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Abstract

We will consider a type of elementary fuzzy partial differential equation that we wish to solve. The classical solution
and the extension solution are discussed.
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1 Introduction

To define the elementary fuzzy partial differential equation, we are interested in. Let I1 = [0,M1] and I2 = [0,M2]
for someM1,M2 > 0, f(x, y, k) be a continuous function for (x, y) ∈ I1×I2 and k = (k1, k2, . . . , kn) a vector of constants
with ki in the interval Ji, 1 ≤ i ≤ n. The operator φ(Dx, Dy) will be a polynomial, with constant coefficients, in Dx

and Dy, where Dx, Dy stands for the partial derivative with respect to x, y respectively.

Also, let u(x, y) be a continuous function, having continuous partial derivatives with respect to both x and y, with
(x, y) ∈ I1 × I2. The crisp partial differential equation is

φ(Dx, Dy) u(x, y) = f(x, y, k) (1.1)

subject to certain boundary conditions. These boundary conditions can come in a variety of forms such as u(0, y) =
c1, u(x, 0) = c2, u(M1, y) = c3, . . . , u(0, y) = rl(y; c4), u(x, 0) = hl(x; c5), . . . , ux(x, 0) = h2(x; c6), uy(0, y) = r2(y; c7, c8),
. . .. At this point, we will not give any explicit structure to the boundary conditions except to say they depend on
constants cl, . . . , cm with the ci in intervals Li, 1 ≤ i ≤ m. Let c = (cl, . . . , cm) be the vector of these constants. We
assume that problem (1.1) with associated boundary conditions has a solution

u(x, y) = g(x, y, k, c), (1.2)

with φ( Dx, Dy)g(x, y, k, c) continuous for (x, y) ∈ I1I2, k ∈ J =
∏

Ji and c ∈ L =
∏

Li.

By “elementary” we mean that the solution g in (1.2) is not defined in terms of a series. That is, there are no
Fourier series used to define g. Since we will need to fuzzify g we do not wish to fuzzify Fourier series. We need the
solution g to be fairly simple. So, we also assume that Bessel functions and Legendre functions are not used in g. The
constants kj and ci are not known exactly so there will be uncertainty in their values. We will model this uncertainty
using fuzzy numbers. So, we will substitute triangular fuzzy numbers ki for ki,Ki in Ji, 1 ≤ i ≤ n, and substitute
triangular fuzzy numbers Ci for ci, Ci in Li, 1 ≤ i ≤ m.
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If we fuzzify (1.1), then we obtain the elementary fuzzy partial differential equation we wish to consider, which is:

ϕ(Dx, Dy) U(x, y) = F (x, y,K) (1.3)

subject to certain boundary conditions. The boundary conditions can be of the form U(0, y) = C1, U(x, 0) =
C2, U(M1, y) = C3, . . . , U(0, y) = R1(y;C4), U(x, 0) = H1(x;C5), . . . , Ux(x, 0) = H2(x;C6), Uy(0, y) = R2(y;C7, C8), . . ..
The Ri and Hi are the extension principle extensions of ri and hi respectively [2]. We wish to solve (1.3) to certain
fuzzy boundary conditions. We first introduce the classical solution [9].

2 Classical Solution

Let Y (x, y) be the classical solution, [Y (x, y)]α = [y1(x, y, α), y2(x, y, α)], (x, y) ∈ I1 × I2, α ∈ [0, 1]. We assume
that φ( Dx, Dy)yi(x, y, α) is continuous for (x, y) ∈ I1 × I2 , α ∈ [0, 1], i = 1, 2. Substituting the α−cuts of Y (x, y) in
(1.3) we have:

φ( Dx, Dy)[y1(x, y, α), y2(x, y, α)] = [F1(x, y, α), F2(x, y, α)], (2.1)

assuming the fuzzy boundary conditions are U(0, y) = C1, U(M1, y) = C2. That is

y1(0, y, α) = c11(α),

y2(0, y, α) = c12(α),

y1(M,y, α) = c21(α),

y2(M,y, α) = c22(α),

where [C1]
α = [c11(α), c12(α)], [C2]

α = [c21(α), c22(α)]. Then we find yi(x, y, α), i = 1, 2. We sat that Y (x, y) is a
solution if [y1(x, y, α), y2(x, y, α)] defines a triangular fuzzy shaped number [6]. That is for all (x, y) ∈ I1 × I2,

∂y1(x, y, α)/∂α > 0, ∂y2(x, y, α)/∂α < 0, 0 < α < 1, y1(x, y, 1) = y2(x, y, 1)

Example 2.1. Consider the elementary partial differential equation:

uxy = k1xy + k2e
x, (2.2)

for k1 ∈ [0,M3], k2 ∈ [0,M4], M3,M4 > 0. The initial conditions are

u(x, 0) = c1,

uy(0, y) = c2y,

for c1 ∈ [0,M5], c2 ∈ [0,M6], M5,M6 > 0. Now, assuming c1, c2, k1,k2 are fuzzy triangular numbers, we have:

[C1]
α = [c11(α), c12(α)], [C2]

α = [c21(α), c22(α)],

[K1]
α = [k11(α), k12(α)], [K2]

α = [k21(α), k22(α)], then

∂2y1(x, y, α)/∂y∂x = k11(α)xy + k21(α)e
x

∂2y2(x, y, α)/∂y∂x = k12(α)xy + k22(α)e
x

y1(x, 0, α) = c11(α)

y2(x, 0, α) = c12(α)

∂y1(0, y, α)/∂y = c21(α)y,

∂y2(0, y, α)/∂y = c22(α)y,

with solutions,

y1(x, y, α) = (k11(α)/4)x
2y2 + k21(α)ye

x + c11(α) + c21(α)y
2/2− k21(α)y,

and

y2(x, y, α) = (k12(α)/4)x
2y2 + k22(α)ye

x + c12(α) + c22(α)y
2/2− k22(α)y.

Since ∂y1∂α > 0, ∂y2/∂α < 0, 0 < α < 1, y1(x, y, 1) = y2(x, y, 1), we have Y (x, y) is a solution, that can be written
as

Y (x, y) = (x2y2/4)K1 + yexK2 + C1 + (y2/2)C2 − yK2

for (x, y) ∈ I1 × I2,Ki ∈ Ji, Ci ∈ Li, i = 1, 2. These are true for Mi > 0, 1 ≤ i ≤ 6.
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3 Extension Solution

Let [Y (x, y)]α = [y1(x, y, α), y2(x, y, α)], [F (x, y,K)]α = [f1(x, y, α), f2(x, y, α)] for all x, y and α, where

y1(x, y, α) = min{g(x, y, k, c), k ∈ [K]α, c ∈ [C]α}
y2(x, y, α) = max{g(x, y, k, c), k ∈ [K]α, c ∈ [C]α}
f1(x, y, α) = min{g(x, y, k, c), k ∈ [K]α}
f1(x, y, α) = max{g(x, y, k, c), k ∈ [K]α}.

Assume that the yi(x, y, α) have continuous partial derivatives, define

Γ(x, y, α) = [φ(Dx, Dy)]y1(x, y, α), φ(Dx, Dy)y2(x, y, α), (3.1)

for all (x, y) ∈ I1 × I2, α ∈ [0, 1]. If for each fixed (x, y) ∈ I1 × I2, , Γ(x, y, α) defines the α−cuts of a fuzzy number,
then we will say that Y (x, y) is differentiable and write

[φ(Dx, Dy)Y (x, y)]α = Γ(x, y, α)

for all (x, y) ∈ I1 × I2 and all α. Sufficient conditions for Γ(x, y, α) to define α−cuts of a fuzzy number are:

(1) φ(Dx, Dy)y1(x, y, α) is an increasing function of α for each (x, y) ∈ I1 × I2
(2) φ(Dx, Dy)y2(x, y, α) is an decreasing function of α for each (x, y) ∈ I1 × I2
(3) φ(Dx, Dy)y1(x, y, 1) ≤ φ(Dx, Dy)y2(x, y, 1) for all (x, y) ∈ I1 × I2.

For Y (x, y) to be an extension solution [3] to the fuzzy partial differential equation we need the following:

(i) Y (x, y) is differentiable,

(ii) Equation (1.3) holds for U(x, y) = Y (x, y), that is

φ(Dx, Dy)y1(x, y, α) = f1(x, y, α), (3.2)

φ(Dx, Dy)y2(x, y, α) = f2(x, y, α), (3.3)

for all (x, y) ∈ I1 × I2 and all α ∈ [0, 1].

(iii) Y (x, y) satisfies the boundary conditions, when boundary conditions are specified.

These conditions define a triangular shaped fuzzy number since the endpoints of Γ(x, y, α) are continuous.
If the extension solution satisfying the boundary conditions is Y (x, y), then Y (x, y) is also the classical solution.
Now we will present a sufficient condition for the extension solution to exist. Since there are such a variety of possible
boundary conditions we will omit them from the following Theorem:

Theorem 3.1. Assume Y (x, y) is differentiable

(a) If for all i, 1 ≤ i ≤ n, g(x, y, k) and f(x, y, k) are both increasing(or both decreasing) in ki for (x, y) ∈ I1 × I2
and k ∈ j, then Y (x, y) is an extension solution.

(b) If there is an i, 1 ≤ i ≤ n, such that for ki, g(x, y, k) is strictly increasing and increasing), for (x, y) ∈ I1 × I2
and k ∈ j, then Y (x, y) is not an extension solution.

Proof . (a) Without loss of generality, assume that n = 2 and g(x, y, k) is increasing in k1, f(x, y, k) is increasing in
k1, g(x, y, k) is decreasing in k2 and f(x, y, k) is also decreasing in k2. The other cases are similar. We have:

y1(x, y, α) = g(x, y, k11(α), k22(α)), (3.4)

y2(x, y, α) = g(x, y, k12(α), k21(α)), (3.5)

f1(x, y, α) = f(x, y, k11(α), k22(α)), (3.6)

f2(x, y, α) = f(x, y, k12(α), k21(α)), (3.7)

(3.8)

for all α where [K1]
α = [k11(α), k12(α)], [K2]

α = [k21(α), k22(α)]. Now g solves (1.1) means

φ(Dx, Dy)g(x, y, k1, k2) = f(x, y, k1, k2), (3.9)
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for all (x, y) ∈ I1 × I2 and k1 ∈ J1, k2 ∈ J2. But k1j(α) ∈ J1, k2j(α) ∈ J2 for all α, j = 1, 2. So,

φ(Dx, Dy)y1(x, y, α) = f1(x, y, α), (3.10)

φ(Dx, Dy)y2(x, y, α) = f2(x, y, α), (3.11)

for all (x, y) ∈ I1 × I2 and α. Thus (3.2) and (3.3) are satisfied and Y (x, y) is an extension solution.

(b) Suppose also n = 2 and g(x, y, k) is strictly increasing in k1, f(x, y, k) is strictly decreasing in k1, both g and
f are strictly decreasing in k2. Equations (3.4) and (3.5) are still true but equations (3.6) and (3.7) become:

f1(x, y, α) = f(x, y, k12(α), k22(α)),

f2(x, y, α) = f(x, y, k11(α), k21(α)),

for all α. Thus, (3.10) and (3.11) do not hold, that is Y (x, y) is not extension solution. □

Corollary 3.2. Assume that Y (x, y) is differentiable.

(a) Y (x, y) is an extension solution if, (∂g/∂ki)(∂f/∂ki) > 0 for i = 1, 2, · · · , n for (x, y) ∈ I1 × I2 and k ∈ j.

(b) If (∂g/∂ki)(∂f/∂ki) < 0 for some i, for (x, y) ∈ I1 × I2, k ∈ j, then Y (x, y) is in not an extension solution.

Example 3.3. Consider the partial differential equation:

uyx − ux = k, (3.12)

where the constant k ≥ 0. Initial conditions are

u(0, y) = c1,

ux(x, 0) = c2x,

for c1 ∈ [0,M3], c2 ∈ [0,M4], M3 > 0,M4 > 0. A crisp solution is

g(x, y, k, c) = c2x
3ex/3 + kx(ey − 1) + c1.

Now, assuming c1, c2, k are fuzzy triangular numbers, we have:

g1(x, y, α) = c21(α)x
3ey/3 + k1(α)x(e

x − 1) + c11(α),

g2(x, y, α) = c22(α)x
3ey/3 + k2(α)x(e

x − 1) + c12(α).

One also can easily check that for yi = gi, i = 1, 2, we have:

φ(Dx, Dy)y1(x, y, α) = k1(α),

φ(Dx, Dy)y2(x, y, α) = k2(α).

where φ(Dx, Dy) = DxDy −Dx. Also, we have

y1(0, y, α) = c11(α),

y2(0, y, α) = c12(α),

∂y1(0, y, α)/∂x = c21x
2,

∂y2(0, y, α)/∂x = c22x
2.

hold. One can check easily that, (∂g/∂k)(∂f/∂k) > 0. So,

Y (x, y) = C2x
3ey/3 +Kx(ey − 1) + C1

is an extension solution for all x, y ∈ [0,∞).

Now we introduce an example where the extension solution fails to exist but the classical solution exists in some
region in the domain.
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Example 3.4.
uyy = k1x

2 cos y + k2, (3.13)

with boundary conditions

u(x, 0) = c1,

u(x, π/2) = c2,

where x ∈ I1 = [0,M1], y ∈ I2 = [0, π/2], with M1 > 0. The values of the parameters k1, k2, c1 and c2 are in intervals
[0,Mi], 2 ≤ i ≤ 5, respectively, for all Mi > 0. Therefore,

φ(Dx, Dy) = D2
y and f(x, y, k) = k1x

2 cos y + k2.

A crisp solution is,

g(x, y, k, c) = k1x
2 (1− cos y − (2/π)y) + k2y/2(y − π/2) + c1(1− 2/π)y + c2(2/π)y,

for (x, y) ∈ I1×I2, ki ∈ j, ci ∈ L. We have Y (x, y) in not an extension solution since (∂g/∂ki)(∂f/∂ki) < 0, for i = 1, 2,
where ∂g/∂k1 < 0, ∂g/∂k2 < 0, ∂f/∂k1 > 0, ∂f/∂k2 > 0. We proceed to look for the classical solution. We must
solve

∂2u1(x, y, α)/∂y
2 = k11(α)x

2 cos y + k21(α)

∂2u2(x, y, α)/∂y
2 = k12(α)x

2 cos y + k22(α),

subject to

u1(x, 0, α) = c11(α)

u2(x, 0, α) = c12(α)

u1(x, π/2, α) = c21(α)

u2(x, π/2, α) = c22(α).

The solution is

ui(x, y, k, c) = k1i(α)x
2 (1− cos y − (2/π)y) + k2i(α)y/2(y − π/2) + c1i(α)(1− 2/π)y + c2i(α)(2/π)y,

for i = 1, 2. Since the ui are continuous and u1(x, y, 1) = u2(x, y, 1), we only want to check if ∂u1/∂α > 0 and
∂u2/∂α < 0. So, we have a situation that there is a region R̃ contained in I1× I2 for which the classical solution exists
depending on the fuzzy numbers Ki and Ci, i = 1, 2.

To illustrate this, we pick simple fuzzy parameters that have base on the interval [a − 1, a + 1] with vertex at a,
then k′i1(α) = 1, k′i2(α) = −1, c′i1(α) = 1, c′i1(α) = −1, i = 1, 2. Then, for a classical solution to exist we require

x2(1− cos y − (2/π)y) + y/2(y − π/2) + 1 > 0. (3.14)

Since (1−cos y−(2/π)y) ≤ 0 and y/2(y−π/2) ≤ 0, for 0 ≤ y ≤ π/2, we see as x grows larger and larger, eventually
(3.14) will be false. We find that

min{(1− cos y − (2/π)y) : 0 ≤ y ≤ π/2} = −0.2105 and

min{y/2(y − π/2) : 0 ≤ y ≤ π/2} = −0.3084. Hence

x2(1− cos y − (2/π)y) + y/2(y − π/2) + 1 > −0.21050x2 + 0.6916. (3.15)

The region {(x, y) : 0 ≤ x ≤ 1.8126, 0 ≤ y ≤ π/2}, where the classical solution exists.
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