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Abstract

In this paper, the solution of time-fractional Burgers and linked Burger’s equations is obtained by using an effective
analytical methodology termed the Elzaki homotopy perturbation method. Caputo sense is used to characterize the
fractional derivatives. The recommended technique’s answer is represented as a series that converges to the precise
solution of the supplied issues. Furthermore, the outcomes of this strategy have revealed tight ties to the methods to
the problems under investigation. The validity of the current strategy is demonstrated by illustrative instances.
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1 Introduction

Mathematical modeling is an area of practical mathematics that deals with non-integral powers in differential and
integral operators. The vast range of applications of fractional calculus in rheology, viscoelasticity, electrochemistry,
fluid mechanics, and other fields has made it popular. For further information, read the monographs of Kilbas et al.
[27], as well as some important works on fractional calculus and the solution technique of differential equations of
arbitrary real order, as well as applications of the presented methods in other domains [27, 32].

Burger’s equation is a fundamental partial differential equation from fluid mechanics. It occurs in various areas of
applied mathematics, such as modeling of dynamics, heat conduction, and acoustic waves. It is named for Johannes
Martinis Burgers (1895–1981). It is very rare that a real life applications can be modeled by a single partial differential
equation, usually it takes a system of coupled partial differential equations to yield a complete model [1]. Recently,
Burger’s equations were studied by several authors by using ADM [4], HPM [41], q-HATM [34], SVIM [23] SHPM
[24], and SADM [25]. Many analytical and approximation approaches for solving fractional differential equations have
been developed in recent years [12, 42]. As the main aim of this work the EHPM is implemented to solve fractional
PDEs and nonlinear system of fractional PDEs.

The following is the outline for this article: Sect. 2 introduces some fundamental elements of fractional calculus
that are relevant to the listed problems. Sects. 3 and 4 contain the Elzaki transform and the EHPM elaborated
version, respectively. Two examples issues are presented in Sect. 5 to demonstrate the usefulness and precision of the
suggested strategy. Finally, in Sect. 6, there is a conclusion.
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2 Preliminaries

Definition 2.1. The fractional integral operator of order v ≥ 0 Riemann Liouville, of a function φ (µ) ∈ Cϑ, ϑ ≥ −1
is defined as [27, 28, 29]

Iαu(t) =

{
1

Γ(α)

∫ t

0
(t− τ)α−1u(t)dτ, α > 0, t > 0.

u (t) , α = 0
(2.1)

Properties of operator Iα:

1. IαIσu (t) = Iα+σu (t) .

2. IαIσu (t) = IσIαu (t) .

3. Iαtm = Γ(m+1)
Γ(α+m+1) t

α+m.

Definition 2.2. The Caputo fractional derivative (CFD) of order α of a function u(t) is defined as [27, 28, 29]

Dαu (t) = Im−αDmu (t) =
1

Γ(m− α)

∫ t

0

(t− τ)
m−α−1

u(m) (τ) dτ (2.2)

For m− 1 < α < m , m ∈ N , t > 0 and u ∈ Cm
−1.

The operator Dα fundamental attributes are as follows:

1. Dαk = 0 , where k is a constant.

2. Dαtσ = Γ(σ+1)
Γ(σ−α+1) tσ−α,

3. DαDσu(t) = Dα+σu(t)

4. IαDαu(t) = u(t)−
∑m−1

k=0 u(k) (0) t
k

k! .

Definition 2.3. The Mittag-Leffler function Eα(z) with α > 0 is defined as [27]

Eα (z) =

∞∑
m=0

zα

Γ(mα+ 1)
(2.3)

3 Elzaki transform

Definition 3.1. The Elzaki transform (ET) is defined over the set of functions

A =

{
u(t) : ∃µ , k1, k2 > 0 , |u(t)| < µ e

|t|
kj , τ ∈ (−1)

j × [0,∞)

}
.

by the following formula:

E [u(t)] = T (w) = s

∫ ∞

0

e
−t
w u(t)dt, w ∈ [k1, k2] (3.1)

Some ET Properties:-

1. E [1] = w2

2. E [tα] = Γ(α+ 1) wα+2

Definition 3.2. The ET of the CFD is given by:

E [Dα
t u (x, t)] =

E[u (x, t)]

wα
−

n−1∑
k=0

w2−α+ku(k) (x, 0) , n− 1 < α ≤ n (3.2)
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4 Elzaki Homotopy perturbation method (EHPM)

Consider the following fractional nonlinear PDEs:

cDα
t u (x, t) +R [u (x, t)] +N [u (x, t)] = g (x, t) , t > 0, n− 1 < α ⩽ n (4.1)

where cDα
t u (x, t) is the derivative of u (x, t) in Caputo sense, R, N differential operators, including linear and

nonlinear and g(x, t) is the source term.

Now by taking ET on both sides of Eq. (4.1), we obtain

E { cDα
t u(x, t) +R[u(x, t)] +N [u(x, t)]} = E {g(x, t)} . (4.2)

We achieve using ET’s distinction feature

E {u (x, t)}
wα

−
n−1∑
k=0

w2−α+ku(k) (x, 0) = E {g (x, t)} − E {R [u (x, t)] +N [u (x, t)]} , (4.3)

or

E {u (x, t)} =

n−1∑
k=0

w2+ku(k) (x, 0) + wαE {g (x, t)} − wαE {R [u (x, t)] +N [u (x, t)]} . (4.4)

Applying inverse Elzaki transform on both sides of Eq. (4.4), we find

u (x, t) =

n−1∑
k=0

tk

k!
u(k) (x, 0) + E−1 (wαE {g (x, t)})− E−1 (wαE {R [u (x, t)] +N [u (x, t)]}) . (4.5)

Now, by applying HPM to the Eq. (4.5), we have

u (x, t) =

n−1∑
k=0

tk

k!
u(k) (x, 0) + E−1 (wαE {g (x, t)})− p

[
E−1 (wαE {R [u (x, t)] +N [u (x, t)]})

]
. (4.6)

To broaden the solution, the homotopy parameter p is employed

u (x, t) =

∞∑
n=0

pnun, (4.7)

and the nonlinear term is decomposed as

N (u (x, t)) =

∞∑
n=0

pnHn, (4.8)

where

Hn =
1

n!

∂n

∂pn

(
n∑

i=0

piui

)
p=0

.

Substituting (4.7) and (4.8) in (4.6), we get

∞∑
n=0

pnun =

n−1∑
k=0

tk

k!
u(k) (x, 0) + E−1 (wαE {g (x, t)})

− p

[
E−1

(
wαE

{
R

[ ∞∑
n=0

pnun

]
+

∞∑
n=0

pnHn

})]
.

(4.9)

The following equations are generated by comparing the coefficients of equal powers of p from both sides of the
equation

p0 : u0 (x, t) =

n−1∑
k=0

tk

k!
u(k) (x, 0) + E−1 (wαE {g (x, t)}) ,

pn+1 : un+1 (x, t) = −E
−1

(wαE {R [un] +Hn}) , n ≥ 0.

(4.10)

The solution is written as
u (x, t)=u0 + u1 + u2 + · · · .



24 Salman, Jassim, Hassan

5 Application of EHPM

Example 5.1. Let us consider the fractional Burger’s equation

cDα
t u+ uux = 0, 0 < α ⩽ 1 (5.1)

with initial condition
u (x, 0) = x. (5.2)

Taking ET on both sides of Eq. (5.1) with IC (5.2), we obtain

E {u (x, t)}
wα

− w2−α u (x, 0) = −E {uux} ,

or
E {u (x, t)} = w2x− wαE {uux} . (5.3)

The inverse ET of Eq. (5.3) implies that

u (x, t) = x− E−1 (wαE {uux}) . (5.4)

Now applying the HPM, we get

∞∑
n=0

pnun = x− p

[
E−1

(
wαE

{ ∞∑
n=0

pnHn

})]
, (5.5)

where Hn is He’s polynomials which signifies the nonlinear term uux.

The first few components of He’s polynomials are given as

H0 = u0u0x

H1 = u0u1x + u1u0x

H2 = u0u2x + u1u1x + u2u0x

...

Using the He’s polynomials mentioned above and comparing the coefficients of the same power of p in Eq. (5.4),
we get

P 0 : u0(x, t) = x,

P 1 : u1(x, t) = −E−1 (wαE {H0}) = −E−1 (wαE {x}) = −E−1
(
wα+2x

)
= − xtα

Γ(α+ 1)

P 2 : u2(x, t) = −E−1 (wαE {H1}) = −E−1

(
wαE

{
− 2xtα

Γ(α+ 1)

})
=

2xt2α

Γ(2α+ 1)

...

So the solution u(x, t) is written as

u (x, t) = u0 + u1 + u2 + · · · = x− xtα

Γ (α+ 1)
+

2xt2α

Γ (2α+ 1)
+ · · · (5.6)

For α = 1, Eq. (5.6) reduce to

u (x, t) = x(1− t+ t2 − · · · ) = x

1 + t
. (5.7)

This approach is quite like the precise solution. The outcome is identical to VIM [26].
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Figure 1: Plots of the exact and approximate solutions u (x, t) for different values of α with fixed value x = 1.

Figure 2: The surface graph of the exact
solution of Eq. (5.1).

Figure 3: The surface graph of the ap-
proximate solution of Eq. (5.1) when
α = 1.

Figure 4: The surface graph of the ap-
proximate solution of Eq. (5.1) when
α = 0.9

Figure 5: The surface graph of the ap-
proximate solution of Eq. (5.1) when
α = 1.

Example 5.2. Consider the following Burger’s equations, which are time-fractional and linked

CDt
αu (x, t))− uxx − 2uux + (uv)x = 0

CDt
βv (x, t))− vxx − 2vvx + (uv)x = 0,

(5.8)

with initial conditions
u (x, 0) = sinx, v (x, 0) = sinx. (5.9)

Taking ET on both sides of Eq. (5.8) with IC (5.9), we obtain

E (u (x, t)) = w2 sinx+ wαE {uxx + 2uux − (uv)x} ,
E (v (x, t)) = w2 sinx + wβE {vxx + 2vvx − (uv)x} .

(5.10)
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The inverse ET of Eq. (5.10) implies that

u (x, t) = sinx+ E−1 (wαE {uxx + 2uux − (uv)x})
v (x, t) = sinx+ E−1

(
wβE {vxx + 2vvx − (uv)x}

)
.

(5.11)

Now applying the HPM, we get

∞∑
n=0

pnun = sinx+ p

[
E−1

(
wαE

{ ∞∑
n=0

pnunxx + 2

∞∑
n=0

pnHn −
∞∑

n=0

pnGn

})]
,

∞∑
n=0

pnvn = sinx+ p

[
E−1

(
wβE

{ ∞∑
n=0

pnvnxx + 2

∞∑
n=0

pnEn −
∞∑

n=0

pnGn

})]
,

(5.12)

where Hn, Gn and En are He’s polynomials which signifies the nonlinear terms uux , (uv)x and vvx respectively. The
first few components of He’s polynomials are given as

H0 = u0u0x

H1 = u0u1x + u1u0x

H2 = u0u2x + u1u1x + u2u0x

...

G0 = (u0v0)x
G1 = (u0v1)x + (u1v0)x
G2 = (u0v2)x + (u1v1)x + (u2v0)x

...

E0 = v0v0x

E1 = v0v1x + v1v0x

E2 = v0v2x + v1v1x + v2v0x

...

Comparing the coefficients of same power of p in Eq. (5.12) we get

p0 :
u0 (x, t) = sinx,
v0 (x, t) = sinx,

P 1 :
u1 (x, t) = E−1 (wαE {u0xx + 2H0 −G0})
v1 (x, t) = E−1

(
wβE {v0xx + 2E0 −G0}

)
P 2 :

u2 (x, t) = E−1 (wαE {u1xx + 2H1 −G1})
v2 (x, t) = E−1

(
wβE {v1xx + 2E1 −G1}

)
...
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The initial terms of fractional EHPM have the following shape according to the preceding formulas:

p0 :
u0 (x, t) = sinx,
v0 (x, t) = sinx,

P 1 :
u1 (x, t) = E−1 (wαE {− sinx+ 2 sinx cosx− 2 sinx cosx })
v1 (x, t) = E−1

(
wβE {− sinx+ 2 sinx cosx− 2 sinx cosx}

)
= − sinx E−1

(
wα+2

)
= − sinx E−1

(
wβ+2

)
= − tα

Γ(α+1) sinx

= − tβ

Γ(β+1) sinx

P 2 :
u2 (x, t) = E−1

(
wαE

{
tα

Γ(α+1) sinx− 2 tα

Γ(α+1) sinx cosx+ 2 tβ

Γ(β+1) sinx cosx
})

v2 (x, t) = E−1
(
wβE

{
τβ

Γ(β+1) sinx− 2 tβ

Γ(β+1) sinx cosx+ 2 tα

Γ(α+1) sinx cosx
})

= t2α

Γ(2α+1) sinx− t2α

Γ(2α+1) sinx cosx+ 2tα+β

Γ(α+β+1) sinx cosx

= t2β

Γ(2β+1) sinx− 2 t2β

Γ(2β+1) sinx cosx+ 2tα+β

Γ(α+β+1) sinx cosx

= t2α

Γ(2α+1) sinx+ 2 sinx cosx
(

tα+β

Γ(α+β+1) −
t2α

Γ(2α+1)

)
= t2β

Γ(2β+1) sinx+ 2 sinx cosx
(

tα+β

Γ(α+β+1) −
t2β

Γ(2β+1)

)
...

So the series solution is written as

= sinx

(
1− tα

Γ (α+ 1)
+

t2α

Γ (2α+ 1)
· · ·
)
+ 2 sinx cosx

(
tα+β

Γ (α+ β + 1)
− t2α

Γ (2α+ 1)
· · ·
)

= sinx

(
1− tβ

Γ (β + 1)
+

t2β

Γ (2β + 1)
· · ·
)
+ 2 sinx cosx

(
tα+β

Γ (α+ β + 1)
− t2β

Γ (2β + 1)
· · ·
) (5.13)

Setting α = β in (5.13), we obtain

u (x, t) = sinx

[
1− tα

Γ (α+ 1)
+

t2α

Γ (2α+ 1)
+ . . .

]
= sinx Eα (−tα) ,

v (x, t) = sinx

[
1− tβ

Γ (β + 1)
+

t2β

Γ (2β + 1)
+ . . .

]
= sinx Eβ

(
−tβ

)
.

(5.14)

The Eq. (5.14) is approximate to the form u(x, t) = v(x, t) = e−t sinx for α = β = 1, which is the exact solution of
Eq. (5.8) for α = β = 1. The result is same as HPM [4].

Figure 6: Plots of the exact and approximate solutions u (x, t) = v(x, t) for different values of α with fixed value
x = 1..
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Figure 7: The surface graph of the exact
solution of Eq. (5.8)

Figure 8: The surface graph of the ap-
proximate solution of Eq. (5.8) when
α = 1.

Figure 9: The surface graph of the ap-
proximate solution of Eq. (5.8) when
α = 0.9

Figure 10: The surface graph of the ap-
proximate solution of Eq. (5.8) when
α = 0.7

6 Conclusion

The EHPM has been successfully applied to obtain the analytical solutions of time-fractional Burgers and coupled
Burger’s equations. The process is simple to follow because it consists of applying the Elzaki transform directly to the
provided issue and then using the homotopy perturbation method. The analytical solution for the given issue is then
obtained using the inverse Elzaki transform. The findings achieved by the proposed technique are in good agreement
with the precise solution of Example 5.1 and 5.2 in the article, as shown in the figures. As a result, the suggested
method is an appropriate analytical tool for solving fractional partial differential equations and systems of fractional
PDEs.
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