Ergodic properties of pseudo-differential operators on compact Lie groups

Zahra Faghih, Mohammad Bagher Ghaemi*
School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

(Communicated by Reza Saadati)

Abstract

Let \mathbb{G} be a compact Lie group. This article shows that a contraction pseudo-differential operator A_{τ} on $L^{p}(\mathbb{G})$ has a Dominated Ergodic Estimate (DEE), and is trigonometrically well-bounded. Then we express ergodic generalization of the Vector-Valued M. Riesz theorem for invertible contraction pseudo-differential operator A_{τ} on $L^{p}(\mathbb{G})$. For this purpose, we show that A_{τ} is a Lamperti operator. Then we find a formula for its symbols τ. According to this formula, a representation for the symbol of adjoint and products is given.

Keywords: Pseudo-differential operators, Lamperti operator, Dominated Ergodic Estimate, trigonometrically well-bounded, M. Riesz theorem, Adjoints
2010 MSC: 47G30, 47A35, 46E30, 22E30

1 Introduction

The theory of pseudo-differential operators(abbreviated $\Psi D O$) is essential in modern analysis and Mathematical Physics. $\Psi D O$ are a powerful and natural tool for studying partial differential operators. Some properties of $\Psi D O$ on the compact Lie group, like the study on the adjoint, boundedness, compactness and nuclearity, are investigated in [6], [8, [7]. First, some definitions and notions from [12] are recalled.

Suppose \mathbb{G} is a compact Lie group with the unit element $1_{\mathbb{G}}$, and with $\widehat{\mathbb{G}}$ the unitary dual, consisting of the equivalence classes $[\pi]$ of the continuous irreducible unitary representations $\pi: \mathbb{G} \longrightarrow \mathbb{C}^{d_{\pi} \times d_{\pi}}$ of dimension d_{π}. The Fourier coefficient at π is defined by

$$
\widehat{f}(\pi):=\int_{\mathbb{G}} f(x) \pi(x)^{*} d x \in \mathbb{C}^{d_{\pi} \times d_{\pi}}, \quad\left(f \in C^{\infty}(\mathbb{G})\right)
$$

where the integral is always taken w.r.t. the Haar measure on \mathbb{G}.
If τ be a function taking values in $\mathbb{C}^{d_{\pi} \times d_{\pi}}$, the $\Psi D O A_{\tau}$ on $L^{p}(\mathbb{G}), p \geq 1$, defined as

$$
\begin{aligned}
\left(A_{\tau} f\right)(x) & =\sum_{[\pi] \in \widehat{\mathbb{G}}} d_{\pi} \operatorname{Tr}(\pi(x) \tau(x, \pi) \widehat{f}(\pi)) \\
& =\sum_{[\pi] \in \widehat{\mathbb{G}} l} \sum_{l, k=1}^{d_{\pi}} d_{\pi}(\pi(x) \tau(x, \pi))_{k l}(\widehat{f}(\pi))_{l k} .
\end{aligned}
$$

[^0]Function τ is called the symbol of the $\Psi D O A_{\tau}$.

Our first aim in this paper is to show that the contraction $\Psi D O, A_{\tau}: L^{p}(\mathbb{G}) \longrightarrow L^{p}(\mathbb{G}), 1<p<\infty$, are Lamperti operator, then it is proved the contraction $\Psi D O, A_{\tau}$ on $L^{p}(\mathbb{G})$ have a DEE with constant $\frac{p}{p-1}$, and is trigonometrically well-bounded. We know that to prove the pointwise ergodic convergence of a contraction U on an L^{p}-space it is enough to prove a Dominated Ergodic Estimate (DEE) for U (see e.g. [13). The DEE for general positive L^{p} contractions for long was an open problem finally proved by Akcoglu [1] in 1974. We find a new display for the symbol of A_{τ}, its adjoint and the symbol of the products of the two $\Psi D O \mathrm{~s}$ on $L^{p}(\mathbb{G})$. In Sect 2 , we introduce the concept of Lamperti operators on L^{p}-space. Then, we introduce the concept of DEE for L^{p} operators and prove that the contraction $\Psi D O, A_{\tau}$ on $L^{p}(\mathbb{G})$ have a DEE and is trigonometrically well-bounded. Then we express ergodic generalization of the Vector-Valued M. Riesz theorem for invertible contraction pseudo-differential operator A_{τ} on $L^{p}(\mathbb{G})$. Finally, we give a formula for its symbols τ. In Sect 3 , the symbol will be determined. In Sect, 4 , we will determine the symbol of the products.

2 Lamperti operators and Ergodic properties

2.1 Lamperti operators

Definition 2.1. A Lamperti operator is an order bounded and disjointness preserving operator $T: E \rightarrow F$ between Banach lattices.

Definition 2.2. A linear operator on a Banach space of functions is said to separate supports if it maps functions with disjoint supports to the same.

Definition 2.3. Suppose that $(\Omega, \mathcal{M}, \mu)$ is an arbitrary measure space, and $1 \leq p<\infty$. A linear mapping T : $L^{p}(\mu) \rightarrow L^{p}(\mu)$ is said to be separation-preserving provided that whenever $f \in L^{p}(\mu), g \in L^{p}(\mu)$, and $f g=0 \mu-a . e$. on Ω, the pointwise product $(T f)(T g)$ vanishes $\mu-a . e$ on Ω. Equivalently T is separation-preserving operator if it be separate supports.

Theorem 2.4. ([14], Theorem 2.5) Suppose that T is separate supports bounded linear operator on an L^{p}-space, $1 \leqslant p<\infty$, then T is a Lamperti operator.

So on L^{p}-space, Lamperti operator and separation-preserving operator are equivalent. L^{p} isometries, $1 \leqslant p<$ $\infty, p \neq 2$, and positive L^{2} isometries are Lamperti operators. The idea goes back to Banach [2]. In the following, we have the following characterization of Lamperti operators.

Theorem 2.5. ([9, Theorem3.1). A bounded linear operator U on an L^{p}-space, $1 \leqslant p<\infty$, separates supports if and only if there exists a positive linear operator $|U|$ on L^{p} such that

$$
\begin{equation*}
|U f|=|U \| f| \quad \text { for every } f \in L^{p} \tag{2.1}
\end{equation*}
$$

$|U|$ is called the linear modulus of U (see [4]).
Definition 2.6. Let (Ω, Σ, μ) and (Y, Δ, ν) be measure spaces. we call $\Phi: \Sigma \longrightarrow \Delta$ a regular (σ-)homomorphism modulo nullsets if for all $B \in \Sigma$ and (in-) finite disjoint sequences $\left(B_{n}\right)_{n}$ in Σ holds:

1. $\Phi(\Omega \backslash B)=\Phi(Y) \backslash \Phi(B)$,
2. $\Phi\left(\bigcup_{n} B_{n}\right)=\bigcup_{n} \Phi\left(B_{n}\right)$,
3. $\nu(\Phi(B))=0$ if $\mu(B)=0$.

In the following, we introduce a mappaing with unique properties related to a regular $(\sigma-)$ homomorphism on sets of measurable functions. Equivalence considering both measurable functions that are almost equal everywhere, we consider the resulting mapping on the set of equivalence classes.

Theorem 2.7. (cf. [10]) Let (Ω, Σ, μ) be a measure space and Φ be a $\left(\sigma_{-}\right)$homomorphism. There is a unique linear operator Φ^{*} on the space of measurable functions, such that:
i) $\Phi^{*} 1_{E}=1_{\Phi E}$, for every $E \in \Sigma$,
ii) for every sequence of measurable functions like g, g_{1}, g_{2}, \ldots if $g_{n} \longrightarrow g \quad \mu$ a.e then $\Phi^{*} g_{n} \longrightarrow \Phi^{*} g \quad \mu$ a.e when $n \rightarrow \infty$.

Theorem 2.8. ([9] Theorem 4.1) Let (Ω, Σ, μ) be a σ-finite measure space and $1 \leq p<\infty$. Let T be a Lamperti operator on $L^{p}(\mu)$ and Φ, σ-homomorphism associated of T and Φ^{*} be linear operator associated of Φ.Then there is a unique $h=\sum_{n=1}^{\infty} T 1_{E_{i}}$, where $\left\{E_{i}: i \geqslant 1\right\}$ is a countable decomposition of Ω into the subset of finite measure, with $\operatorname{supp} h=\Phi \Omega$, and

$$
\begin{equation*}
T f(x)=h(x) \Phi^{*} f(x) \quad \text { for all } f \in L^{p} \tag{2.2}
\end{equation*}
$$

2.2 Ergodic properties and Mean-bounded

Let (Ω, Σ, μ) be a σ-finite measure space and $L^{p}=L^{p}(\Omega, \Sigma, \mu), 1 \leqslant p \leqslant \infty$. The indicator function of a set E is denoted 1_{E}. The support of a function g is the set suppg $=\{x: g(x) \neq 0\}$. The maximal operator $M(T) \equiv M$ of an L^{p} operator T is defined by $M f=\sup _{n \geq 1}\left|T_{n} f\right|$, where $T_{n}=n^{-1} \sum_{i=0}^{n-1} T^{i}$. The truncated maximal operator M_{N}, N a positive integer, is defined similarly with the sup taken over $n=1, \ldots, N . T$ is said to have a Dominated Ergodic Estimate (DEE) with (finite) constant C if

$$
\begin{equation*}
\|M f\| \leqslant C\|f\| \quad \text { for all } f \in L^{p} \tag{2.3}
\end{equation*}
$$

This will be the case if 2.3 holds for all M_{N} with the same C.
Definition 2.9. Let (Ω, Σ, μ) be a measure space. A bounded invertible linear operator $T: L^{p}(\mu) \rightarrow L^{p}(\mu)$ is said to be mean-bounded if

$$
\sup _{n \geq 0}\left\|\frac{1}{2 n+1} \sum_{j=-n}^{n} T^{j}\right\|<\infty
$$

Theorem 2.10. ([3], Theorem 3.2) Suppose that (Ω, Σ, μ) is a σ-finite measure space, $1<p<\infty$, and T is a bounded, invertible, separation-preserving linear mapping of $L^{p}(\mu)$ onto $L^{p}(\mu)$. The following assertions are equivalent.
(i) There is a real constant $C>0$ such that for any $f \in L^{p}(\mu)$,

$$
\int_{\Omega}|M f|^{p} d \mu \leqslant C \int_{\Omega}|f|^{p} d \mu
$$

where M is the maximal operator defined on $L^{p}(\mu)$. Equivalence T have Dominated Ergodic Estimate (DEE). (ii) $|T|$, the linear modulus of T, is mean-bounded, that is

$$
\sup _{n \geqslant 0}\left\|\frac{1}{2 n+1} \sum_{j=-n}^{n}|T|^{j}\right\|<\infty
$$

Let $B(Y)$ denote the Banach algebra of all bounded linear mappings of a Banach space Y into itself. $\mathrm{F}($.$) , the$ spectral family in Y , is a projection-valued function, mapping the real line \mathbb{R} into $B(Y)$. If there is a compact interval $[a, b]$ such that $F(\lambda)=0$ for $\lambda<a$ and $F(\lambda)=I$ for $\lambda \geqslant b$, then we say that $\mathrm{F}($.$) is concentrated on [a, b]$. Corresponding to any spectral family F (.) of projections in Y, a RiemannStieltjes notion of spectral integration with respect to F (.) can be defined as follows. For convenience, we suppose here that F (.) is concentrated on a compact interval $K=[a, b]$ of \mathbb{R}. Given a bounded function $f: K \rightarrow \mathbb{C}$ for each partition $\mathcal{P}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ of K we put

$$
\mathcal{S}(\mathcal{P}, f, F)=\Sigma_{k=1}^{n} f\left(\lambda_{k}\right)\left\{F\left(\lambda_{k}\right)-F\left(\lambda_{k-1}\right)\right\} .
$$

If the net $\{\mathcal{S}(\mathcal{P}, f, F)\}$ converges in the strong operator topology of $B(Y)$ as \mathcal{P} increases through the partitions of K directed by inclusion, then the strong limit is called the spectral integral of f with respect to $\mathrm{F}(\cdot)$, and denoted by $\int_{[a, b]} f d F$. We then further define $\int_{[a, b]}^{\oplus} f d F$ by writing

$$
\int_{[a, b]}^{\oplus} f d F=f(a) F(a)+\int_{[a, b]} f d F
$$

Definition 2.11. An operator $U \in B(Y)$ is said to be trigonometrically well-bounded provided there is a spectral family $\mathrm{E}(\cdot)$ in Y concentrated on $[0,2 \pi]$ such that $U=\int_{[0,2 \pi]}^{\oplus} e^{i \lambda} d E(\lambda)$. In this case it is always possible to arrange matters so that we also have $E\left((2 \pi)^{-}\right)=I$. With this additional property, the spectral family $\mathrm{E}(\cdot)$ is uniquely determined by U , and called the spectral decomposition of U . Note that in this event, $\sigma(U)$, the spectrum of U , must be a subset of $[0,2 \pi]$.

Theorem 2.12. ([3], Theorem 4.2) Suppose that (Ω, Σ, μ) is a σ-finite measure space, $1<p<\infty$, and T is a bounded, invertible, separation-preserving linear mapping of $L^{p}(\mu)$ onto $L^{p}(\mu)$ such that the linear modulus of T , be mean-bounded, that is

$$
\sup _{n \geqslant 0}\left\|\frac{1}{2 n+1} \sum_{j=-n}^{n}|T|^{j}\right\|<\infty
$$

Then T is trigonometrically well-bounded.
Theorem 2.13. (ergodic generalization of the Vector-Valued M. Riesz theorem)([3], Theorem 6.7) Let T satisfy the hypotheses of Theorem 2.12, and let $\mathrm{E}(\cdot)$ be the spectral decomposition of T . Then there is a real constant $K>0$ such that

$$
\left\|\left\{\sum_{i=1}^{\infty}\left|E\left(b_{i}\right) f_{i}\right|^{2}\right\}^{\frac{1}{2}}\right\|_{L^{p}(\mu)} \leqslant K\left\|\left\{\sum_{i=1}^{\infty}\left|f_{i}\right|^{2}\right\}^{\frac{1}{2}}\right\|_{L^{p}(\mu)}
$$

for all sequences $\left\{b_{i}\right\}_{i=1}^{\infty} \subseteq[0,2 \pi)$, and all sequences $\left\{f_{i}\right\}_{i=1}^{\infty} \subseteq L^{p}(\mu)$.

Theorem 2.14. (9), Theorem 5.1) Suppose that S be a Lamperti contraction on $L^{p}, 1<p<\infty$. Then S has a DEE with constant $\frac{p}{p-1}$.

In the following, we give the main result. We show that the contraction $\Psi D O$ on $L^{p}(\mathbb{G})$ has a DEE.
Theorem 2.15. Suppose that $\tau(x, \pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}$ and $A_{\tau}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$ be contraction $\Psi D O$ for $1<p<\infty$. Then A_{τ} has a DEE with constant $\frac{p}{p-1}$.

Proof . We show that the contraction $\Psi D O, A_{\tau}$ is Lamperti operator for $1 \leq p<\infty$. For this purpose, we first show that $A_{\tau}(\mathbb{G})$ is Lamperti operator on indicator function. By definition of A_{τ}, we have

$$
\left(A_{\tau} 1_{E}\right)(x)=\sum_{[\pi] \in \widehat{\mathbb{G}}} d_{\pi} \operatorname{Tr}\left(\pi(x) \tau(x, \pi) \widehat{1_{E}}(\pi)\right)
$$

such that

$$
\widehat{1_{E}}(\pi)=\int_{\mathbb{G}} 1_{E}(x) \pi(x)^{*} d x=\int_{E} \pi(x)^{*} d x
$$

Therefore, $A_{\tau} 1_{E}(x)=\sum_{[\pi] \in \widehat{\mathbb{G}}} d_{\pi} \operatorname{Tr}\left(\pi(x) \tau(x, \pi) \widehat{1_{E}}(\pi)\right)$ where $x \in E$ and $A_{\tau} 1_{E}(x)=0$ otherwise. So $\left(\operatorname{supp} A_{\tau} 1_{E}\right) \subseteq E$ and the same way $\left(\operatorname{supp} A_{\tau} 1_{F}\right) \subseteq F$. So $\left(\operatorname{supp} A_{\tau} 1_{E}\right) \cap\left(\operatorname{supp} A_{\tau} 1_{F}\right)=\emptyset$ and thus the desired result is obtaind. Now, we show that the assumptions of Theorem 2.5 is hold for $A_{\tau}(\mathbb{G})$. That means $A_{\tau}(\mathbb{G})$ is Lamperti operator on $L^{p}(\mathbb{G})$. For this, let $g \in L^{p}(\mathbb{G}) \cap L^{+}$we define

$$
\begin{equation*}
\left|A_{\tau}\right|(g)=\left|A_{\tau} g\right| \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{\tau}\right|(g)=\left|A_{\tau}\right|\left(g^{+}\right)-\left|A_{\tau}\right|\left(g^{-}\right) \tag{2.5}
\end{equation*}
$$

where $g \in L^{p}(\mathbb{G})$ is a real function and $g=g^{+}-g^{-}$. For every $g \in L^{p}(\mathbb{G})$, we define

$$
\begin{equation*}
\left|A_{\tau}\right|(g)=\left|A_{\tau}\right|\left(g_{r}\right)+i\left|A_{\tau}\right|\left(g_{i}\right) \tag{2.6}
\end{equation*}
$$

where $g \in L^{p}(\mathbb{G})$ and $g=g_{r}+i g_{i} .\left|A_{\tau}\right|: L^{p}(\mathbb{G}) \longrightarrow L^{p}(\mathbb{G})$ is well-defined . Because A_{τ} is Lamperti operator on indicator function and as in steps 1,2 and 3 , proof of theorem 3 in [5], prove that $\left|A_{\tau}\right|$ is linear and by definition 2.4 $\left|A_{\tau}\right|$ is positive. In the next step, we show that for every $g \in L^{p}(\mathbb{G})$,

$$
\begin{equation*}
\left|A_{\tau} g\right|=\left|A_{\tau}\right| g| | \quad \text { almost everywhere. } \tag{2.7}
\end{equation*}
$$

If $t=\sum_{i=1}^{n} \beta_{i} 1_{E_{i}}$ is simple and integrable function, then $E_{i} \cap E_{j}=\emptyset$ for every $1 \leq i \leq n, 1 \leq j \leq n, i \neq j$. Because A_{τ} is Lamperti operator on indicator function so

$$
\left(A_{\tau} 1_{E_{i}}\right)\left(A_{\tau} 1_{E_{j}}\right)=0
$$

So by lemma 1 in [5],

$$
\left|\sum_{i=1}^{n} \beta_{i} A_{\tau} 1_{E_{i}}\right|=\sum_{i=1}^{n}\left|\beta_{i} A_{\tau} 1_{E_{i}}\right|
$$

and

$$
\left|\sum_{i=1}^{n}\right| \beta_{i}\left|A_{\tau} 1_{E_{i}}\right|=\sum_{i=1}^{n}| | \beta_{i}\left|A_{\tau} 1_{E_{i}}\right|
$$

But for every $1 \leq i \leq n$,

$$
\left|\left|\beta_{i}\right| A_{\tau} 1_{E_{i}}\right|=\left|\beta_{i}\right|\left|A_{\tau} 1_{E_{i}}\right|=\left|\beta_{i} A_{\tau} 1_{E_{i}}\right|
$$

So

$$
\left|\sum_{i=1}^{n} \beta_{i} A_{\tau} 1_{E_{i}}\right|=\left|\sum_{i=1}^{n}\right| \beta_{i}\left|A_{\tau} 1_{E_{i}}\right|
$$

By lemma 1 in [5] , $|t|=\sum_{i=1}^{n}\left|\beta_{i}\right| 1_{E_{i}}$. So

$$
\begin{align*}
\left|A_{\tau} s\right| & =\left|\sum_{i=1}^{n} \beta_{i} A_{\tau} 1_{E_{i}}\right|=\left|\sum_{i=1}^{n}\right| \beta_{i}\left|A_{\tau} 1_{E_{i}}\right| \\
& =\left|A_{\tau}\left(\sum_{i=1}^{n}\left|\beta_{i}\right| 1_{E_{i}}\right)\right|=\left|A_{\tau}\right| s| | \tag{2.8}
\end{align*}
$$

By [11 (Theorem 13.3), there is $\left\{t_{n}\right\}_{n=1}^{\infty}$ of simple and integrable function where

$$
\begin{equation*}
\left\|g-t_{n}\right\|_{L^{p}(\mu)} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.9}
\end{equation*}
$$

A_{τ} is bounded and by 2.8 :

$$
\begin{aligned}
\left\|\left|A_{\tau} g\right|-\left|A_{\tau}\right| g\right\| \|_{L^{p}(\mu)} & \leq\left\|\left|A_{\tau} g\right|-\left|A_{\tau} t_{n}\right|\right\|_{L^{p}(\mu)}+\left\|\left|A_{\tau}\right| t_{n}\right\|-\left|A_{\tau}\right| g| | \|_{L^{p}(\mu)} \\
& \leq\left\|A_{\tau} g-A_{\tau} t_{n}\right\|_{L^{p}(\mu)}+\left\|A_{\tau}\left|t_{n}\right|-A_{\tau}|g|\right\|_{L^{p}(\mu)} \\
& \leq\left\|A_{\tau}\right\|\left\|g-t_{n}\right\|_{L^{p}(\mu)}+\left\|A_{\tau}\right\|\left\|\left|t_{n}\right|-|g|\right\|_{L^{p}(\mu)} \\
& \leq 2\left\|A_{\tau}\right\|\left\|g-t_{n}\right\|_{L^{p}(\mu)}
\end{aligned}
$$

Now we have the equality by 2.9 . In the following, we show that for every $f \in L^{p}(\mathbb{G})$,

$$
\begin{equation*}
\left|A_{\tau} g\right|=\left|A_{\tau} \| g\right| \tag{2.10}
\end{equation*}
$$

$|f| \geq 0$, so by definition (2.4), $\left|A_{\tau}\right|(|g|)=\left|A_{\tau}(|g|)\right|$. The desired equality obtained by 2.7). As in steps 7 and 8, proof of theorem 3 in [5], and because A_{τ} is Lamperti operator on indicator function, prove that $\left|A_{\tau}\right|$ is bounded and unique. So by Theorem 2.5, the contraction linear operator A_{τ} on $L^{p}(\mathbb{G})$ is a Lamperti operator. So A_{τ} is a contraction Lamperti operator. Now the proof is completed by Theorem 2.14

Corollary 2.16. Let $\tau(x, \pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}$ and $A_{\tau}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$ be a bounded $\Psi D O$, then A_{τ} is Lamperti operator for $1 \leq p<\infty$.

Corollary 2.17. Suppose that $\tau(x, \pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}$ and $A_{\tau}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$ be invertible contraction $\Psi D O$ for $1<p<\infty$. Then A_{τ} is trigonometrically well-bounded.

Proof . By theorem $2.15 A_{\tau}$ is a separation-preserving (Lamperti) operator with DEE, so according to Theorem 2.10, $\left|A_{\tau}\right|$ is mean-bounded. Therefore the hypotheses of Theorem 2.12 are established, so A_{τ} is trigonometrically well-bounded.

Corollary 2.18. Suppose that $\tau(x, \pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}$ and $A_{\tau}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$ be invertible contraction $\Psi D O$ for $1<p<\infty$, and $\mathrm{E}($.$) be the spectral decomposition of A_{\tau}$. Then there is a real constant $K>0$ such that

$$
\left\|\left\{\sum_{i=1}^{\infty}\left|E\left(\lambda_{i}\right) f_{i}\right|^{2}\right\}^{\frac{1}{2}}\right\|_{L^{p}(\mathbb{G})} \leqslant K\left\|\left\{\sum_{i=1}^{\infty}\left|f_{i}\right|^{2}\right\}^{\frac{1}{2}}\right\|_{L^{p}(\mathbb{G})}
$$

for all sequences $\left\{\lambda_{i}\right\}_{i=1}^{\infty} \subseteq[0,2 \pi)$, and all sequences $\left\{f_{i}\right\}_{i=1}^{\infty} \subseteq L^{p}(\mathbb{G})$.
Proof . By corollary 2.17, A_{τ} satisfy the hypotheses of Theorem 2.12, so according to Theorem 2.13, inequality is obtained.

The following Theorem give the formula for the symbol of the $A_{\tau}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$.
Theorem 2.19. Let $\tau(x, \pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}$ and $A_{\tau}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$ be bounded, then there exist a unique measurable function h on \mathbb{G} such that:

$$
\begin{equation*}
\tau(x, \pi)=(\pi(x))^{*} h(x)\left(\Phi^{*} \pi\right)(x) \tag{2.11}
\end{equation*}
$$

Proof . According to Corollary2.16, A_{τ} is a Lamperti operator. So by Theorem 2.8, we have

$$
\left(A_{\tau} g\right)(x)=h(x)\left(\Phi^{*} g\right)(x), \quad g \in L^{p}(\mathbb{G})
$$

By definition of A_{τ}, we have

$$
\begin{align*}
\left(A_{\tau} g\right)(x) & =\sum_{[\pi] \in \widehat{\mathbb{G}}} d_{\pi} \operatorname{Tr}(\pi(x) \tau(x, \pi) \widehat{g}(\pi)) \\
& =\sum_{\eta \in \mathbb{G}} \sum_{i, j=1}^{d_{\eta}} d_{\eta}(\eta(x) \tau(x, \eta))_{i j} \widehat{g}(\eta)_{j i} \tag{2.12}\\
& =\int_{\mathbb{G}} \sum_{\eta \in \widehat{\mathbb{G}}} \sum_{i, j=1}^{d_{\eta}} d_{\eta}\left((\eta(x) \tau(x, \eta))_{i j} \overline{\eta(y)_{i j}} g(y) d \mu(y)\right.
\end{align*}
$$

for all $x \in \mathbb{G}$. Let $\pi \in \widehat{\mathbb{G}}$ is fixed. Then the function g on \mathbb{G} for $1 \leq m, n \leq d_{\pi}$ is definde by

$$
g(y)=\pi(y)_{n m}, \quad y \in \mathbb{G}
$$

We have

$$
\int_{\mathbb{G}} \pi(y)_{n m} \overline{\eta(y)_{i j}} d \mu(y)=\frac{1}{d_{\pi}}
$$

if and only if $\pi=\eta$ and $n=i$ and $m=j$, and is zero o.w, it follows from 2.12

$$
(\pi(x) \tau(x, \pi))_{n m}=h(x)\left(\Phi^{*} \pi(y)_{n m}\right)(x)
$$

Thus,

$$
\tau(x, \pi)=(\pi(x))^{*} h(x)\left(\Phi^{*} \pi\right)(x), \quad(x, \pi) \in \mathbb{G} \times \widehat{\mathbb{G}}
$$

where

$$
\left(\Phi^{*} \pi\right)(x)=\left(\Phi^{*} \pi_{n m}\right)(x), \quad 1 \leq n, m \leq d_{\pi} .
$$

3 Adjoints

In the following, we get the symbol of the A_{τ}^{*} explicitly.
Theorem 3.1. Let $\tau(x, \pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}$ such that $A_{\tau}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$ is bounded for $1 \leqslant p<\infty$. Then $A_{\tau}^{*}: L^{p^{\prime}}(\mathbb{G}) \longrightarrow$ $L^{p^{\prime}}(\mathbb{G})$ is a Lamperti operator and its symbol γ given by

$$
\gamma(x, \eta)=\gamma(x)^{*} \widehat{h}(\eta)^{*} A(x), \quad(x, \eta) \in \mathbb{G} \times \widehat{\mathbb{G}}
$$

Where,

$$
A(x)=\sum_{\rho \in \widehat{\mathbb{G}}} d_{\rho} \operatorname{tr}\left(\rho(x)\left(\Phi^{*} \rho\right)^{*}\right)
$$

Proof. Suppose that $f \in L^{p}(\mathbb{G})$ and $g \in L^{p^{\prime}}(\mathbb{G})$. Then

$$
\int_{\mathbb{G}}\left(A_{\tau} f\right)(x) \overline{g(x)} d \mu(x)=\int_{\mathbb{G}} f(x) \overline{\left(A_{\tau}^{*} g\right)(x)} d \mu(x)
$$

So

$$
\begin{align*}
& \int_{\mathbb{G}}\left(\int_{\mathbb{G}} \sum_{\pi \in \widehat{\mathbb{G}}} \sum_{i, j=1}^{d_{\pi}} d_{\pi}(\pi(x) \tau(x, \pi))_{i j} \overline{\pi(y)_{i j}} f(y) d \mu(y)\right) \overline{g(x)} d \mu(x) \\
= & \int_{\mathbb{G}} f(x) \overline{\left(\int_{\mathbb{G}} \sum_{\pi \in \widehat{\mathbb{G}}} \sum_{i, j=1}^{d_{\pi}} d_{\pi}(\pi(x) \gamma(x, \pi))_{i j} \overline{\pi(y)_{i j}} g(y) d \mu(y)\right)} d \mu(x) \tag{3.1}
\end{align*}
$$

In the following, suppose ψ and η be elements in $\widehat{\mathbb{G}}$. Then for $1 \leq t, m \leq d_{\psi}$ and $1 \leq n, l \leq d_{\eta}$, we let f and g be functions on \mathbb{G} be defined by

$$
f(x)=\psi(x)_{t m}, \quad x \in \mathbb{G}
$$

and

$$
g(x)=\eta(x)_{n l}, \quad x \in \mathbb{G}
$$

Therefore by 3.1 .

$$
\int_{\mathbb{G}}\left(\psi(x) \tau(x, \psi)_{t m} \overline{\eta(x)_{n l}} d \mu(x)=\int_{\mathbb{G}} \psi(x)_{t m} \overline{(\eta(x) \gamma(x, \eta))_{n l}} d \mu(x)\right.
$$

and we get

$$
\overline{\int_{\mathbb{G}}\left(\psi(x) \tau(x, \psi)_{t m} \overline{\eta(x)_{n l}} d \mu(x)\right.}=\int_{\mathbb{G}}(\eta(x) \gamma(x, \eta))_{n l} \overline{\psi(x)_{t m}} d \mu(x)
$$

Thus,

$$
\begin{equation*}
\overline{\left((\psi(.) \tau(., \psi))_{t m}\right)^{\wedge}(\eta)_{l n}}=\left((\eta(.) \gamma(., \eta))_{n l}\right)^{\wedge}(\psi)_{m t} . \tag{3.2}
\end{equation*}
$$

By Corollary 2.16, A_{τ} is a Lamperti operator, so by theorem 2.19, there exists a unique, measurable function $h: \mathbb{G} \rightarrow \mathbb{C}$ such that

$$
(\psi(y) \tau(y, \psi))_{t m}=h(y)\left(\Phi^{*} \psi\right)_{t m}(y), \quad 1 \leq m, t \leq d_{\psi}, \quad(y, \psi) \in \mathbb{G} \times \widehat{\mathbb{G}}
$$

So, for all $(x, \eta) \in \mathbb{G} \times \widehat{\mathbb{G}}$,

$$
\begin{aligned}
\left((\eta(x) \gamma(x, \eta))_{n l}\right. & =\sum_{\psi \in \widehat{\mathbb{G}}} d_{\psi} \operatorname{tr}\left[\psi(x)\left((\eta(.) \gamma(., \eta))_{n l}\right)^{\wedge}(\psi)\right] \\
& =\sum_{\psi \in \widehat{\mathbb{G}} t, m=1} \sum_{\psi}^{d_{\psi}} d_{\psi} \psi(x)_{t m}\left(\left((\eta(.) \gamma(., \eta))_{n l}\right)^{\wedge}(\psi)\right)_{m t}
\end{aligned}
$$

Hence for all $(x, \eta) \in \mathbb{G} \times \widehat{\mathbb{G}}$, we get by 3.2

$$
\begin{aligned}
\left((\eta(x) \gamma(x, \eta))_{n l}\right. & =\sum_{\psi \in \widehat{\mathbb{G}}} \sum_{t, m=1}^{d_{\psi}} d_{\psi} \psi(x)_{t m} \overline{\left(\left((\psi(.) \tau(., \psi))_{t m}\right)^{\wedge}(\eta)\right)_{l n}} \\
& =\sum_{\psi \in \widehat{\mathbb{G}}} \sum_{t, m=1}^{d_{\psi}} d_{\psi} \psi(x)_{t m} \int_{\mathbb{G}} \overline{\left((\psi(y) \tau(y, \psi))_{t m}\right.} \eta(y)_{n l} d \mu(y) \\
& =\sum_{\psi \in \widehat{\mathbb{G}} t} \sum_{t, m=1}^{d_{\psi}} d_{\psi} \psi(x)_{t m} \int_{\mathbb{G}} \overline{h(y)}\left(\Phi^{*} \psi\right)_{m t}^{*} \eta(y)_{n l} d \mu(y) \\
& =\widehat{\widehat{h}(\eta)_{l n}} \sum_{\psi \in \widehat{\mathbb{G}}} d_{\psi} t r\left(\psi(x)\left(\Phi^{*} \psi\right)^{*}\right) \\
& =\overline{\widehat{h}(\eta)_{l n}} A(x) \\
& =\widehat{h}(\eta)_{n l}^{*} A(x),
\end{aligned}
$$

for $1 \leq n, l \leq d_{\eta}$. Thus, for all $(x, \eta) \in \mathbb{G} \times \widehat{\mathbb{G}}$, we get

$$
\eta(x) \gamma(x, \eta)=\widehat{h}(\eta)^{*} A(x)
$$

and hence

$$
\gamma(x, \eta)=\eta(x)^{*} \widehat{h}(\eta)^{*} A(x)
$$

4 Products

The following theorem shows that the product of two $\Psi D O$ s on $L^{p}(\mathbb{G})$ is a Lamperti $\Psi D O$ on $L^{p}(\mathbb{G})$, for $1 \leq p<\infty$, and a formula for the symbol of the product of two $\Psi D O \mathrm{~s}$ on $L^{p}(\mathbb{G})$ is given.

Theorem 4.1. If A_{σ} and A_{τ} are the $\Psi D O$ on $L^{p}(\mathbb{G})(p \leq 1<\infty)$, then $A_{\lambda}=A_{\tau} A_{\sigma}: L^{p}(\mathbb{G}) \rightarrow L^{p}(\mathbb{G})$ is a Lamperti $\Psi D O$ and the symbol λ of $A_{\tau} A_{\sigma}$ is given by

$$
\lambda(x, \xi)=\xi(x)^{*} h^{\prime}(x)\left(\Phi^{*} \xi\right)
$$

for all $(x, \xi) \in \mathbb{G} \times \widehat{\mathbb{G}}$, where

$$
h^{\prime}(x)=\sum_{\eta \in \widehat{\mathbb{G}}} \operatorname{tr}[\eta(x) \tau(x, \eta) \widehat{h}(\eta)], \quad x \in \mathbb{G}
$$

Proof . Let $f \in L^{p}(\mathbb{G})$. Then

$$
\begin{aligned}
\left(A_{\tau} A_{\sigma} f\right)(x) & =\sum_{\eta \in \widehat{\mathbb{G}}} d_{\eta} \operatorname{tr}\left[\eta(x) \tau(x, \eta) \widehat{A_{\sigma} f}(\eta)\right] \\
& =\sum_{\eta \in \widehat{\mathbb{G}}} d_{\eta} \operatorname{tr}\left[\eta(x) \tau(x, \eta) \int_{\mathbb{G}} \sum_{\xi \in \widehat{\mathbb{G}}} d_{\xi} \operatorname{tr}(\xi(y) \sigma(y, \xi) \widehat{f}(\xi)) \eta(y)^{*} d \mu(y)\right] .
\end{aligned}
$$

By Corollary $2.16 A_{\sigma}$ is a Lamperti operator, now by Theorem 2.19, we have :

$$
\xi(y) \sigma(y, \xi)=h(y)\left(\Phi^{*} \xi\right)
$$

So,

$$
\begin{aligned}
\left(A_{\tau} A_{\sigma} f\right)(x) & =\sum_{\eta \in \widehat{\mathbb{G}}} d_{\eta} \operatorname{tr}\left[\eta(x) \tau(x, \eta) \int_{\mathbb{G}} \sum_{\xi \in \widehat{\mathbb{G}}} d_{\xi} \operatorname{tr}\left(h(y)\left(\Phi^{*} \xi\right) \widehat{f}(\xi)\right) \eta(y)^{*} d \mu(y)\right] \\
& =\sum_{\eta \in \widehat{\mathbb{G}}} d_{\eta} \operatorname{tr}\left[\eta(x) \tau(x, \eta) \sum_{\xi \in \widehat{\mathbb{G}}} \widehat{h}(\eta) d_{\xi} \operatorname{tr}\left(\Phi^{*}(\xi) \widehat{f}(\xi)\right)\right] \\
& =\sum_{\xi \in \widehat{\mathbb{G}}} \sum_{\eta \in \widehat{\mathbb{G}}} d_{\eta} \operatorname{tr}[\eta(x) \tau(x, \eta) \widehat{h}(\eta)] \operatorname{tr}\left(\left(\Phi^{*} \xi\right) \widehat{f}(\xi)\right) \\
& =\sum_{\xi \in \widehat{\mathbb{G}}} d_{\xi} \operatorname{tr}(\xi(x) \lambda(x, \xi) \widehat{f}(\xi)), \quad x \in \mathbb{G},
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda(x, \xi) & =\xi(x)^{*} \sum_{\eta \in \widehat{\mathbb{G}}} d_{\eta} \operatorname{tr}[\eta(x) \tau(x, \eta) \widehat{h}(\eta)]\left(\Phi^{*} \xi\right) \\
& =\xi(x)^{*} h^{\prime}(x)\left(\Phi^{*} \xi\right)
\end{aligned}
$$

for all $(x, \xi) \in \mathbb{G} \times \widehat{\mathbb{G}}$. This completes the proof.

References

[1] M.A. Akcoglu, A pointwise ergodic theorem in L_{p}-spaces, Canad. J. Math. 27 (1975), no. 5, 1075-1082.
[2] S. Banach, Théorie des opérations linéaires, Z. Subwencji funduszu kultury Narodowej, 1979.
[3] E. Berkson and T.A. Gillespie, Mean-boundedness and Littlewood-Paley for separation-preserving operators, Trans. Amer. Math. Soc. 349 (1997), no. 3, 1169-1189.
[4] R.V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), no. 4, 553-559.
[5] Z. Faghih and M.B. Ghaemi, Characterizations of pseudo-differential operators on \mathbb{S}^{1} based on separationpreserving operators, J. Pseudo-Diff. Oper. Appl. 12 (2021), no. 1, 1-14.
[6] M.B. Ghaemi and M. Jamalpour Birgani, L^{p}-boundedness, compactness of pseudo-differential operators on compact Lie groups, J. Pseudo-Differ. Oper. Appl. 8 (2017), no. 1, 1-11.
[7] M.B. Ghaemi, M. Jamalpour Birgani and M.W. Wong, Characterizations of nuclear pseudo-differential operators on \mathbb{S}^{1} with applications to adjoints and products, J. Pseudo-Differ. Oper. Appl. 8 (2017), no. 2, 191-201.
[8] M.B. Ghaemi, E. Nabizadeh, M. Jamalpour Birgani and M.K. Kalleji, A study on the adjoint of pseudo-differential operators on compact lie groups, Complex Var. Elliptic Equ. 63 (2018), no. 10, 1408-1420.
[9] C.H. Kan, Ergodic properties of Lamperti operators, Canad. J. Math. 30 (1978), no. 6, 1206-1214.
[10] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), no. 3, 459-466.
[11] W. Rudin, Real and complex analysis, McGraw-Hill Book Company, 1987.
[12] M. Ruzhansky and V. Turunen, Pseudo-differential operators and symmetries: Background analysis and advanced topics, Vol. 2. Birkhauser and Boston, 2009.
[13] A. Tulcea, Ergodic properties of isometries in L^{p} spaces $1<p<\infty$, Bull. Amer. Math. Soc. 70 (1964), no. 3, 366-371.
[14] A. Wolfgang, Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32 (1983), no. 2, 199-215.

[^0]: * Corresponding author

 Email addresses: zahra_faghih@MathDep.iust.ac.ir (Zahra Faghih), mghaemi@iust.ac.ir (Mohammad Bagher Ghaemi)

