

On weak B-bi-regular bi-near subtraction semigroup

M. Fareeda Banu^{a,*}, S. Jayalakshmi^a

^aDepartment of Mathematics, Sri Parasakthi College for Women, Courtallam, Tamil Nadu-627801, India

(Communicated by Hemant Kumar Nashine)

Abstract

We introduce weak B-bi-regular in bi-near subtraction semigroup and obtain properties of the same in a certain class of bi-near subtraction semigroup of X.

Keywords: weak B-bi-regular, B-bi-regular, bi-regular, \bar{S} -bi-near subtraction semigroup, left (right) X-bi-algebra. 2020 MSC: 08A30, 20M17

1 Introduction

In this paper we can see bi-near subtraction semigroup by the algebraic structure of $(X, -, \cdot)$ where $X = X_1 \cup X_2$. For basic definition we may refer to Pilz [6] by near-rings. Zelinka [8] discussed a problem proposed by schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras. Motivated by the study of "On weak B-regular near-rings" by Jayalakshmi [2]. Further Jayalakshmi, Mahalakshmi and Maharasi in [3] introduced weak k-regular "On strong bi-ideals and weak k-regular in near subtraction semigroup". With this in mind, we introduce the notion of weak B-bi-regular bi-near subtraction of semigroup and study the properties of a bi-near subtraction semigroup with property (α)

2 Preliminaries

Definition 2.1. Let $(X, -, \cdot)$ be nonempty set. Where $X = X_1 \cup X_2$, where X_1 and X_2 are proper subsets of X. (i.e.,) $X_1 \not\subset X_2$ (or) $X_2 \not\subset X_1$ satisfying the following conditions.

- $(X_1, -, \cdot)$ near subtraction semi group (right).
- $(X_2, -, \cdot)$ is subtraction semi group.

Definition 2.2. Let S be nonempty subset. Then a near subtraction semigroup is sub algebra of X, if $u - v \in S$, for every $u, v \in S$.

Definition 2.3. Let S be nonempty subset. Then S be bi-sub algebra of (X, -) if

^{*}Corresponding author

Email addresses: athiya3@gmail.com (M. Fareeda Banu), jayarajkutti@gmail.com (S. Jayalakshmi)

- $S = S_1 \cup S_2$.
- $(S_1, -)$ is near sub algebra of $(X_1, -)$.
- $(S_2, -)$ is sub algebra of $(X_2, -)$.

Definition 2.4. An element of X is idempotent if $x^2 = x$ for all $x \in X_1 \cup X_2$.

Definition 2.5. A bi-sub algebra A of (X, -) is said to be left (right) X-bi sub algebra of X if $XA \subseteq A(AX \subseteq A)$. Let X is said to be two sided, if every left X-bi sub algebra of X is a right X-bi sub algebra of X and vice versa.

Definition 2.6. If X is said to be bi-regular. Then for all $a \in X_1 \cup X_2$, there exists $b \in X_1 \cup X_2$, such that a = aba. If X is said to be strongly bi-regular, if for each $a \in X_1 \cup X_2$, there exist $b \in X_1 \cup X_2$ such that $a = ba^2$.

Lemma 2.7. Let X is zero-symmetric bi-near subtraction semigroup and if X is strongly bi-regular, then X is a bi-regular.

Definition 2.8. A S-bi-near subtraction semigroup is said to be \overline{S} -bi-near subtraction semigroup, if $a \in aX$ for all $a \in X_1 \bigcup X_2$.

Definition 2.9. If X is said to have property (α) , then aX is bi-sub algebra of (X, -) for every $a \in X_1 \bigcup X_2$.

Remark 2.10. If X is -bi-near subtraction semigroup with property (α) , then $(a)_r = aX$ and $a_1 = Xa$ for all $a \in X_1 \bigcup X_2$.

Lemma 2.11. A \overline{S} -bi-near subtraction semigroup X with property (α) is bi-regular if and only if B = BXB, for every bi-ideals B of X.

Definition 2.12. If X is called strictly Commuting Principal X-bi-sub algebra(CPXBS) if y(Xx) = (Xx)y for all $x, y \in X_1 \bigcup \mathbb{X}_2$.

Theorem 2.13. The following subdivisions are equivalent.

- (i) A bi-near subtraction semigroup of X is GNF.
- (ii) A bi-near subtraction semigroup of X is bi-regular and each idempotent is central.
- (iii) A bi-near subtraction semigroup of X is bi-regular and sub commutative.

3 Weak B-bi regular

Definition 3.1. Let X is B-biregular, if for every element of X is B-regular for every $a \in (a)_r X(a)_1$ for every $a \in X_1 \bigcup \mathbb{X}_2$. Here $(a)_r(a)_1$ is right and left X-bi-sub algebra generated by $a \in X_1 \bigcup \mathbb{X}_2$.

Definition 3.2. Let X is left (right) weak B-bi-regular, if for all $a \in X_1 \bigcup X_2$ (i.e.,) $a \in X(a)_1$ for all $a \in X_1 \bigcup X_2$. Here $(a)_r(a)_1$ is right and left X-bi-sub algebra generated by $a \in X_1 \bigcup X_2$. If X is called weak B-bi-regular if X is both left and right weak B-bi-regular.

Remark 3.3. Every bi-regular bi-near subtraction semigroup is also a B-bi-regular bi-near subtraction semigroup.

Example 3.4. Let X is nonempty set. Where X_1 is proper subset in X. Then be near subtraction semi group (right) choose from Klein's four group scheme (7, 8, 1, 2) (P.408, Pilz[6]). Table 1. bi-regular as well as B-bi regular near subtraction semigroup

-	0	Х	у	Z		•	0	х	у	\mathbf{Z}
0	0	0	0	0		0	0	0	0	0
х	х	0	х	0		Х	х	х	х	х
У	У	Y	0	0		Y	0	х	у	\mathbf{Z}
Z	Z	Y	х	0]	Ζ	х	0	у	\mathbf{Z}

One can check that is bi-regular near subtraction semigroup $x \in xX_1x$, and also a *B*-bi-regular, since $x \in (x)_rX_1(x)_1$ Or X_2 is proper subset in X. Then be $X_2 = \{0, a, b, c\}$ be subtraction semi group choose from Klein's four group scheme (7, 7, 1, 1)(P.408, Pilz[6]).

Table 2. bi-regular as well as B-bi-regular subtraction semigroup

-	0	Α	b	с	[•	0	a	b
0	0	0	0	0	ĺ	0	0	0	0
a	a	0	a	0	ĺ	a	a	a	a
b	b	В	0	0		b	0	0	b
с	c	В	a	0		с	a	a	с

One can check that X_2 is bi-regular subtraction semigroup, $a \in aX_2$ and also a *B*-bi-regular, since $a \in (a)_r X_2(a)_1$ Clearly every bi-regular bi-near subtraction semigroup is also a *B*-bi-regular bi-near subtraction semigroup.

Remark 3.5. Every *B*-bi regular bi-near subtraction semigroup is also a weak B-bi-regular bi-near subtraction semigroup of X.

Example 3.6. Let X is nonempty set. Where X_1 is proper subset in X. Then $X_1 = \{0, x, y, z\}$ be near subtraction semigroup (right) choose from Klein's four group scheme (1, 1, 1, 1)(P.408, Pilz[6]). Table 3. B- bi-regular as well as weak B- bi regular near subtraction semigroup

_	0	Х	У	Z	•	0	х	у	
0	0	0	0	0	0	0	0	0	Î
Х	х	0	х	0	х	х	х	х	Ī
Y	у	Y	0	0	у	у	у	у	Γ
Ζ	Z	Y	х	0	\mathbf{Z}	z	z	\mathbf{Z}	Γ

One can check that is *B*-bi-regular near subtraction semigroup, $x \in (x)_r X_1(x)_1$ and also a weak *B*-bi-regular, since $x \in X_1(x)_1 (x \in (x)_r X_1)$. Or X_2 is proper subset in *X*. Then be subtraction semigroup choose from klein's four group scheme (0, 1, 1, 1)(P.108, Pilz[6]).

Table 4. B-bi-regular as well as weak B-bi-regular subtraction semirgroup

_	0	Α	b	с	•	0	a	b	с
0	0	0	0	0	0	0	0	0	0
a	a	0	a	0	a	0	a	a	Α
b	b	В	0	0	b	0	b	b	В
с	с	В	a	0	с	0	с	с	С

One can check that X_2 is *B*-bi-regular subtraction semigroup, $a \in (a)_r X_2(a)_1$ and also a weak *B*-bi-regular subtraction semigroup, since $a \in X_2(a)_1 (a \in (a)_r X_2)$ Clearly every *B*-bi regular bi-near subtraction semigroup is also a weak *B*-bi-regular bi-near subtraction semigroup.

Remark 3.7. Every weak *B*-bi-regular bi-near subtraction semigroup is different from *B*-bi regular bi-near subtraction semigroup.

Example 3.8. Let X is nonempty set. Where X_1 is proper subset in X. Then $X_1 = \{0, x, y, z\}$ be near subtraction semi group (right) choose from Klein's four group scheme (0, 14, 2, 1)(P.408, Pilz[6]). Table 5. Weak B-bi-regular not a B-bi-regular near subtraction semigroup.

_	0	х	у	Ζ	[•	0	х	у	
0	0	0	0	0	ĺ	0	0	0	0	
Х	х	0	х	0	[х	0	0	х	
Υ	у	у	0	0	[у	0	х	z	
Ζ	z	У	х	0	[\mathbf{Z}	0	х	У	Γ

One can check that X_1 is weak *B*-bi-regular near subtraction semigroup $x \in X_1(x)_1 (x \in (x)_r X_1)$. But not a *B*-bi-regular, since $x \notin (x)_r X_1(x)_1$.

Or X_2 is proper subset in X. Then $X_2 = \{0, a, b, c\}$ be subtraction semi group choose from Klein's four group scheme (7, 7, 1, 1)(P.408, Pilz[6]).

Table 6. Weak B-bi-regular not a B-bi-regular subtraction semigroup

_	0	a	b	с	•	0	a	b
0	0	0	0	0	0	0	0	0
a	a	0	a	0	a	a	a	a
b	b	b	0	0	b	0	0	b
с	с	b	a	0	z	a	a	с

One can check that X_2 is weak *B*-bi-regular subtraction semigroup, $a \in X_2(a)_1 (a \in (a)_r X_2)$. But X_2 is not B-bi-regular, since $a \in (a)_r X_2(a)_1$. Clearly every weak *B*-bi-regular bi-near subtraction semigroup is different from *B*-bi-regular bi-near subtraction semigroup.

Lemma 3.9. Every bi-regular bi-near subtraction semigroup of X is B-bi regular bi-near subtraction semigroup.

Proof. Consider X is bi-regular, then every element of X is regular, for every $a \in X_1 \bigcup X_2$, then there exists $b \in X_1 \bigcup X_2$ such that a = aba. To prove $a \in (a)_r X(a)_1$, here $(a)_r(a)_1$ is the right and left X-bi sub algebra generated by $a \in X_1 \bigcup X_2$. Obviously $a \in (a)_r$ and $a \in (a)_1$. Since X is bi-regular. Now, $a = aba \in (a)_r X(a)_1$ for all $a \in X_1 \bigcup X_2$. Therefore X is B-regular and so X is B-bi regular. \Box

Proposition 3.10. Let X be a bi-near subtraction semigroup. Then the following are equivalent.

- (i) X is a weak B-bi-regular.
- (ii) $RX \cap XL = R \cap L$, for every right X-bi sub algebra R and left X-bi sub algebra of X.
- (iii) $(a)_r X \cap X(a)_l = (a)_r \cap (a)_l$ where $a \in X_1 \cup X_2$.

Proof . $(i) \Rightarrow (ii)$

Assume that X is a weak B-bi-regular bi-near subtraction semigroup. To prove $RX \cap XL = R \cap L$. Let $x \in R \cap L$ where R is X-bi sub algebra and L is left X-bi sub algebra of X. If $x \in R \cap L$, then $x \in R$ and $x \in L$. Since X is a weak B-bi-regular, then $x \in (x)_r X$ and $x \in X(x)_l$ for all $x \in X_1 \cup X_2$. In the sense, $x \in (x)_r X \cap X(x)_l \subseteq RX \cap XL$. Therefore $R \cap L \subseteq RX \cap XL$. Trivially $RX \cap XL \subseteq R \cap L$. Hence $RX \cap XL = R \cap L$. (*ii*) \Rightarrow (*iii*)

Trivially true.

 $(iii) \Rightarrow (i)$ For any $a \in X_1 \cup X_2$, let $a \in (a)_r$ and $a \in (a)_l$, then $a \in (a)_r \cap (a)_l = (a)_r X \cap X(a)_l$ implies $a \in (a)_r X$ and $a \in (a)_l X$ for all $a \in X_1 \cup X_2$. Hence X is both left and right weak B-bi-regular implies X is a weak B-bi-regular. \Box

Proposition 3.11. Let X be a bi-near subtraction semigroup. If X is weak B-bi-regular, then $YX \cap XY = Y$ for every invariant sub bi-near subtraction semigroup Y of X.

Proof. Let Y be a invariant sub bi-near subtraction semigroup, then $YX \cap XY \subseteq Y$. It is enough to prove $Y \subseteq YX \cap XY$. Let $y \in Y$ then $m \in X$. Now by Proposition 3.10 we have $y \in (y)_r \cap (y)_l = (y)_r X \cap X(y)_l \subseteq YX \cap XY$. Therefore $Y \subseteq MY \cap XY$. Hence $Y = YX \cap XY$. \Box

Proposition 3.12. Let X be a bi-near subtraction semigroup. If X is weak B-bi-regular, then $YX \cap XY = Y$ for every invariant X-bi sub algebra Y of X.

Proof. By Proposition 3.11, we can prove. \Box

Proposition 3.13. Let X be a bi-near subtraction semigroup of X. Then the following conditions are equivalent.

- (i) Every Right X-bi sub algebra of X is idempotent and $X(x)_l = (x)_r X$
- (ii) X is a weak B-bi-regular, two sided and $(x)_r X = (x)_r^2 X$.

(iii) X is B-bi-regular and two sided.

Proof . $(i) \Rightarrow (ii)$

Let assume that every right X-bi sub algebra is idempotent and $X(x)_l = (x)_r X$. Let $x \in (x)_r = (x)_r^2 \subseteq (x)_r X = X(x)_l$. Thus X is weak B-bi-regular. Since every right X-bi-sub algebra is idempotent, we acquire $(x)_r X = (x)_r^2 X$. Now to prove X is two sided. Let L be a left X-bi sub algebra of X. Let $x \in L$ then $xX \subseteq (x)_r X = (x)_r^2 X = (x)_r (x)_r X \subseteq X(x)_r X = XX(x)_l \subseteq X)_l \subseteq L$. Hence L is also a Right X-bi sub algebra of X.

On the other hand, let R be a Right X-bi sub algebra of X. For $x \in R$, let $x \in X_1 \cup X_2$. Now $x \in Xx \subseteq X(x)_r = X(x)_r^2 = X(x)_r(x)_r \subseteq X(x)_r X = XX(x)_l = (x)_r X \subseteq (x)_r \subseteq R$. Hence R is also a left X-bi sub algebra of X. Therefore X is two sided.

 $(ii) \Rightarrow (iii)$

Let us assume that X is a weak B-bi-regular, two sided and $(x)_r X = (x)_r^2 X$. For $x \in X_1 \cup X_2$, $(x)_r = (x)_l$ (Since X is two sided). Since X is weak B-bi-regular, by the Proposition 3.10, we get $(x)_r \cap (x)_l = (x)_r X \cap X(x)_l = (x)_r 2X \cap X(x)_l$ (Since $(x)_r X = (x)_r^2 X) \subseteq (x)_r^2 X \subseteq (x)_r^2 = (x)_r (x)_l$. Therefore $(x)_r \cap (x)_l \subseteq (x)_r (x)_l$. Trivially $(x)_r (x)_l \subseteq (x)_r \cap (x)_l$ and so $(x)_r \cap (x)_l = (x)_r (x)_l$. By the Proposition 3.10, X is B-bi-regular bi-near subtraction semigroup. (*iii*) $\Rightarrow (i)$

Let assume that X is B-bi-regular bi-near subtraction semigroup and two sided. Let Y be a Right X-bi sub algebra of X then Y is also a left X-bi sub algebra of X. (Since X is two sided). Thus $YXY \subseteq Y$. Since X is B-bi-regular, let $y \in Y$ then $y \in (y)_r X(y)_l \subseteq Y$. From this we get that $Y = YXY \subseteq YY = Y^2$. Therefore Y is idempotent, for $x \in X_1 \cup X_2$, taking Y as $(x)_l$ in the above argument we get that $(x)_l X(x)_l = (x)_l$. Now $(x)_r X \subseteq (x)_r = (x)_l = (x)_l X(x)_l \subseteq X(x)_l \subseteq (x)_r = (x)_r X(x)_l \subseteq (x)_r X$ and so $(x)_r X = X(x)_l$ implies $X(x)_l = (x)_r X$. Hence every right X-bi sub algebra of a bi-near subtraction semigroup is idempotent and $X(x)_l = (x)_r X$ for all $x \in X_1 \cup X_2$. \Box

Proposition 3.14. Let X be a left self-distributive and right permutable bi-near subtraction semigroup with property (α) . Then X is a bi-regular bi-near subtraction semigroup of X if and only if X is \overline{S} and weak B-bi-regular bi-near subtraction semigroup.

Proof. Consider X is both \overline{S} and weak B-bi-regular bi-near subtraction semigroup. Let $x \in X_1 \cup X_2$ then $x \in (x)_r X \cap X(x)_l \subseteq xXX \cap XXx$. (i.e.,) $x = xx_1x_2$ for some $x_1, x_2 \in X_1 \cup X_2$. Now $x = xx_1x_2$ (Since X is left self-distributive) = xx_1x_2x (Since X is right permutable) $\in xXXx \subseteq xXx$. Therefore $x \in xXx$ for all $x \in X_1 \cup X_2$. (i.e.,) x is regular and so X is a bi-regular.

Converse part is trivially true. \Box

Theorem 3.15. Let X be a \overline{S} -bi-near subtraction semigroup with property (α). Then the following are equivalent.

- (i) X is B-bi-regular and two sided.
- (ii) X is weak B-bi-regular and $RL = RX \cap XL = LR$ for every left X-bi sub algebra L and Right X-bi sub algebra R of X.
- (iii) X is B-bi-regular and sub commutative.
- (iv) $XB^2 = B$, for each strong bi-ideal B of bi-near subtraction semigroup of X and X is sub commutative.
- (v) B = BXB, for each bi-ideal B of X and X is sub commutative.
- (vi) X is strictly CPXS and bi-regular.

Proof. (*i*) \Rightarrow (*ii*) Consider X is B-bi-regular and two sided. To prove $RL = RX \cap XL = LR$. Since every B-bi-regular of X is weak B-bi-regular of X. By Proposition 3.10 $RX \cap XL = R \cap L$. By Proposition 3.12, $R \cap L = RL$. Since X is two sided, $R \cap L = LR$. Therefore X is weak B-bi-regular and $RX \cap XL = R \cap L = RL = LR$.

 $(ii) \Rightarrow (iii)$ Consider X is weak B-bi-regular and $RL = RX \cap XL = LR$. To prove X is B-bi regular. Since X is weak B-bi-regular, by Proposition 3.10, $RX \cap XL = R \cap L$. Therefore $R \cap L = RX \cap XL = RL$. (i.e) $R \cap L = RL$. By Proposition 3.12, X is B-bi-regular. Since X is a \overline{S} -bi-near subtraction semigroup with property (α) , by the Proposition 3.14, X is a bi-regular. Now $RL = R \cap L = LR$ then $R = R \cap X = NR$. So R is a left X-bi sub algebra. Similarly L is a right X-bi sub algebra. Thus X is two sided, $xX = (x)_r = (x)_l = Xx$ for all $x \in X_1 \cup X_2$. Thus X is sub commutative.

 $(iii) \Rightarrow (iv)$ Consider X is B-bi-regular and sub commutative. To prove $XB^2 = B$. Let B be a Strong bi-ideal of X implies $XB^2 \subseteq B$. (i.e.,) $X_1B_1^2 \subseteq B_1$ (or $X_2B_2^2 \subseteq B_2$). Now it is sufficient to prove $B \subseteq XB^2$. Let $b \in B$

then $b = bb_1b \in bXb$ implies $b \in bXb$. Now, bXb = (Xb)b. (Since X is sub-commutative bi-near subtraction semigroup) = $Xb^2 \subseteq XB^2$. Therefore $b \in bXb \in XB^2$. Thus $B \subseteq XB^2$ and hence $B = XB^2$. (iv) \Rightarrow (v) Assume that $B = XB^2$. Let B be any bi-ideal of X implies $BXB \subseteq B$. (i.e.,) $B_1X_1B_1 \subseteq B_1$ (or

 $(iv) \Rightarrow (v)$ Assume that $B = AB^2$. Let B be any bi-ideal of A implies $BAB \subseteq B$. (i.e.,) $B_1A_1B_1 \subseteq B_1$ (or $B_2X_2B_2 \subseteq B_2$). Now $BXB = B_1X_1B_1 \subseteq B_1$ (or $B_2X_2B_2 \subseteq B_2$) = $X_1B_1B_1$ (or $X_2B_2B_2$). (Since X is sub commutative) = $X_1B_1^2$ (or $X_2B_2^2$) $\subseteq XB^2$. Therefore $BXB \subseteq XB^2$ and $XB^2 \subseteq B$, i.e., B is a Strong bi-ideal of X. Hence $BXB = XB^2 = B$. Therefore BXB = B.

 $(v) \Rightarrow (vi)$ Since X is \bar{S} -bi-near subtraction semigroup with property (α) and B = BXB, for each bi-ideal of X, X is bi-regular. By X is sub-commutative, by Lemma 2.11, $E \subseteq C(X)$. Let x = xax and y = yby. For any $c \in X_1 \cup X_2$, ycx = ybycx = ycbyx = ycxby = ycxaby = ycxbaxy = uxy where $u = ycxba \in X_1 \cup X_2$. Hence, $yXx \subseteq Xxy$. Also for $z \in X_1 \cup X_2$, zxy = zxaxy = zxyax = zxybyax = ybzxyax = yvx where $v = bzxya \in X_1 \cup X_2$. (i.e) $Xxy \subseteq yXx$. From these two facts Xxy = yXx for all $x, y \in X_1 \cup X_2$. (i.e.,) X is strictly CPXS.

 $(vi) \Rightarrow (i)$ Assume that X is strictly CPXS and bi-regular implies Xxy = yXx for all $x, y \in X_1 \cup X_2$. Consider y = x we acquire $xXx = Xx^2$. Since X is a bi-regular $x \in xXx = Xx^2$. (i.e.,) X is strongly bi-regular and hence Lemma 2.7, every bi-regular bi-near subtraction semigroup X is B-bi regular bi-near subtraction semigroup. Therefore X is a \overline{S} -bi-near subtraction semigroup with property (α) , X is a two sided bi-near subtraction semigroup. \Box

4 Conclusion

We have concluded that every B-bi regular bi-near subtraction semigroup is also a weak B-bi-regular bi-near subtraction semigroup of X. But the converse is not true. And also we have discussed few of the properties of weak B-bi-regular bi-near subtraction semigroup.

5 Acknowledge

Healthfully thank you for the noble members for valued ideas and improvements to progress the paper. Thank you to UGC, New Delhi.

References

- [1] J.L Jat and S.C Choudhary, On strict weakly regular near-rings, Math. Student 46 (1978), no. 2, 175–182.
- [2] S. Jayalakshmi. A study on Regularities in near rings, PhD thesis, Manonmaniam Sundaranar University, Tamil Nadu, India, 2003.
- [3] S. Jayalakshmi, V. Mahalakshmi and S. Maharasi, On strong bi-ideals and weak k-regular in near subtraction semigroups, IJMM 9 (2016), no. 2, 181–183.
- [4] Y.B. Jun and H.S. Kim, On bi-ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129–134.
- [5] A. Oswald, A near-ring N is which every N-subgroups, Princ. Proc. London Math. Soc. 3 (1974), no. 28, 67–88.
- [6] G. Pilz, Near-rings, North Holland, Amsterdam, 1983.
- [7] T. Tamizh Chelvam, Bi-ideals and B-regular near-rings, J. Ramanujan Math. Soc. 7 (1982), no. 2, 154–164.
- [8] B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445–447.