Second-order abstract Cauchy problem of conformable fractional type

Roshdi Khalila, Sharifa Alsharif ${ }^{\text {b, }}$, Sara Khamis ${ }^{\mathrm{c}, *}$
${ }^{a}$ Department of Mathematics, Jordan University, Amman, Jordan
${ }^{b}$ Department of Mathematics, Yarmouk University, Irbid, Jordan
${ }^{c}$ Department of Mathematics, Lusail University, Doha, Qatar

(Communicated by Javad Damirchi)

Abstract

$$
\begin{aligned} u^{(2 \alpha)}(t)+B u^{(\alpha)}(t)+A u(t) & =f(t) \\ u(0) & =u_{0} \\ u^{(\alpha)}(0) & =u_{0}^{(\alpha)} \end{aligned}
$$

In this paper, we discuss atomic solutions of the second-order abstract Cauchy problem of conformable fractional type
where A, B are closed linear operators on a Banach space $X, f:[0, \infty) \rightarrow X$ is continuous and u is a continuously differentiable function on $[0, \infty)$. Some new results on atomic solutions using tensor product technique are obtained.

Keywords: Inverse problem; fractional derivative; tensor product of Banach spaces; atomic solution 2020 MSC: 26A33, 34G10, 34A55

1 Introduction

Many mathematical models in applied sciences involve the study of what is called the Abstract Cauchy problem which has the form

$$
\begin{align*}
B u^{\prime}(t)+A u(t) & =f(t), t \in[0,1] \text { or }[0, \infty) \tag{1.1}\\
u(0) & =u_{0},
\end{align*}
$$

where A, B are densely defined closed linear operators on a Banach space X, and f is an X-valued continuous function while u is a continuously differentiable X valued function. Problem 1.1) is called degenerate problem if B is not invertible, otherwise it is called non-degenerate. If $f=0$, then Problem (1.1) is called a homogenous problem.

Many researchers were interested in studying the homogeneous and degenerate form of such problem using variety of methods such as semigroups or Factorization technique, see [8, 12, 20]. In [4], the inverse form of Problem 1.1 was studied under certain conditions on the operators A and B to convert the problem to a degenerate one.

[^0]Fractional order differential equations received a great attention in the last years since it plays a fundamental role in modeling real life problems with applications in many branches of science, such as biology, physics, finance, engineering, etc. One of the most important problems of fractional order type is the fractional Abstract Cauchy problem which has the form

$$
\begin{align*}
B u^{\alpha}(t)+A u(t) & =f(t), t \in[0, a] \text { or }[0, \infty) \tag{1.2}\\
u(0) & =u_{0},
\end{align*}
$$

where A, B are densely defined closed linear operators on a Banach space $X, u \in C^{(\alpha)}(I, X), f \in C(I, X)$ and $u_{0} \in X$, where $C(I, X)$ denotes the Banach space of all continuous functions from the compact Hausdorff space I into X.

It should be noted that up to now, there are many different definitions of fractional derivatives, such as Caputo, Hadamard, Riemann, Caputo-Frabrizio, and others. Most of these definitions use the integral form see [17, 19]. Unfortunately all the existing fractional derivatives do not satisfy the classical properties of the usual derivatives: product rule, quotient rule and chain rule for the derivative of two functions and most of them except Caputo derivative don't satisfy that the derivative of the constant function is zero. To find a solution for some of these difficulties an interesting definition for fractional derivative that uses limit approach is given by Khalil et. all, [15, 5] as an extension of the usual definition of derivatives as follows:

Definition 1.1. [15] Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function. The α-conformable fractional derivative' of f is defined by

$$
D^{\alpha}(f)(t)=\lim _{\epsilon \rightarrow 0} \frac{f\left(t+\epsilon t^{1-\alpha}\right)-f(t)}{\epsilon}
$$

for all $t>0$ and $\alpha \in(0,1)$. If f is α - differentiable in some $(0, a), a>0$, and $\lim _{t \rightarrow 0^{+}} f^{\alpha}(t)$ exists, then $f^{\alpha}(0)=\lim _{t \rightarrow 0^{+}} f$ ${ }^{\alpha}(t)$. Let $f^{(\alpha)}(t)$ stands for $D^{\alpha}(f)(t)$ and by $f^{(2 \alpha)}(t)$ we mean $D^{\alpha} D^{\alpha}(f)(t)$.

In 2010, a new technique based on tensor product of Banach spaces was used to find a unique solution for the Abstract Cauchy problem under certain conditions on the operators A and B, see 21, 22. In 16, the tensor product technique is used to give a unique two rank solution for the homogenous Abstract Cauchy problem of conformable type (1.2). While an atomic solution for certain degenerate and non-degenerate inverse problem is obtained in [14.

In this paper we focus on finding an atomic solution of the second order non-homogeneous Abstract Cauchy problem of conformable fractional type:

$$
\begin{align*}
u^{(2 \alpha)}(t)+A u^{(\alpha)}(t)+B u(t) & =f(t) \tag{1.3}\\
u(0) & =u_{0} \\
u^{(\alpha)}(0) & =u_{0}^{(\alpha)}
\end{align*}
$$

using tensor product technique, where A and B are densely defined closed linear operators on a Banach space X, $u \in C^{(2 \alpha)}(I, X), f \in C(I, X)$ and $u_{0}, u_{0}^{(\alpha)} \in X$.

2 Tensor Product

Let X^{*}, Y^{*} be the dual of the two Banach spaces X and Y respectively. For $(x, y) \in X \times Y$, the linear operator $x \otimes y: X^{*} \rightarrow Y$ defined by $x \otimes y\left(x^{*}\right)=x^{*}(x) y$ is called an atom. It is easy to see that $x \otimes y$ is a bounded linear operator with norm $\|x \otimes y\|=\|x\|\|y\|$. The linear space spanned by the set $\{x \otimes y,(x, y) \in X \times Y\}$ in $L\left(X^{*}, Y\right)$ is denoted by $X \otimes Y$. There are many norms that one can put on $X \otimes Y$. One of most popular ones is the injective norm $\|.\| \vee$, see [18]. For $T=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes Y$.

$$
\|T\|_{\vee}=\sup \left\{\sum_{i=1}^{n}\left|\left\langle x, x^{*}\right\rangle\left\langle y, y^{*}\right\rangle\right|, x^{*} \otimes y^{*} \in X^{*} \times Y^{*},\left\|x^{*}\right\|=\left\|y^{*}\right\|=1\right\} .
$$

The space $\left(X \otimes Y,\|\cdot\|_{\vee}\right)$ need not be complete. We let $X \stackrel{\vee}{\otimes} Y$ denote the completion of $X \otimes Y$ in $L\left(X^{*}, Y\right)$ with respect to the injective norm.

One of the nice results in tensor product is that, $C(I, X)$ isometrically isomorphic to $C(I) \stackrel{\vee}{\otimes} X$, For more on tensor product and the use of atoms we refer the reader to $9,10,18,13$.

We begin our section by the following lemma which we need in our work.
Lemma 2.1. Let $g_{1} \otimes y_{1}$ and $g_{2} \otimes y_{2}$ be two non zero atoms in $C(I) \stackrel{\vee}{\otimes} X$. Then the following are equivalent:
(1) $g_{1} \otimes y_{1}+g_{2} \otimes y_{2}=g_{3} \otimes y_{3}$, a non zero atom.
(2) g_{1}, g_{2} or y_{1}, y_{2} are linearly dependent.

Proof . (2) \rightarrow (1). Clear.
(1) \rightarrow (2). Assume $g_{1} \neq g_{2}$. Then, by a consequence of the Hahn-Banach Theorem, 11] there exists a continuous linear functional μ on $C(I)$, such that $\mu\left(g_{1}\right) \neq \mu\left(g_{2}\right) \neq 0$ and $\mu\left(g_{3}\right)=0$. This implies that

$$
y_{1}=\frac{-\mu\left(g_{2}\right)}{\mu\left(g_{1}\right)} y_{2}
$$

and so, y_{1}, y_{2} are linearly dependent.
Similarly, if $y_{1} \neq y_{2}$, we use the same idea but on the adjoint operators, noting that the adjoint of $x \otimes y$ is $y \otimes x$, when we are dealing with real Banach spaces, which is our case. This ends the proof.

Lemma 2.2. Let $g_{1} \otimes y_{1}, g_{2} \otimes y_{2}$, and $g_{3} \otimes y_{3}$ be three non zero atoms in $C(I) \stackrel{\vee}{\otimes} X$. Assume $g_{1} \otimes y_{1}+g_{2} \otimes y_{2}+g_{3} \otimes y_{3}$ $=g \otimes y \neq 0$. Then the atoms $g_{1} \otimes y_{1}, g_{2} \otimes y_{2}$, and $g_{3} \otimes y_{3}$ are linearly dependent.

Proof . If possible assume that such atoms are linearly independent. Then g_{1}, g_{2}, g_{3} are linearly independent and y_{1}, y_{2}, y_{3} are linearly independent. But, by a consequence of the Hahn Banach Theorem, 11] there exists a continuous linear functional μ on $C(I)$, such that $\mu\left(g_{1}\right) \neq 0, \mu\left(g_{2}\right) \neq 0, \mu\left(g_{3}\right) \neq 0$ and $\mu(g)=0$. This implies that, y_{1}, y_{2} and y_{3} are linearly dependent, contradicting the assumption. This ends the proof.

3 Atomic Solution

In this paper we concentrate on finding an atomic solution $u=u_{1} \otimes x$ to the non-homogeneous second order fractional Abstract Cauchy problem of the form

$$
\begin{align*}
u^{(2 \alpha)}(t)+A u^{(\alpha)}(t)+B u(t) & =f(t) \tag{3.1}\\
u(0) & =u_{0} \\
u^{(\alpha)}(0) & =u_{0}^{(\alpha)},
\end{align*}
$$

using tensor product technique, where A and B are densely defined closed linear operators on the Banach space X, $u_{1} \in C^{(2 \alpha)}(I), f \in C(I, X)$ and $u_{0}, u_{0}^{(\alpha)}$ and $x \in X$.

If $u=u_{1} \otimes x$, then we can write (3.1) in tensor product as follows:

$$
u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x+u_{1} \otimes B x=f \otimes z
$$

Here, the unknowns are u_{1} and x, while A, B, f and z are given. With no loss of generality we can assume that $f(0)=1$.

Since the sum of three atoms is an atom, then by the use of Lemma 2.2, either $u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x$ is an atom or $u_{1}^{(2 \alpha)} \otimes x+u_{1} \otimes B x$ is an atom or $u_{1}^{(\alpha)} \otimes A x+u_{1} \otimes B x$ is an atom. All these cases
are discussed in details in the following three theorems.
Theorem 3.1. Let A, B be densely defined closed linear operators on a Banach space $X, x \in \operatorname{Domain}(A \cap B), u_{1}(t)$ is (2 2)-differentiable function on I. If $u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x$ is an atom, then the fractional differential equation 3.1) has a unique atomic solution if the following conditions are satisfied
(i)There exists some $x^{*} \in X^{*}$ and $g \in C(I, R)$, such that g is (2α)-differentiable function on I, where $g^{(2 \alpha)}(0)$ exist, and $u_{1}(t)\left\langle x, x^{*}\right\rangle=g(t)$.
(ii) x is uniquely imaged by the operators $I+A+B, I+B$

Proof . Without loss of generality assume that $f(0)=u_{1}(0)=u_{1}^{(\alpha)}(0)=1$. Write 3.1 in tensor product form, we get

$$
\begin{equation*}
u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x+u_{1} \otimes B x=f \otimes z . \tag{4.1}
\end{equation*}
$$

Since $u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x$ is an atom, by Lemma 2.1. either $u_{1}^{(2 \alpha)}(t)=u_{1}^{(\alpha)}(t)$ or $A x=x$.
Case (1)

$$
\begin{equation*}
u_{1}^{(2 \alpha)}(t)=u_{1}^{(\alpha)}(t) \tag{4.2}
\end{equation*}
$$

Solving (4.2), we get $u_{1}(t)=c_{1}+c_{2} e^{\frac{t^{\alpha}}{\alpha}}$. Using the initial conditions $u_{1}(0)=1$ and $u_{1}^{(\alpha)}(0)=1$, we get $c_{1}=0$ and $c_{2}=1$. Hence $u_{1}(t)=e^{\frac{t^{\alpha}}{\alpha}}$. Since $g(t)=u_{1}(t)\left\langle x, x^{*}\right\rangle$, it follows that $g(0)=\left\langle x, x^{*}\right\rangle$ and $g^{(\alpha)}(t)=e^{\frac{\beta}{\alpha} t^{\alpha}} g(0)=u_{1}^{(\alpha)}(t) g(0)$. Thus, $u_{1}(t)$ is uniquely determined.

Now, substitute $u_{1}(t)$ in (4.1), we get

$$
e^{\frac{t^{\alpha}}{\alpha}}(x+A x+B x)=f(t) z
$$

This is true for all t. In particular take $t=0$ and use the assumption on f to get

$$
x+A x+B x=(I+A+B) x=z .
$$

By the assumption on z, we get x to be uniquely determined. Thus, 4.1 has a unique solution.
Case (2)

$$
\begin{equation*}
A x=x \tag{4.3}
\end{equation*}
$$

Now, substitute 4.3 in 4.1, we get

$$
\begin{equation*}
\left(u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}\right) \otimes x+u_{1} \otimes B x=f \otimes z \tag{4.4}
\end{equation*}
$$

Since the sum of two atoms equals one atom, using Lemma 2.1. we have two sub-cases, $u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}=u_{1}$ or $B x=x$.
Case (a):

$$
\begin{gather*}
u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}=u_{1} . \tag{4.5}\\
r^{2}+r-1=0 . \tag{4.6}
\end{gather*}
$$

Write 4.5 in characteristic form, we get

Solving 4.6, we get

$$
r=\frac{-1 \pm \sqrt{5}}{2}
$$

Thus,

$$
u_{1}(t)=e^{\frac{-t \alpha}{2 \alpha}}\left(c_{1} e^{\frac{-\sqrt{5}}{2 \alpha} t^{\alpha}}+c_{2} e^{\frac{\sqrt{5}}{2 \alpha} t^{\alpha}}\right)
$$

Using the initial conditions $u_{1}(0)=1$ and $u_{1}^{(\alpha)}(0)=1$, we get

$$
c_{1}=-\frac{3-\sqrt{5}}{2 \sqrt{5}}, \quad c_{2}=\frac{3+\sqrt{5}}{2 \sqrt{5}}
$$

Thus, $u_{1}(t)$ is uniquely determined.
Now, substitute 4.5 in 4.4, we get

$$
u_{1}(t)(x+B x)=f(t) z
$$

This is true for all t. Hence $(I+B) x=z$. By the assumption on z, we get x is uniquely determined.
Case (b)

$$
\begin{equation*}
B x=x \text {. } \tag{4.7}
\end{equation*}
$$

Substitute 4.7 in 4.4, we get,

$$
\left(u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}+u_{1}\right) \otimes x=f \otimes z
$$

Solve the homogeneous equation

$$
\begin{equation*}
u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}+u_{1}=0 \tag{4.8}
\end{equation*}
$$

Using characteristic equation of (4.8), we get that

$$
u_{1}(t)=e^{\frac{-t^{\alpha}}{2 \alpha}} \cos \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right), \quad \sin \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right.
$$

are two independent solutions of 4.8) . Using these two solutions by the method of variation of parameters, 3, a particular solution u_{p} of the non homogeneous equation

$$
\begin{equation*}
u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}+u_{1}=f \tag{4.9}
\end{equation*}
$$

can be obtained. Hence the general solution of 4.9 is

$$
u_{1}(t)=e^{\frac{-t^{\alpha}}{2 \alpha}}\left(c_{1} \cos \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right)+c_{2} \sin \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right)+u_{p}\right.
$$

Using the initial conditions $u_{1}(0)=1$ and $u_{1}^{(\alpha)}(0)=1, c_{1}$ and c_{2} could be determined. Since $z=x$ it follows that x is uniquely determined and hence a unique solution of 4.1 is obtained.

Theorem 3.2. Let A, B be densely defined closed linear operators on a Banach space $X, x \in \operatorname{Domain}(A \cap B), u(t)$ is (2α)-differentiable function on I, and $u=u_{1} \otimes x$. If $u_{1}^{(2 \alpha)} \otimes x+u_{1}(t) \otimes B x$ is an atom, then the fractional differential equation (3.1) has a unique solution if the following conditions are satisfied
(i) There exists some $x^{*} \in X^{*}$ and $g \in C(I, R)$, such that g is (2α)-differentiable function on I, where $g^{(2 \alpha)}(0)$ exist, and $u_{1}(t)\left\langle x, x^{*}\right\rangle=g(t)$.
(ii) x is uniquely imaged by the operators $I+A+B, I+A$.

Proof . Without loss of generality assume that $f(0)=u_{1}(0)=u_{1}^{(\alpha)}(0)=1$. Write 3.1 in tensor product form, we get

$$
\begin{equation*}
u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x+u_{1} \otimes B x=f \otimes z . \tag{5.1}
\end{equation*}
$$

Since $u_{1}^{(2 \alpha)} \otimes x+u_{1}(t) \otimes B x$ is an atom, by Lemma 2.1. either $u_{1}^{(2 \alpha)}(t)=\lambda u_{1}(t)$ or $B x=\beta x$. With no loss of generality we can take $\beta=\lambda=1$.

Case (1) :

$$
\begin{equation*}
u_{1}^{(2 \alpha)}(t)=u_{1}(t) \tag{5.2}
\end{equation*}
$$

Solving (5.2), we get $u_{1}(t)=c_{1} e^{\frac{t^{\alpha}}{\alpha}}+c_{2} e^{\frac{-t^{\alpha}}{\alpha}}$. Since $u_{1}(0)=1, u_{1}^{(\alpha)}(0)=1$, we get $c_{1}=1$ and $c_{2}=0$. Consequently, $u_{1}(t)=e^{\frac{t^{\alpha}}{\alpha}}$. Since $g(t)=u_{1}(t)\left\langle x, x^{*}\right\rangle$, it follows that $g(0)=\left\langle x, x^{*}\right\rangle$. Hence, $g^{(\alpha)}(t)=e^{\frac{t^{\alpha}}{\alpha}} g(0)$. Thus $u_{1}(t)$ is uniquely determined. Now, substitute $u_{1}(t)$ in 5.1, we get

$$
\begin{equation*}
u_{1}(t)(x+A x+B x)=f(t) z \tag{5.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
(I+A+B) x=\frac{f(t)}{u_{1}(t)} z \tag{5.4}
\end{equation*}
$$

Since this is true for every t, we have

$$
\begin{equation*}
(I+A+B) x=\frac{f(0)}{u_{1}(0)} z=z \tag{5.5}
\end{equation*}
$$

By the assumption on z, we get x uniquely determined. Thus, 5.1) has a unique solution
Case (2)

$$
\begin{equation*}
B x=x . \tag{5.6}
\end{equation*}
$$

Now, substitute (5.6) in 5.1, we get

$$
\begin{align*}
f \otimes z & =u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x+u_{1} \otimes x \tag{3.2}\\
& =\left(u_{1}^{(2 \alpha)}+u_{1}\right) \otimes x+u_{1}^{(\alpha)} \otimes A x
\end{align*}
$$

Since the sum of two atoms equal one atom, using Lemma 2.1. we have the following two sub-cases:
Case (a):

$$
\begin{equation*}
u_{1}^{(2 \alpha)}(t)+u_{1}(t)=u_{1}^{(\alpha)}(t) \tag{5.8}
\end{equation*}
$$

Write (5.8) in characteristic form, we get

$$
\begin{equation*}
r^{2}-r+1=0 \tag{5.9}
\end{equation*}
$$

Solving (5.9), we get

$$
r=\frac{1 \pm \sqrt{3} i}{2}
$$

Thus,

$$
u_{1}(t)=e^{\frac{t^{\alpha}}{2 \alpha}}\left(c_{1} \cos \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right)+c_{2} \sin \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right)\right.
$$

Since $u_{1}(0)=1$, we get $c_{1}=1$ and since $u_{1}^{(\alpha)}(0)=1$, we get $c_{2}=\frac{1}{\sqrt{3}}$. Thus,

$$
u_{1}(t)=e^{\frac{t^{\alpha}}{2 \alpha}}\left(\cos \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right)+\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3}}{2 \alpha} t^{\alpha}\right)\right) .
$$

Consequently, $u_{1}(t)$ is uniquely determined.
Now, substitute (5.8) in (3.2), we get

$$
\begin{equation*}
u_{1}^{(\alpha)}(t)(x+A x)=f(t) z . \tag{5.10}
\end{equation*}
$$

Since this is true for every t, we have

$$
\begin{equation*}
(I+A) x=\frac{f(0)}{u_{1}(0)} z=z . \tag{5.11}
\end{equation*}
$$

By the assumption on z, we get x uniquely determined. Thus, 5.1 has a unique solution
Case (b)

$$
\begin{equation*}
A x=x \tag{5.12}
\end{equation*}
$$

Substitute (5.12) in (3.2), we get

$$
\begin{equation*}
\left(u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}+u_{1}\right) \otimes x=f \otimes z . \tag{5.13}
\end{equation*}
$$

Similarly as in Theorem 3.1 case $2(\mathrm{~b})$ we get $u_{1}(t)$ and x are uniquely determined and hence (5.1) has a unique solution.

Theorem 3.3. Let A, B be densely defined closed linear operators on a Banach space $X, x \in \operatorname{Domain}(A \cap B), u(t)$ is (2α)-differentiable function on I, and $u=u_{1} \otimes x$. If $u_{1}^{(\alpha)}(t) \otimes A x+u_{1}(t) \otimes B x$ is an atom, then the fractional differential equation (3.1) has a unique solution if the following conditions are satisfied
(i)There exists some $x^{*} \in X^{*}$ and $g \in C(I, R)$, such that g is (2α)-differentiable function on I, where $g^{(2 \alpha)}(0)$ exist, and $u_{1}(t)\left\langle x, x^{*}\right\rangle=g(t)$.
(ii) x is uniquely imaged by the operators $I+A+B, I+B$ and B

Proof . Without loss of generality assume that $f(0)=u_{1}(0)=u_{1}^{(\alpha)}(0)=1$. Write 3.1 in tensor product form, we get

$$
\begin{equation*}
u_{1}^{(2 \alpha)} \otimes x+u_{1}^{(\alpha)} \otimes A x+u_{1} \otimes B x=f \otimes z . \tag{6.1}
\end{equation*}
$$

Since $u_{1}^{(\alpha)}(t) \otimes A x+u_{1}(t) \otimes B x$ is an atom, by Lemma 2.1. we have the two cases: either $u_{1}^{(\alpha)}(t)=u_{1}(t)$ or $A x=B x$. Case (1)

$$
\begin{equation*}
u_{1}^{(\alpha)}(t)=u(t) \tag{6.2}
\end{equation*}
$$

Solving 6.2, we get $u_{1}(t)=c e^{\frac{t^{\alpha}}{\alpha}}$. Since $u_{1}^{(\alpha)}(0)=1$, we get $c=1$. Consequently, $u_{1}(t)=e^{\frac{t^{\alpha}}{\alpha}}$. Since $g(t)=$ $u_{1}(t)\left\langle x, x^{*}\right\rangle$. Thus, $g(0)=\left\langle x, x^{*}\right\rangle$. Also, $g^{(\alpha)}(t)=e^{\frac{t^{\alpha}}{\alpha}} g(0)$. Now, substitute $u_{1}(t)$ in 6.1, we get

$$
\begin{equation*}
e^{\frac{t^{\alpha}}{\alpha}}(x+A x+B x)=f(t) z \tag{6.3}
\end{equation*}
$$

Since 6.3) is true for all t, we get

$$
\begin{equation*}
(I+A+B) x=f(0) z \tag{6.4}
\end{equation*}
$$

By the assumption on z, we get x uniquely determined. Thus, 6.1 has a unique solution.
Case (2)

$$
\begin{equation*}
A x=B x . \tag{6.5}
\end{equation*}
$$

Now, substitute (6.5) in 6.1), we get

$$
\begin{equation*}
u_{1}^{(2 \alpha)} \otimes x+\left(u_{1}^{(\alpha)}+u_{1}\right) \otimes B x=f \otimes z \tag{6.6}
\end{equation*}
$$

Since the sum of two atoms equals one atom, using Lemma 2.1, we have the following two sub-cases:
Case (a):

$$
\begin{equation*}
u_{1}^{(\alpha)}+u_{1}=u_{1}^{(2 \alpha)}(t) \tag{6.7}
\end{equation*}
$$

From 6.7) and since $u_{1}^{(\alpha)}(0)=u_{1}(0)=1$. Write 6.7 in characteristic form, we get

$$
\begin{equation*}
r^{2}-r-1=0 \tag{6.8}
\end{equation*}
$$

Solving 6.8, we get

$$
r=\frac{1 \pm \sqrt{5}}{2} .
$$

Thus

$$
u_{1}(t)=e^{\frac{t^{\alpha}}{2 \alpha}}\left(c_{1} e^{\frac{-\sqrt{5}}{2 \alpha} t^{\alpha}}+c_{2} e^{\frac{\sqrt{5}}{2 \alpha} t^{\alpha}}\right)
$$

Using the initial conditions $u_{1}(0)=1$ and $u_{1}^{(\alpha)}(0)=1$, we get

$$
c_{1}=\frac{-1+\sqrt{5}}{2 \sqrt{5}}, \quad c_{2}=\frac{1+\sqrt{5}}{2 \sqrt{5}} .
$$

Thus, $u_{1}(t)$ is uniquely determined.
Now, substitute 6.7) in 6.6, we get

$$
u_{1}^{(\alpha)}(t)+u_{1}(t)(x+B x)=f(t) z
$$

This is true for all t. Hence $(I+B) x=z$. By the assumption on z, x is uniquely determined. Thus, 6.1 has a unique solution.

Case (b)

$$
\begin{equation*}
B x=x . \tag{6.9}
\end{equation*}
$$

Substitute 6.9) in 6.6, we get

$$
\begin{equation*}
\left(u_{1}^{(2 \alpha)}+u_{1}^{(\alpha)}+u_{1}\right) \otimes x=f \otimes z \tag{6.10}
\end{equation*}
$$

Similarly as in Theorem 3.1 case $2(\mathrm{~b})$ we get $u_{1}(t)$ and x are uniquely determined and hence 5.1 has a unique solution.

acknowledgement

The authors thank the referee for his valuable comments.

References

[1] M. Abu Hammad and R. Khalil, Systems of linear fractional differential equations, Asian J. Math. Comput. Res. 12 (2016), no. 2, 120-126.
[2] T. Abdeljawad, M. Al Horani and R. Khalil, Conformable fractional semigroups of operators, J. Semigroup Theory Appl. 2015 (2015), (1-9) Article ID 7.
[3] M. Al Horani, M. Abu Hammad and R. Khalil, Variation of parameters for local nonhomogeneous linear differential equations, J. Math. Comp. Sci. 16 (2016), 147-153.
[4] M. Al Horani, An identification problem for some degenerate differential equations, Le Matematiche 57 (2002), 217-227.
[5] Sh. Al-Sharif, A. Malkawi, Modification of conformable fractional derivative with classical properties. Ital. J. Pure Appl. Math. 44 (2020), 30-39.
[6] D. Anderson and D. Ulness . Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10(2015), no. 2, 109-137.
[7] E. Boyce and C. Di Prima, Elementary differential equations and boundary value problems, 9th ed. John Wiley and Sons, Inc , 2008.
[8] R.W. Carroll and R.E. Showalter, Singular and Degenerate Cauchy Problem, Academic Press, New York, San Francisco, London, 1976.
[9] W. Deeb and R. Khalil, Best approximation in $L(X, Y)$, Math. Proc. Camb. Phil. Soc. 104 (1988), 527-531.
[10] W. Deeb and R. Khalil, Best approximation in $L^{p}(I, X), 0<p<1$, J. Approx. Theory 58 (1989), no. 1, 68-77.
[11] N. Dunford and J. Schwartz, Linear operators, Part I, General theory, Interscience Pub. New York, 1958.
[12] A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Dekker, New York, Basel-Hong Kong, 1999.
[13] D. Hussein and R. Khalil, Best approximation in tensor product space, Soochow J. Math. 18 (1982), no. 4, 397-407.
[14] R. Khalil and L. Abdullah, Atomic solution of certain inverse problems, Eur. J. Pure Appl. Math. 3 (2010), no. 4, 725-729.
[15] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70.
[16] S. Khamis, M. Al Horani and R. Khalil, Rank two solutions of the abstract Cauchy problem, J. Semigroup Theory Appl. 2018 (2018), Article ID 3.
[17] A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, Math. Studies 204, North-Holland, New York, 2006.
[18] W. Light and E. Cheney, Approximation theory in tensor product spaces, Lecture Notes in Mathematics, 1169, Springer Verlag, Berlin, New York, 1985.
[19] G. Samko, A. Kilbas and A. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach, Yverdon, 1993.
[20] B. Thaller and S. Thaller, Factorization of degenerate Cauchy problem, the linear case, J. Oper. Theory $\mathbf{3 6}$ (1996), 121-146.
[21] A. Ziqan, M. Al Horani and R. Khalil, Tensor product technique and the degenerate homogeneous abstract Cauchy problem, J. Appl. Funct. Anal. 5 (2010), no. 1, 121-138.
[22] A. Ziqan, M. Al Horani and R. Khalil, Tensor product technique and non-homogeneous degenerate abstract Cauchy problem, Int. J. Appl. Math. Res. 23 (2010), no. 1, 137-158.

[^0]: * Corresponding author

 Email addresses: roshdi@ju.edu.jo (Roshdi Khalil), sharifa@yu.edu.jo (Sharifa Alsharif), skhamis@LU.edu.qa (Sara Khamis)

