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Abstract

Ensuring the production of non-defect high-quality tires is an essential part of the tire industry.
X-ray inspection is one of the best methods to detect tire defects. In this paper, a new approach has
been presented for detecting tire defects in X-ray images based on an entropy filter, the extraction of
texture properties of patches by Local Binary Pattern, and, finally, the classification of defects using
the Support Vector Machine method. In the proposed method, an entropy filter was first applied to
the input. The parts of the image with different patterns were then selected as candidate regions
and these regions were classified by the patch classifier. All the defects were detected and classified
and, finally, the efficiency of the algorithm was evaluated. By applying this algorithm to the dataset
the best performance was obtained by the LBP descriptor and the linear SVM classifier with 98%
defect location accuracy and 97% defect detection accuracy were achieved. In order to analyze the
performance, used the deep model as a classifier, thus demonstrating that the deep model has a high
capability for learning complex patterns. This proposed method is sensitive to local texture and
could well describe texture information, which is appropriate for most kinds of tire defects.
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1. Introduction

Nowadays, defect detection is one of the most important issues in final inspections and quality
controls in industry. Research has shown that the quality of tires is linked to the safety and health
of humans [7]. On the other hand, automation of the defect detection process is one of the most
important and challenging problems in industrial inspection. Currently, in most tire manufacturing
companies, identifying the defects and separating defective products are often done by operators,
which, in addition to requiring more manpower and time, may not have a good return as well.
Therefore, automatic tire defect detection and classification will bring reasonable results. The pur-
pose of this research is to improve the system of supervision and inspection of the production line
and increase the quality of the manufactured tires. In general, there are two types of product quality
inspections: destructive and nondestructive tests. Nondestructive techniques are used to test the
surface or internal defects without destroying, or interfering with, the internal components. The
usual methods used in nondestructive tests are: acoustic emission, magnetic particles, eddy current,
ultrasonic test, and radiography test [38]. The total effects available for these techniques are very
limited and in some cases are only suitable for a particular defect type. For example, the liquid
penetrant and magnetic particles tests are used to find surface defects. The Eddy current test is
used only in cases where the part is not magnetized. Although the ultrasonic test can detect a wide
range of defects, the interpretation of the output signal is difficult and has little documentation ca-
pability. Radiographic imaging is one of the most widely used methods for detecting internal defects
as well as finding changes in the composition, thickness measurement, and determining the location
of extra or defective parts that are normally hidden from human sight. This method, especially the
X-ray imaging, is the most effective tool for inspecting and monitoring the products, especially in tire
inspection [9]. Therefore, in this paper, an approach based on image analysis and learning methods
is presented for detecting and evaluating heterogeneous regions of defects in Xray images. It should
be noted that this strategy, in addition to identifying all types of defects, classifies them that can be
applied to an automation process as inline in tire manufacturing companies.

2. Literature review

Researchers have been using image processing and pattern recognition techniques to make auto-
matic inspection as desirable and highly reliable as possible. Non-destructive inspection technology
has been widely used in various fields including steel [28], casting and welding [8, 17], textiles and
fabric [3], TFT-LCD panels [24], Nano-structures [36, 37], aluminum surfaces with titanium coating
[33] and semiconductors [1]. Defect equation detection technology based on radiographic images is
also used to diagnose weld, fabric and tire defects. We can say that machine vision-based meth-
ods can be divided into three categories: Shearography imagebased methods [40], X-ray radiography
image-based methods [27], and optical image-based methods of the CCD camera [2]. In general, most
of the methods have been conducted to automatically detect surface defects [2, 14, 15, 17, 23, 32, 39].
On the other hand, there are major problems in the automatic detection of tire defects, which are
due to the characteristics of their radiographic images. These problems are [39]:

1. The intensity of brightness in these images change abruptly because the tires have complex
multilayer structures, consisting of layers with different textures and thicknesses. Different tires
or different layers of the same tires vary in terms of structure, thickness, and raw materials,
which help to vary the intensity in different parts of the radiographic image.

2. Different defects occur in forms, shapes, intensities, and scales. Instances of such defects are
the existence of foreign objects, bubbles, cords distances, belts splices (open joints or overlaps),
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free extra cords, cords bulks and cords bendings in tires. Applying only one feature space for
recognition of all these disadvantages is not suitable.

Research has shown that compared with other machine vision applications, research on defect
detection of tires is still very limited and more studies are needed to achieve highly desirable results
[12]. In [11], a method for tire detection has been presented using laser shearography, which is a
combination of an improved image based on Curvelet and Canny operators. However, there are
limitations to this method; For example it does not work for the detection of a non-metallic foreign
object such as a plastic object. In [27], a method for foreign object and bubble detection in X-ray
radiography images has been presented, which is based on the general variance of image and edge
detection. However, in this method the contours of detected defects are incorrect and incomplete,
so that the complete extraction of defects is difficult. In [26], Prabha PA et al. multi scale saliency
defect detecting algorithms is implemented to obtain the boundaries and range of defect in industrial
products. Li [16] investigated the detection of tires with X-ray radiography images and fuzzy edge
detection methods. Chien CH et al. [4] presented a deep convolutional sparse-coding network is built
for tire defect classification for extraction of features. In [35], a defect detection algorithm based on
the representation of all data has been proposed, in which the difference in the distribution of these
representation coefficients has been used as an indicator for detecting a defective region. Compared
with the method of automatic range selection for wavelet reconstruction method in [30], it shows
good results. However, defect detection using brightness variation has been a nearly trouble-free
method. Zhu [41] presented a method for defect detection of bubbles in tires using digital holography.
The methods based on ground truth or templates evaluate the difference between these images and
their templates for defect detection [18]. It is worth noting that the automated inspection and the
diagnostic processes of defects such as fabric, casting steel, welding, etc. have the same goals and are
very similar to the process of defect detection in tires. In [21], a convenient decomposition method for
inspecting patterned texture has been described. Defect detection methods for motif-based patterned
textures include Fourier transform [31], Wavelet transform [10], Gabor filters [19], Template Matching
[6], Co-occurrence Matrix [13], and a method for patterned two-dimensional texture images [22]. From
among these methods, the Wavelet transform method has been the most efficient. The wavelet-based
binary image method was developed by Li [17], which could prove to be very effective in detecting
defects in casting. This detection has been done using local variations in the intensity of the image.
However, it is still difficult to extract the characteristics of tire radiographic images due to its multi-
layered and multi-textural properties. In [5], a supervised feature embedded deep learning based tire
defects classification method using deep image features proposed and composed images belonging
to six typical defect categories. A new algorithm of detecting joints in the belt is proposed in [34]
and the defect is determined by calculating the difference between the block containing the joint
and its corresponding standard blocks but it is not applicable to aperiodic tires. In this paper, a
real-time method has been proposed based on image analysis using entropy filters and classification
of candidate regions using local descriptions. The algorithm presented in this paper detects and
classifies defects of X-ray images and refers to one of the eight classified defects shown in Fig. 2. The
method is well-suited to X-ray tire images and can be extended to other issues. In the next section,
the proposed strategy will be described completely.

3. Dataset

To carry out this research, field visits have severally been done in some tire manufacturing com-
panies including the production line inspection of Dena Tire and Rubber Manufacturing Company
in Iran. In general, the structure of each tire consists of two main regions named the ’Belt’ region
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(middle region) and the ’Shoulder’ region (the two lateral regions). The defects addressed in this
research are not normally visible by human sight but are shown by tire X-ray imaging. These defects
occur mainly in the belt and shoulder regions. The presented algorithm, detects all eight defects
of tire images and classifies them. In case no defect is detected, then the tire is labeled as normal
(non-defect) type. Therefore, an image can have one of the nine different labels. In this regard,
1040 original defective and non-defective X-ray images containing nine typical defect categories and
normal category, collected were divided into two categories of training and test in order to construct
the dataset for evaluating the accuracy rate of the system in this paper. In this segmentation, the
images were equally divided to 520 training images and 520 test images; samples of these images,
namely, Belt Foreign Body (BFB), Shoulder Foreign Body (SFB), Shoulder Bubble (SB), Cords
Distance (CD), Belts Splice (BS), Shoulder Free Cord (SFC), Shoulder Bulk Cords (SBC), Shoulder
Cords Bending (SCB) as shown in Fig. 2 (a to g) respectively.

4. The proposed method

The purpose of this paper is to provide a strategy for solving the challenges available in this
region in order to improve the effectiveness of this strategy. In this line, a method for describing a
tire image in two different modes is presented first. The proposed strategy is robust against images
with different brightness rates and noise. Subsequently, Local Binary Pattern (LBP) information is
extracted from these regions by spatially segmenting the image. Each of these regions is classified
into two classes of defected and non-defected and then based on this classification, the corresponding
heat-map image is generated. Finally, defective regions are detected on the heat-map images by
morphology operations and their type is detected. It should be noted that the proposed strategy is
resistant to images with different brightness, and various patterns, and has high efficiency and speed.
The following section describes the system training and the system processing phases.

4.1. System Training Phase

The training phase in this paper initially tries to divide the images into a series of overlapping
regions of size n∗n called ’patch’. Then local descriptions are extracted for each of these patches and
the classifier is learned. The block diagram in Fig. 1 illustrates the process of learning the patches of
the training images. According to this strategy for learning defective and normal patches, the input
image is first normalized and then divided into a series of overlapping regions with a constant size.
In the following, normal and defective patches are extracted by extracting the LBP description.

Figure 1: Process of learning patches of the training images

4.1.1. Normalizing the Images

As discussed earlier, tire images can have variable brightness levels, which cause different regions
of the image to have different patterns. Histogram equalization is used to reduce this effect in the
first stage of processing. In this process, it is used to convert the values of image pixels to new values
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Figure 2: Tire defects types in X-ray images

in such a way that the histogram of the image is uniform in order to increase the image contrast. An
equalized histogram is defined by equation (4.1):

gi,j = (L− 1)

Ii,j∑
n=0

pn (4.1)

In the above equation, gi,j is the normalized image and Ii,j represents the input image. L repre-
sents the number of brightness levels for the image, usually 256, and pn is the normalized histogram
of the input image defined by equation (4.2):

pn =
number of pixels with intensity n

total number of pixels
, n = 0, 1, ..., L− 1 (4.2)

4.1.2. Production of Image Patches

Here is a description of the patch production process. In the process of recognizing tire defects in
X-ray images, different regions of the image can generally be classified into two classes: defective and
non-defective. We use a banding box on X-ray images to extract the patches. In this paper, about
2000 cropped images have been extracted from different regions of the training regions as ’defective’
regions. All of these extracted images were normalized to 10×10 sizes. Then each of the images with
the probability of 1/2, was randomly rotated three times in the range of 0 to 300 degrees to produce
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3 new image types [29]. The extracted images were folded vertically, horizontally and normally. As a
result, three new images were produced. These patches were also given scales 75%, 100%, and 125%
to produce three different image types for each patch in the final stage.

Hence, for each defective patch, 3× 3× 3× 0.5 = 13.5 times were produced which show different
versions of a defect. Also, in some defective images, the process of adding low noise was randomly
selected with the probability of 1/10. Approximately 27000 patches were generated for the defective
class with 13.5× 2000 = 27000.

Figure 3: Block diagram of the proposed method

About 25000 patches were randomly extracted from different regions of normal images to pro-
duce the patches for non-defective classes and then all of these images were normalized to 10 × 10
dimensions. Block diagram of the proposed method for the detection of defects in tire images has
been shown in Fig. 3. In the proposed method, the input image is described at two different levels.
In the first level, the image is normalized to reduce the effect of light conditions on the algorithm.
In the second level, the entropy filter is applied to the image to produce a new image which shows
highlighted heterogeneity in patterns.

4.2. Data Processing Phase

In the following, the correlation of image regions are compared with a normal reference image
using the entropy filter. The regions with low correlation value are selected as candidate regions.

Subsequently, the LBP description is extracted from the normalized image with the help of the
generated candidate regions. These regions are classified using the patch classifier to generate the
heat map image. The defect location and its types are detected by applying morphological operations
and evaluating the regions available in the heat map image. In the next section, these steps have
been explained in sequence.

4.2.1. Entropy Filter

Entropy is a criterion for measuring the random rate of a signal. In this paper, we intend to
evaluate the image texture by using the entropy filter on the tire image. The entropy filter is defined
by equation (4.3):

e = −
L−1∑
i=0

pi log2 pi (4.3)

In this equation, pi is the probability distribution function (PDF) of brightness in a neighborhood
window of a pixel and L indicates the number of brightness levels in that window. A textured image
is generated by applying relation (4.3) on the image. In this textured image, the amount of each
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pixel is obtained from the entropy of its neighboring pixels according to Eq. (4.2). An example of
applying Eq. (4.3) to a tire image with a bubble defect has been shown in Fig. 4. An important
parameter that influences the production process of the textured image is the choice of window size
in the entropy filter. The size of this window should be chosen in such a way that is smaller than
the size of the defect, such that the presence of the defect does change the entropy information of
the region. Also, the size of the window should be larger than the size of texture points caused in
the image to avoid the entropy changes made by these points themselves. Fortunately, this is not
problematic in tire images because the size of the defects in tire images is larger than the size of the
texture points. The image obtained from the entropy filter is first divided into overlapping blocks
in order to determine the candidate regions. Then in terms of the degree of similarity, each of these
blocks is compared with their respective block in the entropy image of the normal tire. If the level of
similarity of these blocks is greater than the threshold, then they will be announced as a ’candidate’.
As a result, the image regions that may be defective in this section are identified and then generate
Ic that represents a candidate image. It should be noted that feature extraction and classification
does not run on the entire image. Rather, it is done only in candidate regions.

4.2.2. Regional Local Binary Pattern

Local binary pattern (LBP) is a method of extracting texture information in images [25, 29].
This method is used due to high speed and resolution in many computer vision applications. The
normalized image is first divided into overlapping blocks in order to extract features of LPB, then
for each block with centered (xc, yc) pixel, the LBP descriptor is extracted using Eq. (4.4).

LBPP.R(xc, yc) =
P−1∑
k=0

S(I(xk,yk) − I(xc,yc))2
k (4.4)

In Eq. (4.4), I(xc,yc) and I(xk,yk) represent the gray level of the center pixel and the neighboring
pixels located on the circular boundary, respectively. P is the number of neighboring pixels and R
represents the radius of the circle. Function S is expressed using Eq. (4.5):

S(x) =

{
1 if x ≥ 0
0 if x < 0

(4.5)

After calculating the local binary pattern values for all pixels, the image is divided to several cells
and the histogram of each cell is expressed as its local binary pattern description.

Figure 4: The image obtained from applying the entropy filter on the defective image of bubble
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4.2.3. Creation of Heat-Map Image Using the Patch-Based Classifier

In this section, first, the areas that need to be processed in the normalized image are specified using
the candidate image. The LBP description of these areas is then classified into one of two normal
and defective classifications, using the SVM model [20]. If a patch is assigned to a classification with
defect, then, according to Algorithm 1, a Gaussian model with the center of that patch is added to
the heat-map image.

It should be noted that the size of the heat-map image is considered equal to the input image
and the initial values of each pixel is zero.

In algorithm 1, Nr shows the number of rows, Nc is the number of columns in normalized image
and Cd represents the class of defects. Fig. 5 shows an example of a generated heat-map image for
defect of splice between the belt layers in the tire in which defective areas are clearly identified.

Algorithm 1: Heatmap Generation
1 : Input = g, Ic
2 : Output = IHeatmap

3 : For j = 1 to Nr

4 : For k = 1 to Nc

5 : If Ic(i, j)w = Candid
6 : If SVM(LBP (IN(i, j)w)) is in Cd do
7 : IHeatmap(i, j)w = G(w) + IHeatmap(i, j)w
8 : End if
9 : End if
10 : End for
11 : End for

4.2.4. Final Detection of Location and Type of Defects

In this section, using the image of heat-map, the location of defect and its type are detected. First,
by using morphological operations, the objects smaller than the first threshold value and larger than
the second threshold value are eliminated as noise. The remaining objects in the image define the
defect’s location. Considering the fact that in this paper eight types of defects are discussed in Fig.
2, the classification is done using the previous information about the types of defects. We use these
defects’ information to classify the detected region into one of the eight defect types.

Generally, these defects are distinguished using the following kinds of information: the location
of the defect is used to specify the belt or shoulder regions, and the brightness level of the detected
region is used to distinguish the bubble defects and foreign objects. The number and amount of
dispersion of the recognized regions and also the defects’ structures are used to classify the defects.
It should be noted that conditional conditions are used for this information.

5. Results

In this section, the results obtained from applying the proposed strategy on the dataset are
examined as shown in Fig. 6. The results section consists of three parts. In the first part, the
efficiency of the suggested strategy to the detection of defects in tires is investigated. In the second
part, the accuracy rate of the algorithm in the classification of the defect type is discussed. In the
third part, the effect of problem parameters, data augmentation, and runtime of the algorithm are
investigated.
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Figure 5: A sample of the heat-map of a defective image

5.1. Efficiency of the Algorithm in Detecting Defective Areas

In this section, the results obtained from the application of the proposed algorithm will be eval-
uated to identify defective regions in X-ray images.

As previously stated, there are eight different types of tire defects in the dataset used in this
study. An example of these defects, along with the explanations, is given in Fig. 2. The main
objective in defining defective regions is to provide an algorithm that extracts all regions of defect
and classifies the remaining regions as normal regions. Therefore, Precision, Recall and Accuracy
criteria are used to analyze and investigate the system efficiency. The precision criterion shows the
number of data that is detected correctly relative to the total detected data. In other words, this
criterion measures the number of pieces of data which have been identified as ’defective’ and are
actually in the classification of defective data.

The Recall criterion shows the proportion of detected data to the total available data. In other
words, this criterion measures the number of detected defective regions in relation to the total number
of defective regions. The Accuracy criterion is the ratio of the data that are detected correctly to
the total available data. These criteria are defined by the following equations as defined in Eq. (5.1)
to (5.3):

Re =
TP

TP + FN
(5.1)

Pr =
TP

TP + FP
(5.2)

Acc = 100× TP + TN

P +N
(5.3)

where:

� True Positive: The number of defects that are properly classified.

� True Negative: The number of non-destructive defects that are properly classified.

� False Positive: The number of non-destructive defects that are classified incorrectly.

If Pr = Re = Acc, then it means that all defects have been correctly detected and no errors
have occurred, and that this mode is ideal. Table 1 shows the obtained results. We have used five
different classifiers in order to better analyze the results.
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These classifiers include the KNN classification with a neighborhood value of 3 and 5, the random
forest classification, and the SVM classification with two linear and RBF kernels. It should be noted
that the description of LBP as the final attribute has been used.

In Table 1, the obtained accuracy value has been sorted ascendingly in which the highest accuracy
value refers to the linear SVM classifier. Also, the least amount of obtained accuracy value is for the
KNN classifier with 3 neighborhoods. This case shows that neighborhood 5 is more resistant to noise
than neighborhood 3, and has a high accuracy rate. It should be noted that more neighborhoods
were used for this case, but it reduced the accuracy. In Table 1, due to the fact that the size of the
input images is 600 × 600, and the size of the patches is 10 × 10, the number of generated patches
for each image is about 3000. On average, for each test image some 100 patches out of 3000 patches
are related to the classification of defective ones and the others are normal.

Ideally, for the results in Table 1, for each image there are 2900 normal and 100 defective patches.
According to the efficiency rate of the various classifiers, the highest efficiency has been achieved by
the SVM-linear classifier. Another method for measuring the efficiency of automatic defect detection
methods is to calculate the detection rate as defined in Eq. (5.4):

Detection Rate = 100×
(
Ncc +Ndd

Ntotal

)
(5.4)

Figure 6: The flowchart of the proposed method

Table 1: Investigation of alignment between research variables

METHOD TP TN FP FN Pr Re Acc
0 Ideal 2900 100 0 0 1.00 1.00 100
1 KNN-3 2500 70 277 153 0.900 0.942 85.66
2 KNN-5 2614 76 206 104 0.926 0.961 89.63
3 Random Forest 2660 90 183 67 0.935 0.975 91.56
4 SVM-RBF 2794 96 64 46 0.977 0.983 96.23
5 SVM-Linear 2843 97 49 11 0.983 0.996 98.00

In this equation, Ncc is the number of windows that belongs to normal points of the image
already recognized by the algorithm as ’non-defect’, and Ndd is the number of defective windows
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already detected as ’defective’ by the algorithm. Also, Ntotal is the total number of windows created
on the images.

In Table 2, the detection rate that is presented for all types of textural defects in tire images is
calculated. In calculating the detection rate in Table 2, it is important that the defective pattern
generated by this method is divided into windows with 10× 10 dimensions and the window with at
least one defective pixel has been considered as a defective window. Therefore, the size of the image
is 500× 600, and the total number of windows created on the image will be Ntotal = 3000.

It should be noted that in the results obtained in Table 2, an LBP descriptor with a 10 × 10
window and a linear SVM classifier have been used.

Table 2: Detection rate of the proposed method for different types of defects

Defect type BFB SFB SB CD BS SFC SBC SCB
Detection Ratio 98 98 96 96 100 98 94 96

5.2. Classifications of Defects

In this section, the results of the classification for defective regions are given. After diagnosing
the stage of defective regions in the previous section, each of these regions is classified into one of
eight different types of defects. The defect classification algorithm is described in Section 3. In
Fig. 7, a confusion matrix resulting from applying the algorithm is presented to classify the defects.
Regarding the confusion matrix, it can be said that the algorithm has no error in the classification
of the splice defect. That is due to the structural and situational features for these defects in the
images.

Due to the presence of noise and different light conditions, the bubble defect and the foreign
object have almost an identical structure.

Therefore, in some cases, the algorithm is wrong in classifying these two categories.

Figure 7: The confusion matrix of the proposed method for the classification of all tire defects

Also, due to the similarity of the two defects including cord through and over-bending there is
also a partial error in classification. According to this Confusion matrix, the accuracy rate of the
algorithm in classifying all kinds of defects has been obtained to be 97%.
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Figure 8: Examples of the implementation of detection and classification algorithm for tire defects.

In Fig. 8, examples of the algorithm output on the defective images have been shown, in which
the algorithm has perfectly extracted the defect region and classified its type.

It should be noted that in the course of using this strategy to the problem, other features such as
the Histogram of Oriented Gradient (HOG), the second order HOG, and the Gray Level Co-accuracy
Matrix (GLCM) were also used to evaluate the accuracy of the system, in which the LBP descriptor
achieved a high accuracy. In Fig. 9, the accuracy rate obtained from implementing the algorithm
with a combination of different features has been shown.

5.3. Performance of Deep Classifier

In order to analyze the performance of CNN (Convolutional Neural Network) model as a classifier
on the proposed pipeline we conducted results using Alex net structure. To do so, we only modify the
Alex net structure with changing its input size equal to our extracted patch sizes. Then we trained
the model as a binary classification scheme using accuracy metric. The model trained on the patch
dataset for 200 epochs. Fig. 10 shows the model convergence through the learning process on this
data set. Based on Fig. 10, it is obvious that the model effectively updates its weights and reaches
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to its optimal state around 100 epochs; we provided Fig. 11. Fig. 11 shows the effect of increasing
the number of epochs on loss decreases. It is manifest that the model decreases the loss in both train
and validation set with increasing number of epochs, hence, it illustrates that the model trained well
on this data set. In our experimental results, the performance of the proposed pipeline increased
approximately 0.3 when we used the deep model as a classifier, thus demonstrating that the deep
model has high capability in learning complex patterns.

Figure 9: The effect of combining features to enhance the accuracy of the system in identifying defect location

Figure 10: Model convergence rate through the learning process on patch dataset

6. Conclusion

In this paper, a strategy based on image analysis and learning processing was proposed using an
entropy filter and an LBP. The proposed strategy, based on the entropy filter analysis, identifies the
candidate regions in the image and extracts the local description. Then, the location of the defect
and its type are identified with the help of the classification and structural analysis. The tire dataset
was collected from Dena Tire and Rubber Manufacturing Company in Iran in order to analyze the
strategy. The training and inspection sections were recognized and described in the Dataset section.
In the results section, we showed that the best performance was obtained by the LBP descriptor and
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Figure 11: Loss decrease with increasing number of learning epochs

the linear SVM classifier with 98% accuracy (Radical=0.996 and Precision=0.983). Also, according
to the results obtained, the LBP that is a hand-crafter descriptor, showed that it was sensitive to
local texture and could well describe texture information, which is appropriate for tire defect in
X-ray images. Moreover, the effect of the combination of different features and the use of different
classification are described in detail. In order to analyze the performance, used the deep model as a
classifier that has high capability so in the future, we plan to extract a stronger description of the
image region by generalizing this method and presenting a deep learning model so that the algorithm
can detect any kind of heterogeneity in similar applications, including all factory produced parts in
various companies.
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