions can come in a variety of forms such as $u(0, y)=$ $c_{1}, u(x, 0)=c_{2}, u\left(M_{1}, y\right)=c_{3}, \ldots, u(0, y)=r_{l}\left(y ; c_{4}\right), u(x, 0)=h_{l}\left(x ; c_{5}\right), \ldots, u_{x}(x, 0)=h_{2}\left(x ; c_{6}\right), u_{y}(0, y)=r_{2}\left(y ; c_{7}, c_{8}\right)$, At this point, we will not give any explicit structure to the boundary conditions except to say they depend on constants c_{l}, \ldots, c_{m} with the c_{i} in intervals $L_{i}, 1 \leq i \leq m$. Let $c=\left(c_{l}, \ldots, c_{m}\right)$ be the vector of these constants. We assume that problem 1.1 with associated boundary conditions has a solution

$$
\begin{equation*}
u(x, y)=g(x, y, k, c) \tag{1.2}
\end{equation*}
$$

with $\varphi\left(D_{x}, D_{y}\right) g(x, y, k, c)$ continuous for $(x, y) \in I_{1} I_{2}, \quad k \in J=\prod J_{i}$ and $c \in L=\prod L_{i}$.

By "elementary" we mean that the solution g in 1.2 is not defined in terms of a series. That is, there are no Fourier series used to define g. Since we will need to fuzzify g we do not wish to fuzzify Fourier series. We need the solution g to be fairly simple. So, we also assume that Bessel functions and Legendre functions are not used in g. The constants k_{j} and c_{i} are not known exactly so there will be uncertainty in their values. We will model this uncertainty using fuzzy numbers. So, we will substitute triangular fuzzy numbers k_{i} for k_{i}, K_{i} in $J_{i}, 1 \leq i \leq n$, and substitute triangular fuzzy numbers C_{i} for c_{i}, C_{i} in $L_{i}, \quad 1 \leq i \leq m$.

[^0]If we fuzzify 1.1, then we obtain the elementary fuzzy partial differential equation we wish to consider, which is:

$$
\begin{equation*}
\phi\left(D_{x}, D_{y}\right) U(x, y)=F(x, y, K) \tag{1.3}
\end{equation*}
$$

subject to certain boundary conditions. The boundary conditions can be of the form $U(0, y)=C_{1}, U(x, 0)=$ $C_{2}, U\left(M_{1}, y\right)=C_{3}, \ldots, U(0, y)=R_{1}\left(y ; C_{4}\right), U(x, 0)=H_{1}\left(x ; C_{5}\right), \ldots, U_{x}(x, 0)=H_{2}\left(x ; C_{6}\right), U_{y}(0, y)=R_{2}\left(y ; C_{7}, C_{8}\right), \ldots$. The R_{i} and H_{i} are the extension principle extensions of r_{i} and h_{i} respectively [2]. We wish to solve (1.3) to certain fuzzy boundary conditions. We first introduce the classical solution (9].

2 Classical Solution

Let $Y(x, y)$ be the classical solution, $[Y(x, y)]^{\alpha}=\left[y_{1}(x, y, \alpha), y_{2}(x, y, \alpha)\right], \quad(x, y) \in I_{1} \times I_{2}, \alpha \in[0,1]$. We assume that $\varphi\left(D_{x}, D_{y}\right) y_{i}(x, y, \alpha)$ is continuous for $(x, y) \in I_{1} \times I_{2}, \alpha \in[0,1], \quad i=1,2$. Substituting the $\alpha-$ cuts of $Y(x, y)$ in (1.3) we have:

$$
\begin{equation*}
\varphi\left(D_{x}, D_{y}\right)\left[y_{1}(x, y, \alpha), y_{2}(x, y, \alpha)\right]=\left[F_{1}(x, y, \alpha), F_{2}(x, y, \alpha)\right] \tag{2.1}
\end{equation*}
$$

assuming the fuzzy boundary conditions are $U(0, y)=C_{1}, U\left(M_{1}, y\right)=C_{2}$. That is

$$
\begin{aligned}
y_{1}(0, y, \alpha) & =c_{11}(\alpha), \\
y_{2}(0, y, \alpha) & =c_{12}(\alpha), \\
y_{1}(M, y, \alpha) & =c_{21}(\alpha), \\
y_{2}(M, y, \alpha) & =c_{22}(\alpha),
\end{aligned}
$$

where $\left[C_{1}\right]^{\alpha}=\left[c_{11}(\alpha), c_{12}(\alpha)\right],\left[C_{2}\right]^{\alpha}=\left[c_{21}(\alpha), c_{22}(\alpha)\right]$. Then we find $y_{i}(x, y, \alpha), i=1,2$. We sat that $Y(x, y)$ is a solution if $\left[y_{1}(x, y, \alpha), y_{2}(x, y, \alpha)\right]$ defines a triangular fuzzy shaped number [6]. That is for all $(x, y) \in I_{1} \times I_{2}$,

$$
\partial y_{1}(x, y, \alpha) / \partial \alpha>0, \quad \partial y_{2}(x, y, \alpha) / \partial \alpha<0, \quad 0<\alpha<1, \quad y_{1}(x, y, 1)=y_{2}(x, y, 1)
$$

Example 2.1. Consider the elementary partial differential equation:

$$
\begin{equation*}
u_{x y}=k_{1} x y+k_{2} e^{x}, \tag{2.2}
\end{equation*}
$$

for $k_{1} \in\left[0, M_{3}\right], k_{2} \in\left[0, M_{4}\right], \quad M_{3}, M_{4}>0$. The initial conditions are

$$
\begin{aligned}
& u(x, 0)=c_{1} \\
& u_{y}(0, y)=c_{2} y
\end{aligned}
$$

for $c_{1} \in\left[0, M_{5}\right], c_{2} \in\left[0, M_{6}\right], M_{5}, M_{6}>0$. Now, assuming $c_{1}, c_{2}, k_{1}, k_{2}$ are fuzzy triangular numbers, we have:

$$
\begin{aligned}
& {\left[C_{1}\right]^{\alpha}=\left[c_{11}(\alpha), c_{12}(\alpha)\right], \quad\left[C_{2}\right]^{\alpha}=\left[c_{21}(\alpha), c_{22}(\alpha)\right],} \\
& {\left[K_{1}\right]^{\alpha}=\left[k_{11}(\alpha), k_{12}(\alpha)\right], \quad\left[K_{2}\right]^{\alpha}=\left[k_{21}(\alpha), k_{22}(\alpha)\right], \text { then }} \\
& \partial^{2} y_{1}(x, y, \alpha) / \partial y \partial x=k_{11}(\alpha) x y+k_{21}(\alpha) e^{x} \\
& \partial^{2} y_{2}(x, y, \alpha) / \partial y \partial x=k_{12}(\alpha) x y+k_{22}(\alpha) e^{x} \\
& y_{1}(x, 0, \alpha)=c_{11}(\alpha) \\
& y_{2}(x, 0, \alpha)=c_{12}(\alpha) \\
& \partial y_{1}(0, y, \alpha) / \partial y=c_{21}(\alpha) y \\
& \partial y_{2}(0, y, \alpha) / \partial y=c_{22}(\alpha) y,
\end{aligned}
$$

with solutions,

$$
y_{1}(x, y, \alpha)=\left(k_{11}(\alpha) / 4\right) x^{2} y^{2}+k_{21}(\alpha) y e^{x}+c_{11}(\alpha)+c_{21}(\alpha) y^{2} / 2-k_{21}(\alpha) y
$$

and

$$
y_{2}(x, y, \alpha)=\left(k_{12}(\alpha) / 4\right) x^{2} y^{2}+k_{22}(\alpha) y e^{x}+c_{12}(\alpha)+c_{22}(\alpha) y^{2} / 2-k_{22}(\alpha) y .
$$

Since $\partial y_{1} \partial \alpha>0, \partial y_{2} / \partial \alpha<0,0<\alpha<1, y_{1}(x, y, 1)=y_{2}(x, y, 1)$, we have $Y(x, y)$ is a solution, that can be written as

$$
Y(x, y)=\left(x^{2} y^{2} / 4\right) K_{1}+y e^{x} K_{2}+C_{1}+\left(y^{2} / 2\right) C_{2}-y K_{2}
$$

for $(x, y) \in I_{1} \times I_{2}, K_{i} \in J_{i}, \quad C_{i} \in L_{i}, \quad i=1,2$. These are true for $M_{i}>0,1 \leq i \leq 6$.

3 Extension Solution

Let $[Y(x, y)]^{\alpha}=\left[y_{1}(x, y, \alpha), y_{2}(x, y, \alpha)\right], \quad[F(x, y, K)]^{\alpha}=\left[f_{1}(x, y, \alpha), f_{2}(x, y, \alpha)\right]$ for all x, y and α, where

$$
\begin{aligned}
& y_{1}(x, y, \alpha)=\min \left\{g(x, y, k, c), \quad k \in[K]^{\alpha}, \quad c \in[C]^{\alpha}\right\} \\
& y_{2}(x, y, \alpha)=\max \left\{g(x, y, k, c), \quad k \in[K]^{\alpha}, \quad c \in[C]^{\alpha}\right\} \\
& f_{1}(x, y, \alpha)=\min \left\{g(x, y, k, c), \quad k \in[K]^{\alpha}\right\} \\
& f_{1}(x, y, \alpha)=\max \left\{g(x, y, k, c), \quad k \in[K]^{\alpha}\right\} .
\end{aligned}
$$

Assume that the $y_{i}(x, y, \alpha)$ have continuous partial derivatives, define

$$
\begin{equation*}
\Gamma(x, y, \alpha)=\left[\varphi\left(D_{x}, D_{y}\right)\right] y_{1}(x, y, \alpha), \varphi\left(D_{x}, D_{y}\right) y_{2}(x, y, \alpha) \tag{3.1}
\end{equation*}
$$

for all $(x, y) \in I_{1} \times I_{2}, \alpha \in[0,1]$. If for each fixed $(x, y) \in I_{1} \times I_{2}, \Gamma(x, y, \alpha)$ defines the $\alpha-$ cuts of a fuzzy number, then we will say that $Y(x, y)$ is differentiable and write

$$
\left[\varphi\left(D_{x}, D_{y}\right) Y(x, y)\right]^{\alpha}=\Gamma(x, y, \alpha)
$$

for all $(x, y) \in I_{1} \times I_{2}$ and all α. Sufficient conditions for $\Gamma(x, y, \alpha)$ to define $\alpha-$ cuts of a fuzzy number are:
(1) $\varphi\left(D_{x}, D_{y}\right) y_{1}(x, y, \alpha)$ is an increasing function of α for each $(x, y) \in I_{1} \times I_{2}$
(2) $\varphi\left(D_{x}, D_{y}\right) y_{2}(x, y, \alpha)$ is an decreasing function of α for each $(x, y) \in I_{1} \times I_{2}$
(3) $\varphi\left(D_{x}, D_{y}\right) y_{1}(x, y, 1) \leq \varphi\left(D_{x}, D_{y}\right) y_{2}(x, y, 1)$ for all $(x, y) \in I_{1} \times I_{2}$.

For $Y(x, y)$ to be an extension solution [3] to the fuzzy partial differential equation we need the following:
(i) $Y(x, y)$ is differentiable,
(ii) Equation (1.3) holds for $U(x, y)=Y(x, y)$, that is

$$
\begin{align*}
& \varphi\left(D_{x}, D_{y}\right) y_{1}(x, y, \alpha)=f_{1}(x, y, \alpha), \tag{3.2}\\
& \varphi\left(D_{x}, D_{y}\right) y_{2}(x, y, \alpha)=f_{2}(x, y, \alpha), \tag{3.3}
\end{align*}
$$

for all $(x, y) \in I_{1} \times I_{2}$ and all $\alpha \in[0,1]$.
(iii) $Y(x, y)$ satisfies the boundary conditions, when boundary conditions are specified.

These conditions define a triangular shaped fuzzy number since the endpoints of $\Gamma(x, y, \alpha)$ are continuous.
If the extension solution satisfying the boundary conditions is $Y(x, y)$, then $Y(x, y)$ is also the classical solution.
Now we will present a sufficient condition for the extension solution to exist. Since there are such a variety of possible boundary conditions we will omit them from the following Theorem:

Theorem 3.1. Assume $Y(x, y)$ is differentiable
(a) If for all $i, 1 \leq i \leq n, g(x, y, k)$ and $f(x, y, k)$ are both increasing(or both decreasing) in k_{i} for $(x, y) \in I_{1} \times I_{2}$ and $k \in j$, then $Y(x, y)$ is an extension solution.
(b) If there is an $i, 1 \leq i \leq n$, such that for $k_{i}, g(x, y, k)$ is strictly increasing and increasing), for $(x, y) \in I_{1} \times I_{2}$ and $k \in j$, then $Y(x, y)$ is not an extension solution.

Proof . (a) Without loss of generality, assume that $n=2$ and $g(x, y, k)$ is increasing in $k_{1}, f(x, y, k)$ is increasing in $k_{1}, g(x, y, k)$ is decreasing in k_{2} and $f(x, y, k)$ is also decreasing in k_{2}. The other cases are similar. We have:

$$
\begin{align*}
& y_{1}(x, y, \alpha)=g\left(x, y, k_{11}(\alpha), k_{22}(\alpha)\right), \tag{3.4}\\
& y_{2}(x, y, \alpha)=g\left(x, y, k_{12}(\alpha), k_{21}(\alpha)\right), \tag{3.5}\\
& f_{1}(x, y, \alpha)=f\left(x, y, k_{11}(\alpha), k_{22}(\alpha)\right), \tag{3.6}\\
& f_{2}(x, y, \alpha)=f\left(x, y, k_{12}(\alpha), k_{21}(\alpha)\right), \tag{3.7}
\end{align*}
$$

for all α where $\left[K_{1}\right]^{\alpha}=\left[k_{11}(\alpha), k_{12}(\alpha)\right],\left[K_{2}\right]^{\alpha}=\left[k_{21}(\alpha), k_{22}(\alpha)\right]$. Now g solves 1.1) means

$$
\begin{equation*}
\varphi\left(D_{x}, D_{y}\right) g\left(x, y, k_{1}, k_{2}\right)=f\left(x, y, k_{1}, k_{2}\right) \tag{3.9}
\end{equation*}
$$

for all $(x, y) \in I_{1} \times I_{2}$ and $k_{1} \in J_{1}, k_{2} \in J_{2}$. But $k_{1 j}(\alpha) \in J_{1}, k_{2 j}(\alpha) \in J_{2}$ for all $\alpha, j=1,2$. So,

$$
\begin{align*}
\varphi\left(D_{x}, D_{y}\right) y_{1}(x, y, \alpha) & =f_{1}(x, y, \alpha) \tag{3.10}\\
\varphi\left(D_{x}, D_{y}\right) y_{2}(x, y, \alpha) & =f_{2}(x, y, \alpha) \tag{3.11}
\end{align*}
$$

for all $(x, y) \in I_{1} \times I_{2}$ and α. Thus (3.2) and (3.3) are satisfied and $Y(x, y)$ is an extension solution.
(b) Suppose also $n=2$ and $g(x, y, k)$ is strictly increasing in $k_{1}, f(x, y, k)$ is strictly decreasing in k_{1}, both g and f are strictly decreasing in k_{2}. Equations (3.4) and (3.5) are still true but equations (3.6) and (3.7) become:

$$
\begin{aligned}
& f_{1}(x, y, \alpha)=f\left(x, y, k_{12}(\alpha), k_{22}(\alpha)\right), \\
& f_{2}(x, y, \alpha)=f\left(x, y, k_{11}(\alpha), k_{21}(\alpha)\right),
\end{aligned}
$$

for all α. Thus, (3.10) and (3.11) do not hold, that is $Y(x, y)$ is not extension solution.
Corollary 3.2. Assume that $Y(x, y)$ is differentiable.
(a) $Y(x, y)$ is an extension solution if, $\left(\partial g / \partial k_{i}\right)\left(\partial f / \partial k_{i}\right)>0$ for $i=1,2, \cdots, n$ for $(x, y) \in I_{1} \times I_{2}$ and $k \in j$.
(b) If $\left(\partial g / \partial k_{i}\right)\left(\partial f / \partial k_{i}\right)<0$ for some i, for $(x, y) \in I_{1} \times I_{2}, k \in j$, then $Y(x, y)$ is in not an extension solution.

Example 3.3. Consider the partial differential equation:

$$
\begin{equation*}
u_{y x}-u_{x}=k \tag{3.12}
\end{equation*}
$$

where the constant $k \geq 0$. Initial conditions are

$$
\begin{aligned}
u(0, y) & =c_{1}, \\
u_{x}(x, 0) & =c_{x}^{2},
\end{aligned}
$$

for $c_{1} \in\left[0, M_{3}\right], c_{2} \in\left[0, M_{4}\right], \quad M_{3}>0, M_{4}>0$. A crisp solution is

$$
g(x, y, k, c)=c_{2} x^{3} e^{x} / 3+k x\left(e^{y}-1\right)+c_{1} .
$$

Now, assuming c_{1}, c_{2}, k are fuzzy triangular numbers, we have:

$$
\begin{aligned}
& g_{1}(x, y, \alpha)=c_{21}(\alpha) x^{3} e^{y} / 3+k_{1}(\alpha) x\left(e^{x}-1\right)+c_{11}(\alpha), \\
& g_{2}(x, y, \alpha)=c_{22}(\alpha) x^{3} e^{y} / 3+k_{2}(\alpha) x\left(e^{x}-1\right)+c_{12}(\alpha) .
\end{aligned}
$$

One also can easily check that for $y_{i}=g_{i}, i=1,2$, we have:

$$
\begin{aligned}
\varphi\left(D_{x}, D_{y}\right) y_{1}(x, y, \alpha) & =k_{1}(\alpha), \\
\varphi\left(D_{x}, D_{y}\right) y_{2}(x, y, \alpha) & =k_{2}(\alpha) .
\end{aligned}
$$

where $\varphi\left(D_{x}, D_{y}\right)=D_{x} D_{y}-D_{x}$. Also, we have

$$
\begin{aligned}
& y_{1}(0, y, \alpha)=c_{11}(\alpha), \\
& y_{2}(0, y, \alpha)=c_{12}(\alpha), \\
& \partial y_{1}(0, y, \alpha) / \partial x=c_{21} x^{2}, \\
& \partial y_{2}(0, y, \alpha) / \partial x=c_{22} x^{2} .
\end{aligned}
$$

hold. One can check easily that, $(\partial g / \partial k)(\partial f / \partial k)>0$. So,

$$
Y(x, y)=C_{2} x^{3} e^{y} / 3+K x\left(e^{y}-1\right)+C_{1}
$$

is an extension solution for all $x, y \in[0, \infty)$.
Now we introduce an example where the extension solution fails to exist but the classical solution exists in some region in the domain.

Example 3.4.

$$
\begin{equation*}
u_{y y}=k_{1} x^{2} \cos y+k_{2}, \tag{3.13}
\end{equation*}
$$

with boundary conditions

$$
\begin{aligned}
& u(x, 0)=c_{1}, \\
& u(x, \pi / 2)=c_{2},
\end{aligned}
$$

where $x \in I_{1}=\left[0, M_{1}\right], y \in I_{2}=[0, \pi / 2]$, with $M_{1}>0$. The values of the parameters k_{1}, k_{2}, c_{1} and c_{2} are in intervals $\left[0, M_{i}\right], 2 \leq i \leq 5$, respectively, for all $M_{i}>0$. Therefore,

$$
\varphi\left(D_{x}, D_{y}\right)=D_{y}^{2} \text { and } f(x, y, k)=k_{1} x^{2} \cos y+k_{2}
$$

A crisp solution is,

$$
g(x, y, k, c)=k_{1} x^{2}(1-\cos y-(2 / \pi) y)+k_{2} y / 2(y-\pi / 2)+c_{1}(1-2 / \pi) y+c_{2}(2 / \pi) y
$$

for $(x, y) \in I_{1} \times I_{2}, k_{i} \in j, c_{i} \in L$. We have $Y(x, y)$ in not an extension solution since $\left(\partial g / \partial k_{i}\right)\left(\partial f / \partial k_{i}\right)<0$, for $i=1,2$, where $\partial g / \partial k_{1}<0, \partial g / \partial k_{2}<0, \quad \partial f / \partial k_{1}>0, \partial f / \partial k_{2}>0$. We proceed to look for the classical solution. We must solve

$$
\begin{aligned}
& \partial^{2} u_{1}(x, y, \alpha) / \partial y^{2}=k_{11}(\alpha) x^{2} \cos y+k_{21}(\alpha) \\
& \partial^{2} u_{2}(x, y, \alpha) / \partial y^{2}=k_{12}(\alpha) x^{2} \cos y+k_{22}(\alpha)
\end{aligned}
$$

subject to

$$
\begin{aligned}
& u_{1}(x, 0, \alpha)=c_{11}(\alpha) \\
& u_{2}(x, 0, \alpha)=c_{12}(\alpha) \\
& u_{1}(x, \pi / 2, \alpha)=c_{21}(\alpha) \\
& u_{2}(x, \pi / 2, \alpha)=c_{22}(\alpha) .
\end{aligned}
$$

The solution is

$$
u_{i}(x, y, k, c)=k_{1 i}(\alpha) x^{2}(1-\cos y-(2 / \pi) y)+k_{2 i}(\alpha) y / 2(y-\pi / 2)+c_{1 i}(\alpha)(1-2 / \pi) y+c_{2 i}(\alpha)(2 / \pi) y
$$

for $i=1,2$. Since the u_{i} are continuous and $u_{1}(x, y, 1)=u_{2}(x, y, 1)$, we only want to check if $\partial u_{1} / \partial \alpha>0$ and $\partial u_{2} / \partial \alpha<0$. So, we have a situation that there is a region \tilde{R} contained in $I_{1} \times I_{2}$ for which the classical solution exists depending on the fuzzy numbers K_{i} and $C_{i}, i=1,2$.

To illustrate this, we pick simple fuzzy parameters that have base on the interval $[a-1, a+1]$ with vertex at a, then $k_{i 1}^{\prime}(\alpha)=1, k_{i 2}^{\prime}(\alpha)=-1, c_{i 1}^{\prime}(\alpha)=1, c_{i 1}^{\prime}(\alpha)=-1, i=1,2$. Then, for a classical solution to exist we require

$$
\begin{equation*}
x^{2}(1-\cos y-(2 / \pi) y)+y / 2(y-\pi / 2)+1>0 . \tag{3.14}
\end{equation*}
$$

Since $(1-\cos y-(2 / \pi) y) \leq 0$ and $y / 2(y-\pi / 2) \leq 0$, for $0 \leq y \leq \pi / 2$, we see as x grows larger and larger, eventually (3.14) will be false. We find that

$$
\begin{align*}
& \min \{(1-\cos y-(2 / \pi) y): 0 \leq y \leq \pi / 2\}=-0.2105 \text { and } \\
& \min \{y / 2(y-\pi / 2): 0 \leq y \leq \pi / 2\}=-0.3084 . \text { Hence } \\
& x^{2}(1-\cos y-(2 / \pi) y)+y / 2(y-\pi / 2)+1>-0.21050 x^{2}+0.6916 \tag{3.15}
\end{align*}
$$

The region $\{(x, y): 0 \leq x \leq 1.8126,0 \leq y \leq \pi / 2\}$, where the classical solution exists.

References

[1] M. Abualhomos, Numerical ways for solving fuzzy differential equations, Int. J. Appl. Engin. Res. 13 (2018), no. 6, 4610-4613.
[2] J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets Syst. 105 (1999), no. 2, 241-248.
[3] J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Sets Syst. 110 (2000), no. 1, 43-54.
[4] D. Dubios and H. Prade, Towards fuzzy differential calculus, Part3: Differentiation, Fuzzy Sets Syst. 8 (1982), 225-233.
[5] D. Dubios and H. Prade, On several definitions of the differential of a fuzzy mapping, Fuzzy Sets Syst. 24 (1987), 117-120.
[6] D. Dubios and H. Prade, Fundamental Of Fuzzy Sets, (1sted) Dordrecht, Kluwer Academic Publishers, 2000.
[7] Z. Gonge, Wu. Cngxin and B. Li, On the problem of characterizing derivatives for the fuzzy-valued functions, Fuzzy Sets Syst. 127 (2002), 315-322.
[8] J. Park and H. Han, Fuzzy differential equations, Fuzzy Sets Syst. 110 (2000), no. 1, 69-77.
[9] D. Vorobiev and S. Seikakala, Towards the theory of fuzzy differential, Fuzzy Sets Syst. 125 (2002), no. 2, 231-237.

[^0]: Email address: abuhomos@asu.edu.jo (Mayada Abualhomos)

