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Abstract

In this paper, we discuss atomic solutions of the second-order abstract Cauchy problem of conformable fractional type

u(2α)(t) +Bu(α)(t) +Au(t) = f(t)

u(0) = u0,

u(α)(0) = u
(α)
0 ,

where A,B are closed linear operators on a Banach space X, f : [0,∞) → X is continuous and u is a continuously
differentiable function on [0,∞). Some new results on atomic solutions using tensor product technique are obtained.
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1 Introduction

Many mathematical models in applied sciences involve the study of what is called the Abstract Cauchy problem
which has the form

Bu′(t) +Au(t) = f(t), t ∈ [0, 1] or [0,∞) (1.1)

u(0) = u0,

where A,B are densely defined closed linear operators on a Banach space X, and f is an X−valued continuous
function while u is a continuously differentiable X valued function. Problem (1.1) is called degenerate problem if B is
not invertible, otherwise it is called non-degenerate. If f = 0, then Problem (1.1) is called a homogenous problem.

Many researchers were interested in studying the homogeneous and degenerate form of such problem using variety
of methods such as semigroups or Factorization technique, see [8, 12, 20]. In [4], the inverse form of Problem 1.1 was
studied under certain conditions on the operators A and B to convert the problem to a degenerate one.
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Fractional order differential equations received a great attention in the last years since it plays a fundamental
role in modeling real life problems with applications in many branches of science, such as biology, physics, finance,
engineering, etc. One of the most important problems of fractional order type is the fractional Abstract Cauchy
problem which has the form

Buα(t) +Au(t) = f(t), t ∈ [0, a] or [0,∞) (1.2)

u(0) = u0,

where A,B are densely defined closed linear operators on a Banach space X, u ∈ C(α)(I,X), f ∈ C(I,X) and u0 ∈ X,
where C(I,X) denotes the Banach space of all continuous functions from the compact Hausdorff space I into X.

It should be noted that up to now, there are many different definitions of fractional derivatives, such as Caputo,
Hadamard, Riemann, Caputo-Frabrizio, and others. Most of these definitions use the integral form see [17, 19].
Unfortunately all the existing fractional derivatives do not satisfy the classical properties of the usual derivatives:
product rule, quotient rule and chain rule for the derivative of two functions and most of them except Caputo derivative
don’t satisfy that the derivative of the constant function is zero. To find a solution for some of these difficulties an
interesting definition for fractional derivative that uses limit approach is given by Khalil et. all, [15, 5] as an extension
of the usual definition of derivatives as follows:

Definition 1.1. [15] Let f : [0,∞) → R be a function. The α−conformable fractional derivative’ of f is defined
by

Dα(f)(t) = lim
ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ

for all t > 0 and α ∈ (0, 1). If f is α− differentiable in some (0, a) , a > 0 , and lim
t→0+

f α(t) exists, then f
α

(0) = lim
t→0+

f

α(t). Let f (α)(t) stands for Dα(f)(t) and by f (2α)(t) we mean DαDα(f)(t).

In 2010, a new technique based on tensor product of Banach spaces was used to find a unique solution for the
Abstract Cauchy problem under certain conditions on the operators A and B, see[21, 22]. In [16], the tensor product
technique is used to give a unique two rank solution for the homogenous Abstract Cauchy problem of conformable
type (1.2) . While an atomic solution for certain degenerate and non-degenerate inverse problem is obtained in [14].

In this paper we focus on finding an atomic solution of the second order non-homogeneous Abstract Cauchy problem
of conformable fractional type:

u(2α)(t) +Au(α)(t) +Bu(t) = f(t) (1.3)

u(0) = u0,

u(α)(0) = u
(α)
0 ,

using tensor product technique, where A and B are densely defined closed linear operators on a Banach space X,

u ∈ C(2α)(I,X), f ∈ C(I,X) and u0, u
(α)
0 ∈ X.

2 Tensor Product

Let X∗, Y ∗ be the dual of the two Banach spaces X and Y respectively. For (x, y) ∈ X × Y, the linear operator
x ⊗ y : X∗ → Y defined by x ⊗ y (x∗) = x∗ (x) y is called an atom. It is easy to see that x ⊗ y is a bounded linear
operator with norm ∥x⊗ y∥ = ∥x∥ ∥y∥ . The linear space spanned by the set {x⊗ y, (x, y) ∈ X × Y } in L (X∗, Y ) is
denoted by X ⊗Y. There are many norms that one can put on X ⊗Y . One of most popular ones is the injective norm
||.||∨, see[18]. For T =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y.

||T ||∨ = sup

{
n∑

i=1

|⟨x, x∗⟩⟨y, y∗⟩|, x∗ ⊗ y∗ ∈ X∗ × Y ∗, ||x∗|| = ||y∗|| = 1

}
.

The space (X ⊗ Y, ||.||∨) need not be complete. We let X
∨
⊗ Y denote the completion of X ⊗ Y in L (X∗, Y ) with

respect to the injective norm.
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One of the nice results in tensor product is that, C(I,X) isometrically isomorphic to C(I)
∨
⊗X, For more on tensor

product and the use of atoms we refer the reader to [9, 10, 18, 13].

We begin our section by the following lemma which we need in our work.

Lemma 2.1. Let g1 ⊗ y1 and g2 ⊗ y2 be two non zero atoms in C(I)
∨
⊗X. Then the following are equivalent:

(1) g1 ⊗ y1 + g2 ⊗ y2 = g3 ⊗ y3, a non zero atom.

(2) g1, g2 or y1, y2 are linearly dependent.

Proof . (2) → (1). Clear.

(1) → (2). Assume g1 ̸= g2 . Then, by a consequence of the Hahn-Banach Theorem, [11] there exists a continuous
linear functional µ on C(I), such that µ(g1) ̸= µ(g2) ̸= 0 and µ(g3) = 0. This implies that

y1 =
−µ(g2)

µ(g1)
y2

and so, y1, y2 are linearly dependent.

Similarly, if y1 ̸= y2, we use the same idea but on the adjoint operators, noting that the adjoint of x⊗ y is y ⊗ x,
when we are dealing with real Banach spaces, which is our case. This ends the proof. □

Lemma 2.2. Let g1⊗y1, g2⊗y2, and g3⊗y3 be three non zero atoms in C(I)
∨
⊗X. Assume g1⊗y1+g2⊗y2+g3⊗y3

= g ⊗ y ̸= 0. Then the atoms g1 ⊗ y1, g2 ⊗ y2, and g3 ⊗ y3 are linearly dependent.

Proof . If possible assume that such atoms are linearly independent. Then g1, g2, g3 are linearly independent and
y1, y2, y3 are linearly independent. But, by a consequence of the Hahn Banach Theorem, [11] there exists a continuous
linear functional µ on C(I), such that µ(g1) ̸= 0, µ(g2) ̸= 0, µ(g3) ̸= 0 and µ(g) = 0. This implies that, y1, y2 and y3
are linearly dependent, contradicting the assumption. This ends the proof. □

3 Atomic Solution

In this paper we concentrate on finding an atomic solution u = u1 ⊗ x to the non-homogeneous second order
fractional Abstract Cauchy problem of the form

u(2α)(t) +Au(α)(t) +Bu(t) = f(t) (3.1)

u(0) = u0,

u(α)(0) = u
(α)
0 ,

using tensor product technique, where A and B are densely defined closed linear operators on the Banach space X,

u1 ∈ C(2α)(I), f ∈ C(I,X) and u0, u
(α)
0 and x ∈ X.

If u = u1 ⊗ x, then we can write (3.1) in tensor product as follows:

u
(2α)
1 ⊗ x+ u

(α)
1 ⊗Ax+ u1 ⊗Bx = f ⊗ z.

Here, the unknowns are u1 and x, while A,B, f and z are given. With no loss of generality we can assume that
f(0) = 1.

Since the sum of three atoms is an atom, then by the use of Lemma 2.2, either u
(2α)
1 ⊗ x+ u

(α)
1 ⊗ Ax is an atom

or u
(2α)
1 ⊗ x+ u1 ⊗Bx is an atom or u

(α)
1 ⊗Ax+ u1 ⊗Bx is an atom. All these cases

are discussed in details in the following three theorems.

Theorem 3.1. Let A,B be densely defined closed linear operators on a Banach space X, x ∈ Domain(A∩B), u1(t)

is (2α)−differentiable function on I. If u
(2α)
1 ⊗ x+ u

(α)
1 ⊗Ax is an atom, then the fractional differential equation (3.1)

has a unique atomic solution if the following conditions are satisfied
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(i)There exists some x∗ ∈ X∗ and g ∈ C(I,R), such that g is (2α)−differentiable function on I, where g(2α)(0)
exist, and u1(t)⟨x, x∗⟩ = g(t).

(ii) x is uniquely imaged by the operators I +A+B, I +B

Proof . Without loss of generality assume that f(0) = u1(0) = u
(α)
1 (0) = 1. Write (3.1) in tensor product form, we

get

u
(2α)
1 ⊗ x+ u

(α)
1 ⊗Ax+ u1 ⊗Bx = f ⊗ z. (4.1)

Since u
(2α)
1 ⊗ x+ u

(α)
1 ⊗Ax is an atom, by Lemma 2.1, either u

(2α)
1 (t) = u

(α)
1 (t) or Ax = x.

Case (1)

u
(2α)
1 (t) = u

(α)
1 (t). (4.2)

Solving (4.2), we get u1(t) = c1+c2e
tα

α . Using the initial conditions u1(0) = 1 and u
(α)
1 (0) = 1, we get c1 = 0 and c2 = 1.

Hence u1(t) = e
tα

α . Since g(t) = u1(t)⟨x, x∗⟩, it follows that g(0) = ⟨x, x∗⟩ and g(α)(t) = e
β
α tαg(0) = u

(α)
1 (t)g(0). Thus,

u1(t) is uniquely determined.

Now, substitute u1(t) in (4.1), we get

e
tα

α (x+Ax+Bx) = f(t)z.

This is true for all t. In particular take t = 0 and use the assumption on f to get

x+Ax+Bx = (I +A+B)x = z.

By the assumption on z, we get x to be uniquely determined. Thus, (4.1) has a unique solution.

Case (2)
Ax = x. (4.3)

Now, substitute (4.3) in (4.1), we get

(u
(2α)
1 + u

(α)
1 )⊗ x+ u1 ⊗Bx = f ⊗ z. (4.4)

Since the sum of two atoms equals one atom, using Lemma 2.1, we have two sub-cases, u
(2α)
1 + u

(α)
1 = u1 or Bx = x.

Case (a):

u
(2α)
1 + u

(α)
1 = u1. (4.5)

Write (4.5) in characteristic form, we get
r2 + r − 1 = 0. (4.6)

Solving (4.6), we get

r =
−1±

√
5

2
.

Thus,

u1(t) = e
−tα

2α (c1e
−

√
5

2α tα + c2e
√

5
2α tα).

Using the initial conditions u1(0) = 1 and u
(α)
1 (0) = 1, we get

c1 = −3−
√
5

2
√
5

, c2 =
3 +

√
5

2
√
5

.

Thus, u1(t) is uniquely determined.

Now, substitute (4.5) in (4.4), we get
u1(t)(x+Bx) = f(t)z.

This is true for all t. Hence (I +B)x = z. By the assumption on z, we get x is uniquely determined.

Case (b)
Bx = x. (4.7)
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Substitute (4.7) in (4.4), we get,

(u
(2α)
1 + u

(α)
1 + u1)⊗ x = f ⊗ z.

Solve the homogeneous equation

u
(2α)
1 + u

(α)
1 + u1 = 0. (4.8)

Using characteristic equation of (4.8) , we get that

u1(t) = e
−tα

2α cos(

√
3

2α
tα), sin(

√
3

2α
tα

are two independent solutions of (4.8) . Using these two solutions by the method of variation of parameters, [3], a
particular solution up of the non homogeneous equation

u
(2α)
1 + u

(α)
1 + u1 = f (4.9)

can be obtained. Hence the general solution of 4.9 is

u1(t) = e
−tα

2α

(
c1 cos(

√
3

2α
tα) + c2 sin(

√
3

2α
tα

)
+ up.

Using the initial conditions u1(0) = 1 and u
(α)
1 (0) = 1, c1 and c2 could be determined. Since z = x it follows that x is

uniquely determined and hence a unique solution of 4.1 is obtained. □

Theorem 3.2. Let A,B be densely defined closed linear operators on a Banach space X, x ∈ Domain(A∩B), u(t) is

(2α)−differentiable function on I, and u = u1 ⊗x. If u
(2α)
1 ⊗x+u1(t)⊗Bx is an atom, then the fractional differential

equation (3.1) has a unique solution if the following conditions are satisfied

(i)There exists some x∗ ∈ X∗ and g ∈ C(I,R), such that g is (2α)−differentiable function on I, where g(2α)(0)
exist, and u1(t)⟨x, x∗⟩ = g(t).

(ii) x is uniquely imaged by the operators I +A+B, I +A .

Proof . Without loss of generality assume that f(0) = u1(0) = u
(α)
1 (0) = 1. Write (3.1) in tensor product form, we

get

u
(2α)
1 ⊗ x+ u

(α)
1 ⊗Ax+ u1 ⊗Bx = f ⊗ z. (5.1)

Since u
(2α)
1 ⊗x+u1(t)⊗Bx is an atom, by Lemma 2.1, either u

(2α)
1 (t) = λu1(t) or Bx = βx. With no loss of generality

we can take β = λ = 1.

Case (1) :

u
(2α)
1 (t) = u1(t), (5.2)

Solving (5.2), we get u1(t) = c1e
tα

α + c2e
−tα

α . Since u1(0) = 1, u
(α)
1 (0) = 1, we get c1 = 1 and c2 = 0. Consequently,

u1(t) = e
tα

α . Since g(t) = u1(t)⟨x, x∗⟩, it follows that g(0) = ⟨x, x∗⟩. Hence, g(α)(t) = e
tα

α g(0). Thus u1(t) is uniquely
determined. Now, substitute u1(t) in (5.1), we get

u1(t) (x+Ax+Bx) = f(t)z. (5.3)

Thus

(I +A+B)x =
f(t)

u1(t)
z. (5.4)

Since this is true for every t, we have

(I +A+B)x =
f(0)

u1(0)
z = z. (5.5)

By the assumption on z, we get x uniquely determined. Thus, (5.1) has a unique solution

Case (2)
Bx = x. (5.6)
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Now, substitute (5.6) in (5.1), we get

f ⊗ z = u
(2α)
1 ⊗ x+ u

(α)
1 ⊗Ax+ u1 ⊗ x (3.2)

=
(
u
(2α)
1 + u1

)
⊗ x+ u

(α)
1 ⊗Ax.

Since the sum of two atoms equal one atom, using Lemma 2.1, we have the following two sub-cases:

Case (a):

u
(2α)
1 (t) + u1(t) = u

(α)
1 (t). (5.8)

Write (5.8) in characteristic form, we get
r2 − r + 1 = 0, (5.9)

Solving (5.9), we get

r =
1±

√
3i

2
.

Thus,

u1(t) = e
tα

2α

(
c1 cos(

√
3

2α
tα) + c2 sin(

√
3

2α
tα

)
.

Since u1(0) = 1, we get c1 = 1 and since u
(α)
1 (0) = 1, we get c2 = 1√

3
. Thus,

u1(t) = e
tα

2α

(
cos(

√
3

2α
tα) +

1√
3
sin(

√
3

2α
tα)

)
.

Consequently, u1(t) is uniquely determined.

Now, substitute (5.8) in (3.2), we get

u
(α)
1 (t)(x+Ax) = f(t)z. (5.10)

Since this is true for every t, we have

(I +A)x =
f(0)

u1(0)
z = z. (5.11)

By the assumption on z, we get x uniquely determined. Thus, (5.1) has a unique solution

Case (b)
Ax = x. (5.12)

Substitute (5.12) in (3.2), we get

(u
(2α)
1 + u

(α)
1 + u1)⊗ x = f ⊗ z. (5.13)

Similarly as in Theorem 3.1 case 2(b) we get u1(t) and x are uniquely determined and hence (5.1) has a unique
solution. □

Theorem 3.3. Let A,B be densely defined closed linear operators on a Banach space X, x ∈ Domain(A ∩ B), u(t)

is (2α)−differentiable function on I, and u = u1 ⊗ x. If u
(α)
1 (t) ⊗ Ax + u1(t) ⊗ Bx is an atom, then the fractional

differential equation (3.1) has a unique solution if the following conditions are satisfied

(i)There exists some x∗ ∈ X∗ and g ∈ C(I,R), such that g is (2α)−differentiable function on I, where g(2α)(0)
exist, and u1(t)⟨x, x∗⟩ = g(t).

(ii) x is uniquely imaged by the operators I +A+B, I +B and B

Proof . Without loss of generality assume that f(0) = u1(0) = u
(α)
1 (0) = 1. Write (3.1) in tensor product form, we

get

u
(2α)
1 ⊗ x+ u

(α)
1 ⊗Ax+ u1 ⊗Bx = f ⊗ z. (6.1)

Since u
(α)
1 (t)⊗Ax+ u1(t)⊗Bx is an atom, by Lemma 2.1, we have the two cases: either u

(α)
1 (t) = u1(t) or Ax = Bx.

Case (1)

u
(α)
1 (t) = u(t). (6.2)
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Solving (6.2), we get u1(t) = ce
tα

α . Since u
(α)
1 (0) = 1, we get c = 1. Consequently, u1(t) = e

tα

α . Since g(t) =

u1(t)⟨x, x∗⟩. Thus, g(0) = ⟨x, x∗⟩. Also, g(α)(t) = e
tα

α g(0). Now, substitute u1(t) in (6.1), we get

e
tα

α (x+Ax+Bx) = f(t)z. (6.3)

Since (6.3) is true for all t, we get
(I +A+B)x = f(0)z. (6.4)

By the assumption on z, we get x uniquely determined. Thus, (6.1) has a unique solution.

Case (2)
Ax = Bx. (6.5)

Now, substitute (6.5) in (6.1), we get

u
(2α)
1 ⊗ x+

(
u
(α)
1 + u1

)
⊗Bx = f ⊗ z. (6.6)

Since the sum of two atoms equals one atom, using Lemma 2.1, we have the following two sub-cases:

Case (a):

u
(α)
1 + u1 = u

(2α)
1 (t). (6.7)

From (6.7) and since u
(α)
1 (0) = u1(0) = 1. Write (6.7) in characteristic form, we get

r2 − r − 1 = 0. (6.8)

Solving (6.8), we get

r =
1±

√
5

2
.

Thus

u1(t) = e
tα

2α

(
c1e

−
√

5
2α tα + c2e

√
5

2α tα
)
.

Using the initial conditions u1(0) = 1 and u
(α)
1 (0) = 1, we get

c1 =
−1 +

√
5

2
√
5

, c2 =
1 +

√
5

2
√
5

.

Thus, u1(t) is uniquely determined.

Now, substitute (6.7) in (6.6), we get

u
(α)
1 (t) + u1(t)(x+Bx) = f(t)z.

This is true for all t. Hence (I + B)x = z. By the assumption on z, x is uniquely determined. Thus, (6.1) has a
unique solution.

Case (b)
Bx = x. (6.9)

Substitute (6.9) in (6.6), we get (
u
(2α)
1 + u

(α)
1 + u1

)
⊗ x = f ⊗ z. (6.10)

Similarly as in Theorem 3.1 case 2(b) we get u1(t) and x are uniquely determined and hence (5.1) has a unique
solution. □
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