New results for the best proximity pair in cone Riesz space

Ali Asghar Sarvaria ${ }^{\text {a }}$, Hamid Mazaheri Tehrani ${ }^{\text {b,*, }}$, Hamid Reza Khademzadeh ${ }^{\text {c }}$
${ }^{a}$ Computer Geometry and Dynamical Systems Laboratory, Yazd University, Yazd, Iran
${ }^{b}$ Faculty of Mathematics, Yazd University, Yazd, Iran
${ }^{c}$ Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran

(Communicated by Saman Babaie-Kafaki)

Abstract

In this paper, the best proximity pair problem is considered with a cone metric. the conditions for the existence and uniqueness of the best proximity pair problem is discussed by using interesting relationships in Riesz spaces. This problem is studied for T-absolutely direct sets. Also, given the conditions considered for this problem, it is shown for the cone cyclic contraction maps, the best proximity pair problem is uniquely solvable.

Keywords: The best proximity pair, Cone metric Riesz space, Order complete, Order convergence
2020 MSC: 41A65;, 41A42

1 Introduction

The problem of the best proximity pair is one of the significant issues that has called a lot of attention in recent years. In all relevant papers, the research done on metric space (E, d) has made use of metric function $d: E \times E \rightarrow \mathbb{R}$. As examples, Eldred and Veeramani [5 discussed the best proximity pair problem for cyclic contraction maps on uniformly convex Banach spaces. This problem was examined for relatively nonexpansive maps [13] and pointwise contraction maps in [2]. The best approximation problem in Banach lattices is connected to monotonicity in [4, 6, 7, 4, 10, 11]. Afterwards, we will review some basic definitions in Riesz space E. If E is a partially ordered vector space, then E is called a Riesz space (or a vector lattice space) if $x \vee y=\sup \{x, y\}$, and $x \wedge y=\inf \{x, y\}$, both exist in E, for any $x, y \in E$. For any vector x in Riesz space E, define $x^{+}=x \vee 0, x^{-}=(-x) \vee 0$ and $|x|=x \vee(-x)$. The set $E^{+}=\{x \in E: x \geq 0\}$ is called the positive cone of E. Riesz space E is called Dedekind complete whenever every nonempty bounded above subset has a supremum (or equivalently, whenever every nonempty bounded below subset has an infimum). Also E is said Archimedean if $x=0$ holds whenever, $0 \leq n x \leq y \in E^{+}$for all $n \in \mathbb{N}$. More details about Riesz spaces could be find in [1, 3, 12, 14].

2 Preliminaries

Definition 2.1. The mapping $d: E \times E \rightarrow E^{+}$is said to be a cone metric on E if it satisfies:

[^0](a) $d(x, y)=0$ if and only if $x=y$.
(b) $d(x, y)=d(y, x)$ for all $x, y \in E$.
(c) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in E$.

In this way, we recognize (E, d) as a cone metric Riesz space. We define $d(x, y)=|x-y| \in E^{+}$for any $x, y \in E$, so $(E,|\cdot|)$ is a cone metric Riesz space. Recall that $f_{n} \downarrow f$ it means the sequence $\left\{f_{n}\right\} \subseteq E$ is decreasing and $f=\inf f_{n}$ in E.

In the continuation of the article, it is supposed that A and B are two nonempty subsets of Riesz space E, and $T: A \rightarrow B$ is an arbitrary map, and $\operatorname{Dist}(A, B)=\bigwedge|A-B|=\inf \{|x-y|: x \in A, y \in B\}$ exists in the set $|A-B|$. It means, there exist $a \in A$ and $b \in B$ such that $\operatorname{Dist}(A, B)=|a-b|$. For instance, if E is Dedekind complete and $|A-B|$ is order closed, then there exist $a \in A$ and $b \in B$ such that $\operatorname{Dist}(A, B)=|A-B|(|A-B|$ is a bounded below subset of E). Let $x \in A$. If $|x-T X|=\operatorname{Dist}(A, B)$, we say $(x, T X)$ is a cone best proximity point for T. We show the set of all such points by $P_{T}^{c}(A, B)$, i.e., $P_{T}^{c}(A, B)=\{x \in A:|x-T x|=\operatorname{Dist}(A, B)\}$.

Definition 2.2. Let $(E,|\cdot|)$ be a cone metric Riesz space and $u, u_{n} \in E(n=1,2, \ldots)$.
(a) The sequence $\left\{u_{n}\right\}$ is order convergence to u if there exists a sequence $f_{n} \downarrow 0$ such that $\left|u-u_{n}\right| \leq f_{n}$ holds for any $n \in \mathbb{N}$. (In symbols $u_{n} \xrightarrow{o} u$). Also the subset $A \subseteq E$ is order closed whenever for the all sequences $\left\{x_{n}\right\} \subseteq A$ such that $x_{n} \xrightarrow{o} x$, imply $x \in A$.
(b) The sequence $\left\{u_{n}\right\}$ is order Cauchy if there exists a sequence $f_{n} \downarrow 0$ which $\left|u_{n}-u_{m}\right| \leq f_{n}$ for all $n \geq m \geq 1$. Clearly, order convergence sequences are order Cauchy.
(c) The cone metric Riesz space $(E,|\cdot|)$ is order complete if any order Cauchy sequence is order convergence.
(d) The mapping $T: A \cup B \rightarrow A \cup B$ is a cone cyclic contraction map if T is cyclic $(T(A) \subseteq B$ and $T(B) \subseteq A)$ and also $|T x-T y| \leq k|x-y|+(1-k) \operatorname{Dist}(A, B)$ for some $k \in(0,1)$ and any $(x, y) \in A \times B$.

It should be mentioned that the order convergence in a Riesz space E does not necessarily correspond to a topology on E.

Remark 2.3. Let $C(K)$ be the set of all real continuous functions on K by ordering $f_{1} \leq f_{2}$ if $f_{1}(x) \leq f_{2}(x)$ for any $x \in K$. We know $f_{1} \vee f_{2}=\frac{1}{2}\left(f_{1}+f_{2}\right)+\frac{1}{2}\left|f_{1}-f_{2}\right| \in C(K)$ and $f_{1} \wedge f_{2}=\frac{1}{2}\left(f_{1}+f_{2}\right)-\frac{1}{2}\left|f_{1}-f_{2}\right| \in C(K)$ for any $f_{1}, f_{2} \in C(K)$. Therefore $C(K)$ is a Riesz space. Also, if K is a Hausdorff topological space, compact and extremally disconnected (i.e., the closure of any open set is open) then $C(K)$ is order complete and Dedekind complete [8].

Definition 2.4. Let $(E,|\cdot|)$ be a cone metric Riesz space.
(a) A sequence $\left\{x_{n}\right\} \subseteq A$ is said to be a cone T-minimizing sequence in A whenever $\left|x_{n}-T x_{n}\right| \xrightarrow{o} \operatorname{Dist}(A, B)$.
(b) The subset $A \subseteq E$ is a T-absolutely direct set if for any $x, y \in A$, there exists $z \in A$ such that

$$
|z-T x| \leq|x-T x| \wedge|y-T x| \quad \text { and } \quad|z-T y| \leq|x-T y| \wedge|y-T y|
$$

Example 2.5. Suppose $A \subseteq E$ is a sublattice, it means $x \vee y$ and $x \wedge y$ both exist in A for any $x, y \in A$, and also $A \geq B$ (or $B \geq A$). Then A is a T-absolutely direct set.
The notation $A \geq B$ means that $a \geq b$ for any $a \in A$ and $b \in B$.

Cone best proximity pair problem is T-solvable (T-uniquely solvable) if $P_{T}^{c}(A, B) \neq \emptyset\left(\operatorname{card} P_{T}^{c}(A, B)=1\right)$.

3 Main results

In this part, we aim to provide conditions to investigate the existence and uniqueness of cone best proximity pair problem.

Theorem 3.1. Let $(E,|\cdot|)$ be a cone metric Riesz space and $A \subseteq E$ be a convex T-absolutely direct set. Then $\operatorname{card} P_{T}^{c}(A, B) \leq 1$

Proof. Suppose there exist $x, y \in A$ such that $|x-T x|=|y-T y|=\operatorname{Dist}(A, B)$. Given A is a T-absolutely direct set, there exists $z \in A$ such that

$$
|z-T x| \leq|x-T x| \wedge|y-T x| \quad \text { and } \quad|z-T y| \leq|x-T y| \wedge|y-T y|
$$

Thus $|z-T x|=|x-T x|$ and $|z-T y|=|y-T y|$. Since A is convex, we have $\frac{x+z}{2} \in A$. Therefore,

$$
|x-T x| \leq\left|\frac{x+z}{2}-T x\right| \leq \frac{|x-T x|+|z-T x|}{2}=|x-T x| .
$$

Notic that every Riesz space E has the following property

$$
\begin{equation*}
|f+g|+|f-g|=2(|f| \vee|g|), \quad(\forall f, g \in E) \tag{3.1}
\end{equation*}
$$

which leads to

$$
|x-z|=2(|x-T x| \vee|z-T x|)-|x+z-2 T x|=0
$$

that is $x=z$. in the same way, we obtain $y=z$, and as a result, $\operatorname{card} P_{T}^{c}(A, B) \leq 1$.
Example 3.2. Suppose $E=\mathbb{R}^{2}$ with coordinatewise ordering (i.e., $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ if and only if $x_{1} \leq x_{2}$ and $\left.y_{1} \leq y_{2}\right)$. Put $A=\{(1, x): x \in \mathbb{R}\}, B=\{(2, x): x \in \mathbb{R}\}$ and $T: A \rightarrow B$ defined by

$$
T(1, x)= \begin{cases}(2,1), & x \in \mathbb{Q} \\ (2, \sqrt{2}), & x \notin \mathbb{Q}\end{cases}
$$

W can see that $\operatorname{Dist}(A, B)=(1,0)$ and A is a convex set, but A is not a T-absolutely direct set. It is easy to see that $P_{T}^{c}(A, B)=\{(1,1),(1, \sqrt{2})\}$.

Theorem 3.3. Let $(E,|\cdot|)$ be order complete, $A \subseteq E$ be an order closed and a convex T-absolutely direct set. Then any cone T-minimizing sequence in A, is order convergence.

Proof . Suppose the sequence $\left\{y_{n}\right\} \subseteq A$ is a cone T-minimizing sequence in A. Then $\left|y_{n}-T y_{n}\right| \xrightarrow{o} \operatorname{Dist}(A, B)$, so there exists a sequence $f_{n} \downarrow 0$ such that $0 \leq\left|y_{n}-T y_{n}\right|-\operatorname{Dist}(A, B) \leq f_{n}$. We prove the sequence $\left\{y_{n}\right\}$ is order Cauchy, it means there exists a sequence $g_{n} \downarrow 0$ such that $\left|y_{n+k}-y_{n}\right| \leq g_{n}(n, k \in \mathbb{N})$. Since A is a T-absolutely direct set, there exists $x_{n} \in A$ which

$$
\left|x_{n}-T y_{n}\right| \leq\left|y_{n}-T y_{n}\right| \wedge\left|y_{n+k}-T y_{n}\right|
$$

and

$$
\left|x_{n}-T y_{n+k}\right| \leq\left|y_{n}-T y_{n+k}\right| \wedge\left|y_{n+k}-T y_{n+k}\right| .
$$

A is convex so $\frac{x_{n}+y_{n}}{2} \in A$, Therefore

$$
\operatorname{Dist}(A, B) \leq\left|\frac{x_{n}+y_{n}}{2}-T y_{n}\right| \leq \frac{\left|x_{n}-T y_{n}\right|+\left|y_{n}-T y_{n}\right|}{2} \leq\left|y_{n}-T y_{n}\right| \xrightarrow{o} \operatorname{Dist}(A, B)
$$

Hence

$$
0 \leq\left|\frac{x_{n}+y_{n}}{2}-T y_{n}\right|-\operatorname{Dist}(A, B) \leq\left|y_{n}-T y_{n}\right|-\operatorname{Dist}(A, B) \leq f_{n} \downarrow 0,
$$

so

$$
\begin{equation*}
\left|\frac{x_{n}+y_{n}}{2}-T y_{n}\right| \xrightarrow{o} \operatorname{Dist}(A, B) . \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2), we have

$$
\left|y_{n}-x_{n}\right|=2\left(\left|x_{n}-T y_{n}\right| \vee\left|y_{n}-T y_{n}\right|\right)-\left|x_{n}+y_{n}-2 T y_{n}\right|=2\left|y_{n}-T y_{n}\right|-\left|x_{n}+y_{n}-2 T y_{n}\right| .
$$

Thus $\left|y_{n}-x_{n}\right| \xrightarrow{o} 0$. (It is easy to see that if $a_{n} \xrightarrow{o} a$ and $b_{n} \xrightarrow{o} b$ then $\alpha a_{n}+\beta b_{n} \xrightarrow{o} \alpha a+\beta b$ for each $\alpha, \beta \in \mathbb{R}$).
Similarly, it can be concluded that $\left|y_{n+k}-x_{n}\right| \xrightarrow{o} 0$. Therefore there exist the sequences $p_{n} \downarrow 0$ and $q_{n} \downarrow 0$ such that $\left|y_{n}-x_{n}\right| \leq p_{n}$ and $\left|y_{n+k}-x_{n}\right| \leq q_{n}$, and as a result $\left|y_{n+k}-y_{n}\right| \leq p_{n}+q_{n} \downarrow 0$.t is necessary to mention that $f: A \rightarrow B$ is a σ-order continuse map if $f\left(x_{n}\right) \xrightarrow{o} f(x)$ for all sequences $\left\{x_{n}\right\} \subseteq A$ such that $x_{n} \xrightarrow{o} x$.

Corollary 3.4. Let $(E,|\cdot|)$ be order complete and $T: A \rightarrow B$ be a σ-order continuous map. Let A be order closed, and a convex T-absolutely direct set. If A has a cone T-minimizing sequence then cone best proximity pair problem is T-uniquely solvable.

Proof. Suppose that $\left\{x_{n}\right\} \subseteq A$ is a cone T-minimizing sequence, by theorem 3.3, $x_{n} \xrightarrow{o} x$ for some $x \in A$. Therefore $T x_{n} \xrightarrow{o} T x$, so $\left|x_{n}-T x_{n}\right| \xrightarrow{o}|x-T x|$. Since order limits are uniquely determined, so $|x-T x|=\operatorname{Dist}(A, B)$. Also by theorem 3.1. $\operatorname{card} P_{T}^{c}(A, B) \leq 1$. Thus $\operatorname{card} P_{T}^{c}(A, B)=1$.

Theorem 3.5. Let $(E,|\cdot|)$ be an Archimedean cone metric Riesz space and $T: A \cup B \rightarrow A \cup B$ be a cone cyclic contraction map. If $x_{0} \in A$ and $x_{n+1}=T x_{n}=T^{n+1} x_{0}(n=0,1,2, \ldots)$, then the sequence $\left\{x_{2 n}\right\} \subseteq A$ is a cone T-minimizing sequence in A.

Proof . We can see that $\left|x_{n+1}-x_{n}\right|=\left|T x_{n}-T x_{n-1}\right| \leq k\left|x_{n}-x_{n-1}\right|+(1-k) \operatorname{Dist}(A, B) \leq k^{2}\left|x_{n-1}-x_{n-2}\right|+(1-$ $\left.k^{2}\right) \operatorname{Dist}(A, B)$. By induction, we obtain

$$
\left|x_{n+1}-x_{n}\right| \leq k^{n}\left|x_{1}-x_{0}\right|+\left(1-k^{n}\right) \operatorname{Dist}(A, B)
$$

Since E has Archimedean property, we have $\left|x_{n+1}-x_{n}\right|-\operatorname{Dist}(A, B) \leq k^{n} u \downarrow 0$ which $u=\left|x_{1}-x_{0}\right|-\operatorname{Dist}(A, B) \in E^{+}$. Thus $\left|T x_{n}-x_{n}\right| \xrightarrow{o} \operatorname{Dist}(A, B)$. As a result, $\left\{x_{2 n}\right\} \subseteq A$ is a cone T-minimizing sequence in A.

Theorem 3.6. Let $(E,|\cdot|)$ be Archimedean and order complete. Let $A \subseteq E$ be an order closed sublattice and $A \geq B$ (or $B \geq A$). If $T: A \cup B \rightarrow A \cup B$ is a cone cyclic contraction map then cone best proximity pair problem is uniquely solvable.

Proof . Assume $A \geq B$ (the proof is similar to the other), and $x-T x=y-T y=\operatorname{Dist}(A, B)$ for some $x, y \in A$. Since A is a sublattice, $x \wedge y \in A$, so $0 \leq x-T x \leq x \wedge y-T x$ and $0 \leq y-T y \leq x \wedge y-T y$. Thus $x \leq x \wedge y$ and $y \leq x \wedge y$, it means $x=y$ and $\operatorname{card} P_{T}^{c}(A, B) \leq 1$.

Suppose $x_{0} \in A$ and define $x_{n+1}=T x_{n}, n=0,1,2, \ldots$. By theorem 3.5, the sequence $\left\{x_{2 n}\right\} \subseteq A$ is a cone T-minimizing sequence in A. So based on theorem 3.3 , there exists $x \in A$ that $x_{2 n} \xrightarrow{o} x$. In other words, there exist the sequences $f_{n} \downarrow 0$ and $g_{n} \downarrow 0$ such that $\left|x_{2 n}-x\right| \leq f_{n}$ and $\left|x_{2 n}-T x_{2 n}\right|-\operatorname{Dist}(A, B) \leq g_{n}$. Now, $0 \leq\left|x-T x_{2 n}\right|-\operatorname{Dist}(A, B) \leq\left|x-x_{2 n}\right|+\left|x_{2 n}-T x_{2 n}\right|-\operatorname{Dist}(A, B) \leq f_{n}+g_{n} \downarrow 0$. Also $0 \leq\left|x_{2 n+2}-T x\right|-D i s t(A, B)=$ $\left|T x_{2 n+1}-T x\right|-\operatorname{Dist}(A, B) \leq\left|x_{2 n+1}-x\right|-\operatorname{Dist}(A, B)=\left|T x_{2 n}-x\right|-\operatorname{Dist}(A, B) \leq f_{n}+g_{n} \downarrow 0$.

Finally, $0 \leq|x-T x|-\operatorname{Dist}(A, B) \leq\left|x-x_{2 n}\right|+\left|x_{2 n}-T x\right|-\operatorname{Dist}(A, B) \leq 2 f_{n}+g_{n} \downarrow 0$. Therefore $|x-T x|=$ $\operatorname{Dist}(A, B)$, that complete the proof.

References

[1] D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006.
[2] J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topology Appl. 156 (2009), no. 18, 2942-2948.
[3] G. Birkhoff, Lattice theory, American Mathematical Society, Providence, R.I., 1979.
[4] Shu Tao Chen, Xin He, and H. Hudzik, Monotonicity and best approximation in Banach lattices, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 5, 785-794.
[5] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), no. 2, 1001-1006.
[6] P. Foralewski, H. Hudzik, W. Kowalewski, and M. Wisł a, Monotonicity properties of Banach lattices and their applications: A survey, Ordered structures and applications, Trends Math., Birkhäuser/Springer, Cham, 2016, pp. 203-232.
[7] H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory 95 (1998), no. 3, 353-368.
[8] A. F. Kalton and J. Nigel, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006.
[9] H. R. Khademzadeh and H. Mazaheri, Monotonicity and the dominated farthest points problem in Banach lattice, Abstr. Appl. Anal. (2014), Art. ID 616989, 7.
[10] N. S. Kukushkin, Increasing selections from increasing multifunctions, Order 30 (2013), no. 2, 541-555.
[11] W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation, J. Approx. Theory 69 (1992), no. 2, 173-187.
[12] P. Meyer-Nieberg, Banach lattices., Springer-Verlag, Berlin, 1991.
[13] V. Sankar Raj and P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol. 10 (2009), no. 1, 21-28.
[14] A. C. Zaanen, Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin, 1997.

[^0]: * Corresponding author

 Email addresses: Sarvari_math@yahoo.com (Ali Asghar Sarvari), hmazaheri@yazduni.ac.ir (Hamid Mazaheri Tehrani), hrkhademzadeh@gmail.com (Hamid Reza Khademzadeh)

