Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 1069–1087 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.25363.2995

A convergence theorem for a common solution of f-fixed point, variational inequality and generalized mixed equilibrium problems in Banach spaces

Solomon Bekele Zegeye^a, Habtu Zegeye^{b,*}, Mengistu Goa Sangago^a, Oganeditse A. Boikanyo^b

^aDepartment of Mathematics, Faculty of Science, University of Botswana, Pvt Bag 00704, Gaborone, Botswana ^bDepartment of Mathematics and Statistical Sciences, Faculty of Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana

(Communicated by Ali Farajzadeh)

Abstract

The purpose of this paper is to construct an algorithm for approximating a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the set of f-fixed points of a finite family of f-pseudocontractive mappings and the set of solutions of a finite family of variational inequality problems for Lipschitz monotone mappings in real reflexive Banach spaces.

Keywords: Generalized mixed equilibrium problem, Variational inequality problem, *f*-pseudocontractive mapping, monotone mapping, reflexive Banach spaces 2020 MSC: 47H10, 47H04, 47J25, 49J40, 91B99

1 Introduction

Let *E* be a reflexive real Banach space with its dual E^* . Let *C* be a nonempty, closed and convex subset of *E*. Let $F: C \times C \to \mathbb{R}$ be a bifunction, $\varphi: C \to \mathbb{R}$ be a real valued function, and $B: C \to E^*$ be a nonlinear mapping. The *Generalized Mixed Equilibrium Problem (GMEP)* (Ceng and Yao [8]) is to find $x \in C$ such that

$$H(x,y) := F(x,y) + \varphi(y) - \varphi(x) + \langle Bx, y - x \rangle \ge 0, \forall y \in C.$$

$$(1.1)$$

The set of solutions of (1.1) is denoted by $GMEP(F, \varphi, B)$. In particular, if $\varphi \equiv 0$, the problem (1.1) reduces to the Generalized Equilibrium problem (GEP) (Mouda and Thera [13]) which is to find $x \in C$ such that

$$\overline{H}(x,y) := F(x,y) + \langle Bx, y - x \rangle \ge 0, \forall y \in C.$$
(1.2)

The set of solutions of (1.2) is denoted by GEP(F, B).

If in (1.1), we consider $F \equiv 0$, then problem (1.1) reduces to finding $x \in C$ such that

$$\varphi(y) - \varphi(x) + \langle Bx, y - x \rangle \ge 0, \forall y \in C, \tag{1.3}$$

*Corresponding author

Email addresses: askubekele@gmail.com (Solomon Bekele Zegeye), habtuzh@yahoo.com (Habtu Zegeye), mgoa2009@gmail.com (Mengistu Goa Sangago), boikanyoa@gmail.com (Oganeditse A. Boikanyo)

which is called the *Mixed Variational Inequality of Browder type (MVI)* [7]. The set of solutions to (1.3) is denoted by $MVI(C, B, \varphi)$.

If $F \equiv 0$ and $\varphi(y) \equiv 0$ for all $y \in C$, problem (1.1) reduces to finding $x \in C$ such that

$$\langle Bx, y - x \rangle \ge 0, \forall y \in C,$$

$$(1.4)$$

which is the classical Variational Inequality Problem (VIP). The set of solutions to (1.4) is denoted by VI(C, B). If in (1.2), $B \equiv 0$, then problem (1.2) reduces to the Equilibrium problem (EP) (Blum and Oettli [3]) which is to find $x \in C$ such that

$$F(x,y) \ge 0, \forall y \in C. \tag{1.5}$$

The set of solutions to (1.5) is denoted by EP(F).

We say that a bi-function F satisfies "Condition A" if the following four properties hold:

(A1) $F(x,x) = 0, \forall x \in C;$

(A2) F is monotone, i.e., $F(x, y) + F(y, x) \le 0, \forall x, y \in C;$

(A3) $\lim_{t\downarrow 0} F(tz + (1-t)x, y) \le F(x, y), \forall x, y, z \in C;$

(A4) for each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.

Some of the applications of the equilibrium problem are given below. *Optimization:* Let $\phi : C \to \mathbb{R}$ be a convex and lower semi-continuous function. The minimization problem is to find $x^* \in C$ such that

$$\phi(x^*) \le \phi(y), \forall y \in C. \tag{1.6}$$

Setting $F(x, y) := \phi(y) - \phi(x)$, problem (1.6) coincides with (1.5). Saddle Point Problem: Let $\varphi : C_1 \times C_2 \to \mathbb{R}$. Then $x^* = (x_1^*, x_2^*)$ is called a saddle point of the function φ if and only if for $x^* = (x_1^*, x_2^*)$,

$$\varphi(x_1^*, y_2) \le \varphi(y_1, x_2^*), \forall (y_1, y_2) \in C_1 \times C_2.$$
(1.7)

If $C := C_1 \times C_2$, and $F : C \times C \to \mathbb{R}$ is defined by

$$F((x_1, x_2), (y_1, y_2)) := \varphi(y_1, x_2) - \varphi(x_1, y_2),$$

then $x^* = (x_1^*, x_2^*)$ is a solution of (1.5) if and only if $x^* = (x_1^*, x_2^*)$ satisfies (1.7). Nash Equilibrium in Non-cooperative Games: Let I be a finite set of players and let C_i be a strategy set of the i^{th} player, for each $i \in I$. Let $f_i : C := \prod_{i \in I} C_i \to \mathbb{R}$ be a loss function of the i^{th} player depending on the strategies of all players, for all $i \in I$. For $x = (x_i)_{i \in I} \in C$, we find $x_{-i} = (x_j)_{j \in I \mid j \neq i}$. The point $x^* = (x^*)_{i \in I} \in C$ is called Nash Equilibrium if for $i \in I$, the following holds:

$$f_i(x^*) \le f_i(x^*_{-i}, y_i), \forall y_i \in C_i,$$
(1.8)

(that is, no player can reduce his loss by varying his strategy alone). If $F: C \times C \to \mathbb{R}$ is given by

$$F(x,y) := \sum_{i \in I} (f_i(x_{-i}, y_i) - f_i(x))$$

then $x^* \in C$ is a Nash equilibrium if and only if x^* satisfies (1.5).

Let $f: E \to (-\infty, +\infty]$ be a proper, lower semi-continuous and convex function. We denote the domain of f by $dom f = \{x \in E : f(x) < \infty\}$. The subdifferential of f at x is the convex set given by

$$\partial f(x) = \{x^* \in E^* : f(y) - f(x) \ge \langle y - x, x^* \rangle, \forall y \in E\}.$$

The Fenchel conjugate of f is a function $f^*: E^* \to (-\infty, +\infty]$, defined by

$$f^*(x^*) = \sup\{\langle x, x^* \rangle - f(x) : x \in E\}.$$

A function $f: E \to (-\infty, +\infty]$ is called *strongly coercive* if

$$\lim_{\|x\| \to +\infty} \frac{f(x)}{\|x\|} = \infty$$

For any $x \in int(dom f)$ and any $y \in E$, we denote by $f^0(x, y)$ the right-hand derivative of f at x in the direction of y, that is,

$$f^{0}(x,y) = \lim_{t \to 0^{+}} \frac{f(x+ty) - f(x)}{t}$$

The function f is called Gâteaux differentiable at x if $\lim_{t\to 0^+} \frac{f(x+ty)-f(x)}{t}$ exists for any $y \in E$. In this case, the gradient of f at x, $\nabla f(x)$, coincides with $f^0(x, y)$ for all $y \in E$. It is called Gâteaux differentiable if it is Gâteaux differentiable at every point $x \in int(dom f)$. We note that if the subdifferential of f is single-valued, then $\partial f = \nabla f$. The function $f : E \to \mathbb{R}$ is called uniformly convex if there exists a continuous increasing function $g : [0, +\infty) \to \mathbb{R}$, g(0) = 0, such that

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - t(1-t)g(||x-y||),$$
(1.9)

for all $x, y \in dom f$. The function g is called a *modulus of convexity* of f. If f is a uniformly convex and Gâteaux differentiable function in dom f with modulus of convexity g, then $\langle x - y, \nabla f(x) - \nabla f(y) \rangle \geq 2g(||x - y||), \forall x, y \in dom f$, or equivalently, $f(y) \geq f(x) + \langle y - x, \nabla f(x) \rangle + g(||x - y||), \forall x, y \in dom f$. The functional f is called *strongly convex* if f is uniformly convex with the modulus of convexity $g(t) = ct^2, c > 0$. If a function f is strongly convex with constant $\mu > 0$ and Gâteaux differentiable in (dom f), then $\langle x - y, \nabla f(x) - \nabla f(y) \rangle \geq \mu ||x - y||^2, \forall x, y \in dom f$, or equivalently, $f(y) \geq f(x) + \langle y - x, \nabla f(x) \rangle + \frac{\mu}{2} ||x - y||^2, \forall x, y \in dom f$. If E is a smooth and strictly convex Banach space, the function $f(x) = ||x||^2, \forall x \in E$ is strongly convex with constant $\mu \in (0, 1]$ (see, Phelps [15]).

A mapping $A: D(A) \subset E \to E^*$, is said to be *monotone* if for each $x, y \in D(A)$, the following inequality holds:

$$\langle x - y, Ax - Ay \rangle \ge 0. \tag{1.10}$$

A mapping $A: D(A) \subset E \to E^*$, is said to be γ -inverse strongly monotone if there exists a positive real number γ such that

$$\langle x - y, Ax - Ay \rangle \ge \gamma \|Ax - Ay\|^2. \tag{1.11}$$

If A is γ -inverse strongly monotone, then it is Lipschitz continuous with constant $\frac{1}{\gamma}$, that is,

 $||Ax - Ay|| \leq \frac{1}{\gamma} ||x - y||, \forall x, y \in D(A)$, and hence uniformly continuous.

Closely related to the class of monotone mappings is the class type of f-pseudocontractive mappings.

A mapping $T: E \to E^*$, is said to be *f*-pseudocontractive mapping (see, Zegeye and Wega [25]) if for each $x, y \in E$, we have

$$\langle x - y, T(x) - T(y) \rangle \le \langle x - y, \nabla f(x) - \nabla f(y) \rangle.$$
(1.12)

A mapping T is said to be γ -strictly f-pseudocontractive if for all $x, y \in C$, there exists $\gamma > 0$ such that

$$\langle x - y, T(x) - T(y) \rangle \le \langle x - y, \nabla f(x) - \nabla f(y) \rangle - \gamma \| (\nabla f(x) - \nabla f(y)) - (Tx - Ty) \|^2.$$
(1.13)

The *f*-fixed point problem with respect to *T* is to find a point $p \in C$ such that $Tp = \nabla f(p)$. The set of *f*-fixed points of *T* is denoted by $F_f(T)$, that is, $F_f(T) = \{p \in C : Tp = \nabla f(p)\}$. A mapping *T* is said to be semi-pseudocontractive if $\langle x - y, T(x) - T(y) \rangle \leq \langle x - y, J(x) - J(y) \rangle$, $\forall x, y \in E$. We remark that if *E* is smooth and strictly convex and $f(x) = \frac{1}{2} ||x||^2$ for all $x \in E$, then $\nabla f = J$, where *J* is the normalized duality mapping from *E* into 2^{E^*} , and the notion of *f*-pseudocontractive mapping reduces to the notion of semi-pseudocontractive mapping and *f*-fixed point of *T* reduces to semi-fixed point of *T*. If, in addition, E = H, a real Hilbert space, then *f*-pseudocontractive mapping becomes pseudocontractive mapping. The mapping *T* is *f*-pseudocontractive if and only if $A = \nabla f - T$ is monotone and *T* is strictly *f*-pseudocontractive if and only if $A = \nabla f - T$ is γ -inverse strongly monotone. In this case, the zero of *A* corresponds to *f*-fixed point of *T*. In fact, if *T* and ∇f are continuous on *E* then *A* is maximal monotone and the set of zeros of *A* and hence the set of *f*-fixed points of an *f*-pseudocontractive mapping *T* is closed and convex (see, Zegeye and Wega [25]).

The above formulation of fixed point problem was treated as equilibrium problem as follows. Fixed Point Problem: Let $T : E \to E$ be a given mapping. If $F(x,y) = \langle x - T(x), y - x \rangle$, $\forall x, y \in E$, then p is a solution of (1.5) if and only if it is a fixed point of T.

A method for solving the fixed point problem of pseudocontractive mapping with the use of the resolvent mapping was introduced by Zegeye [24] in Hilbert spaces. Let f be a self contraction on C, and let $\{x_n\}$ be a sequence generated by $x_1 \in C$ and

$$x_{n+1} = \alpha_n f(x) + (1 - \alpha_n) K^{T_1} K^{T_2} x_n, \qquad (1.14)$$

where $\{\alpha_n\} \subset [0,1]$ with $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$, $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, $K_{r_n}^{T_1}$ and $K_{r_n}^{T_2}$ with $\{r_n\} \subset (0,\infty)$, $\lim_{n\to\infty} \inf_{r_n\to\infty} r_n > 0$, $\sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty$ where $K_{r_n}^{T_i} x = \{z \in C : \langle y - z, T_i z \rangle - \frac{1}{r_n} \langle y - z, (1+r_n)z - x \rangle \le 0, \forall y \in C\}$,

where T_i 's, i = 1, 2, are continuous pseudocontractive mappings. He proved that if $\mathcal{F} = \bigcap_{i=1}^2 Fix(T_i) \neq \emptyset$, then the sequence $\{x_n\}$ converges strongly to $z = \prod_{\mathcal{F}} f(z)$.

Recently, several authors have proposed algorithms for approximating a common solution of a variational inequality, an equilibrium problem, and semi-fixed points of a continuous semi-pseudocontractive mapping in the framework of Hilbert spaces and Banach spaces (see, [9, 11]).

In 2019, Shahzad and Zegeye [21] proved the following convergence theorem for a common solution of fixed point, equilibrium and variational inequality problems in Hilbert spaces.

Theorem 1.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let $A : C \to H$ be a Lipschitz monotone mapping with Lipschitz constant L > 0, $F : C \times C \to \mathbb{R}$ be a bi-functional satisfying **Condition** A, and $T : C \to H$ be a continuous pseudocontractive mapping with $\mathcal{F} := F(T) \bigcap VI(A, C) \bigcap EP(F) \neq \emptyset$. Let the sequence $\{x_n\}$ be generated by

$$\begin{cases} u, x_0 \in C, \\ z_n = P_C(x_n - \lambda A x_n), \\ x_{n+1} = \alpha_n u + (1 - \alpha_n)(\beta y_n + (1 - \beta) u_n), \end{cases}$$
(1.15)

where P_C is the metric projection from H onto C, $y_n = K_{r_n}^T T_{r_n}^F x_n$ with $T_{r_n}^F$ and $K_{r_n}^S$ as the resolvent mappings for F and T, respectively, $\{r_n\} \subset [a, \infty)$, for some a > 0, $u_n = P_C(x_n - \lambda A z_n)$, $\lambda \in [a, b] \subset (0, \frac{1}{L})$ and $\{\alpha_n\} \subset (0, c] \subset (0, 1)$ with $\lim_{n\to\infty} \alpha_n = 0$ and $\sum \alpha_n = \infty$. Then, the sequence $\{x_n\}$ converges strongly to a point $P_{\mathcal{F}}u$.

In 2019, Khonchaliew et al. [10] studied two shrinking extragradient algorithms for finding a common solution set of equilibrium problems for a finite family of pseudomonotone bifunctions and set of fixed points of quasinonexpansive mappings in real Hilbert spaces.

In 2020, Nnakwe and Okeke [14] constructed a new Halpern-type iterative algorithm and proved the following result in uniformly smooth and uniformly convex real Banach spaces. Let $B_i : C \to E^*$, i = 1, 2 be a continuous and monotone mappings, $F_i : C \times C \to \mathbb{R}$, i = 1, 2 be a bi-functionals satisfying **Condition A**, and $T_i : C \to E^*$, i = 1, 2 be a continuous semi-pseudocontractive mappings with $\mathcal{F} := \bigcap_{i=1}^{2} (F_s(T_i) \bigcap GEP(F_i, B_i)) \neq \emptyset$. Let the sequence $\{x_n\}$ be generated by

$$\begin{cases} x_1 \in C, \\ z_n = T_{r_n}^{\overline{H}_1} T_{r_n}^{\overline{H}_2} x_n, \\ x_{n+1} = J^{-1} (\alpha_n J x_1 + (1 - \alpha_n) J K_{r_n}^{T_1} K_{r_n}^{T_2} z_n]), \forall n \ge 1, \end{cases}$$

$$(1.16)$$

where $T_{r_n}^{\overline{H}_i}$ and $K_{r_n}^{T_i}$ are the resolvent mappings for \overline{H}_i and T_i , i = 1, 2, respectively, and $\{\alpha_n\} \subset (0, 1)$ with $\lim_{n\to\infty} \alpha_n = 0$ and $\sum \alpha_n = \infty$. Then, the sequence $\{x_n\}$ converges strongly to a point $\Pi_{\mathcal{F}} x_1$.

In 2021, Bello and Nnakwe [2] studied a new Halpern-type subgradient extragradient iterative algorithm and proved strong convergence in a uniformly smooth and 2-uniformly convex real Banach space. Let $A: C \to E^*$ be a Lipschitz monotone mapping with Lipschitz constant L > 0, $F: C \times C \to \mathbb{R}$ be a bi-functional satisfying **Condition A**, and $T: C \to E^*$ be a continuous semi-pseudocontractive mapping with $\mathcal{F} := F_s(T) \bigcap VI(C, A) \bigcap EP(F) \neq \emptyset$. Let the sequence $\{x_n\}$ be generated by

$$\begin{cases} x_{0} \in C, \\ z_{n} = \Pi_{C} J^{-1} (Jx_{n} - \lambda Ax_{n}), \\ T_{n} = \{ w \in E : \langle w - z_{n}, Jx_{n} - \lambda Ax_{n} - Jz_{n} \rangle \leq 0 \}, \\ x_{n+1} = J^{-1} (\alpha_{n} Jx_{0} + (1 - \alpha_{n}) [\beta Jv_{n} + (1 - \beta) Jw_{n}]), \end{cases}$$

$$(1.17)$$

where $v_n = T_{r_n}^F K_{r_n}^T x_n$ with $T_{r_n}^F$ and $K_{r_n}^S$ are the resolvent mappings of F and T, respectively, $\{r_n\} \subset [a, \infty)$, for some a > 0, $w_n = \prod_{T_n} J^{-1}(Jx_n - \lambda Az_n)$, $\lambda \in (0, 1)$ with $\lambda < \frac{c}{L}$ and $\{\alpha_n\} \subset (0, 1)$ with $\lim_{n \to \infty} \alpha_n = 0$ and $\sum \alpha_n = \infty$. Then, the sequence $\{x_n\}$ converges strongly to a point $\prod_{\mathcal{F}} x_0$.

Motivated and inspired by the above results, it is our purpose in this paper to propose an algorithm for approximating a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the set of f-fixed points of a finite family of f-pseudocontractive mappings and the set of solutions of a finite family of variational inequality problems for Lipschitz monotone mappings in real reflexive Banach spaces.

2 Preliminaries

Let $f : E \to (-\infty, +\infty]$ be a Gâteaux differentiable convex function. The function $D_f : dom f \times int(dom f) \to [0, +\infty)$, defined by

$$D_f(y,x) = f(y) - f(x) - \langle y - x, \nabla f(x) \rangle, \forall x, y \in E.$$
(2.1)

is called the *Bregman distance* with respect to f (see, Bregman [5]).

The Bregman distance has the following two important properties (see, Reich and Sabach [16]), called the *three-point* identity: for any $x \in domf$ and $y, z \in int(domf)$,

$$D_f(x,y) + D_f(y,z) - D_f(x,z) = \langle x - y, \nabla f(z) - \nabla f(y) \rangle, \qquad (2.2)$$

and the *four-point identity*: for any $y, w \in domf$ and $x, z \in int(domf)$,

$$D_f(y,x) - D_f(y,z) - D_f(w,x) + D_f(w,z) = \langle y - w, \nabla f(z) - \nabla f(x) \rangle.$$
(2.3)

Let $f: E \to (-\infty, +\infty]$ be a Gâteaux differentiable convex function. The function $\nu_f : int(dom f) \times \mathbb{R}^+ \to \mathbb{R}$ defined by

$$\nu_f(x,t) = \inf_{y \in int(domf)} \{ D_f(y,x) : ||x-y|| = t \}$$

is called the Modulus of total convexity of f at $x \in int(dom f)$ and f is called totally convex if

 $\nu_f(x,t) > 0$, for all $(x,t) \in int(dom f) \times \mathbb{R}^+$.

We remark that f is totally convex on bounded subsets of E if and only if f is uniformly convex on bounded subsets of E (see, Butnariu and Resmerita [6], Theorem 2.10, Page 9).

The Bregman projection of $x \in int(dom f)$ onto the nonempty, closed and convex set $C \subset dom f$ is the unique vector $P_C^f(x) \in C$ satisfying

$$D_f(P_C^f(x), x) = \inf\{D_f(y, x) : y \in C\}.$$

If E is a smooth and strictly convex Banach space and $f(x) = \frac{1}{2} ||x||^2$ for all $x \in E$, then we have that $\nabla f = J$, where J is the normalized duality mapping from E into 2^{E^*} and the Bregman distance with respect to f, D_f , reduces to the Lyapunov functional $\phi : E \times E \to [0, +\infty)$ defined by

$$\phi(y,x) = \|y\|^2 - 2\langle y, Jx \rangle + \|x\|^2, \forall x, y \in E.$$
(2.4)

The function f is called Legendre if it satisfies the following two properties:

- (L1) the interior of the domain of f, int(dom f), is nonempty, f is Gâteaux differentiable and $dom(\nabla f) = int(dom f)$;
- (L2) the interior of the domain of f^* , $int(dom f^*)$, is nonempty, f^* is Gâteaux differentiable and $dom(\nabla f^*) = int(dom f^*)$;

Since E is reflexive, $(\partial f)^{-1} = \partial f^*$. This, with (L1) and (L2), imply the following equalities:

$$\nabla f = (\nabla f^*)^{-1}, R(\nabla f) = dom(\nabla f^*) = int(dom f^*),$$

and

$$R(\nabla f^*) = dom(\nabla f) = int(dom f),$$

where $R(\nabla f)$ denotes the range of ∇f .

If a function $f: E \to (-\infty, +\infty]$ is a Legendre function and E is a reflexive Banach space, then $\nabla f^* = (\nabla f)^{-1}$ (see, Bonnans and Shapiro [4]).

One of the important and interesting Legendre function in a smooth and strictly convex Banach space is $f(x) = \frac{1}{p} ||x||^p$ $(1 with its conjugate function <math>f^*(x) = \frac{1}{q} ||x||^q$ $(1 < q < \infty)$ (see, for example, Bauschke et al. [1]), where $\frac{1}{p} + \frac{1}{q} = 1$. In this case, the gradient of f, ∇f , coincides with the generalized duality mapping, J_p , of E; that is, $\nabla f = J_p$, where $J_p : E \to 2^{E^*}$ is defined by

$$J_p(x) = \{y^* \in E^* : \langle x, y^* \rangle = \|x\|^p, \|f\| = \|x\|^{p-1}\}, \forall x \in E.$$

If p = 2, we write $J_2 = J$, called the *normalized duality mapping* and if E = H, a real Hilbert space, then J = I, where I is the identity mapping on H.

Let $f: E \to \mathbb{R}$ be a Legendre function. We make use of the function $V_f: E \times E^* \to \mathbb{R}$ defined by

$$V_f(x, x^*) = f(x) - \langle x, x^* \rangle + f^*(x^*)$$
, for all $x \in E$ and $x^* \in E^*$.

We note that V_f is a nonnegative function which satisfies (see, Senakka and Cholamjiak [20])

$$V_f(x, x^*) = D_f(x, \nabla f^*(x^*))$$
 for all $x \in E$ and $x^* \in E^*$, (2.5)

and

$$V_f(x, x^*) + \langle \nabla f^*(x^*) - x, y^* \rangle \le V_f(x, x^* + y^*), \text{ for all } x \in E \text{ and } x^*, y^* \in E^*.$$
(2.6)

Lemma 2.1. (Phelps [15]) If $f : E \to (-\infty, +\infty]$ is a proper, lower semi-continuous and convex function, then $f^* : E^* \to (-\infty, +\infty]$ is a proper, weak* lower semi-continuous and convex function and for any $x \in E$, $\{y_k\}_{k=1}^N \subseteq E$ and $\{c_k\}_{k=1}^N \subseteq (0, 1)$ with $\sum_{k=1}^N c_k = 1$ the following holds:

$$D_f\left(x, \nabla f^*\left(\sum_{k=1}^N c_k \nabla f(y_k)\right)\right) \le \sum_{k=1}^N c_k D_f(x, y_k).$$
(2.7)

Lemma 2.2. (Reich and Sabach [17]) If $f : E \to \mathbb{R}$ is uniformly Fréchet differentiable and bounded on bounded subsets of E, then ∇f is norm-to-norm uniformly continuous on bounded subsets of E and hence both f and ∇f are bounded on bounded subsets of E.

Lemma 2.3. (Bunariu and Resmerita [6]) Let $f : E \to \mathbb{R}$ be a totally convex and Gâteaux differentiable function, and $x \in E$. Let C be a nonempty, closed and convex subset of E. The Bregman projection P_C^f from E onto C has the following properties:

(i) $z = P_C^f(x)$ if and only if $\langle y - z, \nabla f(x) - \nabla f(z) \rangle \le 0, \forall y \in C;$ (ii) $D_f(y, P_C^f(x)) + D_f(P_C^f(x), x) \le D_f(y, x), \forall y \in C.$

Lemma 2.4. (Reich and Sabach [18]) Let $f : E \to \mathbb{R}$ be a Gâteaux differentiable and totally convex function. If $x \in E$ and the sequence $\{D_f(x_n, x)\}$ is bounded, then the sequence $\{x_n\}$ is also bounded.

Lemma 2.5. (Reich and Sabach [18]) Let $f : E \to \mathbb{R}$ be a Gâteaux differentiable function which is uniformly convex on bounded subsets of E. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in E. Then, the following assertions are equivalent:

- (i) $\lim_{n \to \infty} D_f(x_n, y_n) = 0;$
- (ii) $\lim_{n \to \infty} ||x_n y_n|| = 0.$

Lemma 2.6. (Wega and Zegeye [23]) Let f be a strongly convex function with constant $\mu > 0$. Then, for all $y \in dom f$ and $x \in int(dom f)$,

$$D_f(y,x) \ge \frac{\mu}{2} ||x-y||^2$$

where $D_f(y, x)$ is a Bregman distance with respect to f.

Lemma 2.7 (Darvish [9]). Let $f: E \to (-\infty, +\infty]$ be a coercive and Gâteaux differentiable function. Let C be a closed and convex subset of a real reflexive Banach space E. Assume that $B: C \to E^*$ is a continuous and monotone mapping, $\varphi: C \to \mathbb{R}$ is a lower semi-continuous and convex function and let $F: C \times C \to \mathbb{R}$ be a bi-function satisfying Condition A. For r > 0 and $x \in E$, define a mapping $T_H^{f,r}: E \to C$ as follows:

$$T_H^{f,r}x = \{z \in C : H(z,y) + \frac{1}{r} \langle y - z, \nabla f(z) - \nabla f(x) \rangle \ge 0, \forall y \in C\},$$

$$(2.8)$$

where $H(z,y) := F(z,y) + \varphi(y) - \varphi(z) + \langle y - z, Bz \rangle$. Then, $T_H^{f,r}(x) \neq \emptyset$, and the following hold:

- (1) $T_H^{f,r}$ is single-valued;
- (2) $F(T_H^{f,r}) = GMEP(F,\varphi,B);$
- (3) $GMEP(F, \varphi, B)$ is closed and convex;
- (4) $T_{H}^{f,r}$ is quasi-Bregman nonexpansive;
- (4) T_H is quasi-bregman indexpansive, (5) $D_f(p, T_H^{f,r}x) + D_f(T_H^{f,r}x, x) \le D_f(p, x), \forall p \in F(T_H^{f,r}).$

Lemma 2.8. Let $f: E \to (-\infty, +\infty]$ be a coercive and Gâteaux differentiable function. Let E^* be the dual space of a real reflexive Banach space E and C be a closed and convex subset E. Let $T: C \to E^*$ be a continuous f-pseudocontractive mapping. For r > 0 and $x \in E$, define a mapping $K_T^{f,r}: E \to C$ as follows:

$$K_T^{f,r}x = \{z \in C : \langle y - z, T(z) \rangle - \frac{1}{r} \langle y - z, (1+r)\nabla f(z) - \nabla f(x) \rangle \le 0, \forall y \in C\}.$$
(2.9)

Then, $K_T^{f,r}(x) \neq \emptyset$, and the following hold:

- (1) $K_T^{f,r}$ is single-valued;
- (2) $F(K_T^{f,r}) = F_f(T)$
- (3) $F_f(T)$ is closed and convex;
- (4) $K_T^{f,r}$ is quasi-Bregman nonexpansive; (5) $D_f(p, K_T^{f,r}x) + D_f(K_T^{f,r}x, x) \le D_f(p, x), \forall p \in F(K_T^{f,r}).$

Proof. Let $B := \nabla f - T$. Then, B is monotone and continuous. Putting $F \equiv 0$ and $\varphi \equiv 0$ in Lemma 2.7. Then, there exists $z \in C$ such that

$$\langle y-z, B(z) \rangle + \frac{1}{r} \langle y-z, \nabla f(z) - \nabla f(x) \rangle \ge 0, \forall y \in C.$$

Equivalently,

$$\langle y-z,T(z)\rangle - \frac{1}{r} \langle y-z,(1+r)\nabla f(z) - \nabla f(x)\rangle \le 0, \forall y \in C.$$

Furthermore, applying Lemma 2.7, we get the results (1)-(5) of Lemma 2.8. This completes the proof.

Lemma 2.9. (Xu [22]) Let $\{a_n\}$ be a sequence of nonnegative real numbers satisfying the following relation:

$$a_{n+1} \le (1 - \alpha_n)a_n + \alpha_n b_n, n \ge n_0,$$

where $\{\alpha_n\} \subset (0,1)$ and $\{b_n\} \subset \mathbb{R}$ satisfying the following conditions: $\sum_{n=1}^{\infty} \alpha_n = \infty$, and $\limsup_{n \to \infty} b_n \leq 0$, or $\sum_{n=1}^{\infty} |\alpha_n b_n| < \infty$ ∞ . Then $\lim_{n \to \infty} a_n = 0$.

Lemma 2.10. (Maingé [12]) Suppose $\{s_n\}$ is a sequence of real numbers such that there exists a subsequence $\{s_i\}$ of $\{n\}$ such that $s_{n_i} < s_{n_i+1}$ for all $i \in \mathbb{N}$. Let the sequence of $\{m_k\}$ be defined by $m_k = \max\{j \le k : s_j < s_{j+1}\}$. Then, $\{m_k\}$ is a nondecreasing sequence satisfying $m_k \to \infty$ as $k \to \infty$ and the following properties hold:

$$s_{m_k} \leq s_{m_k+1}$$
 and $s_k \leq s_{m_k+1}$,

for all $k \ge N_0$, for some $N_0 > 0$.

Lemma 2.11. (Rockafellar [19]) Let C be a nonempty, closed and convex subset of a real Banach space E and let A be a monotone and hemicontinuous mapping from C into E^* with C = D(A). Let $B: E \to 2^{E^*}$ be a mapping defined as follows:

$$Bv = \begin{cases} Av + N_C v & \text{if } v \in C, \\ \emptyset & \text{if } v \notin C, \end{cases}$$

where $N_C(v) := \{ w \in E^* : \langle v - u, w \rangle \ge 0, \forall u \in C \}$ is called the normal cone to C at $v \in C$. Then B is maximal monotone and $B^{-1}(0) = VI(A, C)$.

3 Main Results

The following assumptions will be used in the sequel. Assumption 3.1.

- (B1) Let C be a nonempty, closed and convex subset of a reflexive real Banach space E with its dual E^* ;
- (B2) Let $T_i: E \to E^*, i = 1, 2, \cdots, N$ be continuous *f*-pseudocontractive mappings;
- (B3) Let $B_t: C \to E^*, t = 1, 2, \cdots, M$ be continuous monotone mappings;
- (B4) Let $F_t: C \times C \to \mathbb{R}, t = 1, 2, \cdots, M$ be bi-functionals satisfying Condition A;
- (B5) Let $\varphi_t : C \to \mathbb{R}, t = 1, 2, \cdots, M$ be real valued functions;
- (B6) Let $A_j: C \to E^*$ be Lipschitz monotone mappings with Lipschitz constants L_j , for $j = 0, 1, 2, \ldots, K$.
- (B7) Let the common set of solutions, denoted by \mathcal{F} , be nonempty, that is

$$\mathcal{F} := \left[\bigcap_{i=1}^{N} F_f(T_i)\right] \cap \left[\bigcap_{j=0}^{K} VI(C, A_j)\right] \cap \left[\bigcap_{t=1}^{M} GMEP(F_t, \varphi_t, B_t)\right] \neq \emptyset.$$

(C1) Let f be a strongly coercive, bounded and uniformly Fréchet differentiable Legendre function which is strongly convex with constant $\mu > 0$ on bounded subsets of E.

Let $\{x_n\}$ be the sequence generated by the iterative scheme:

$$\begin{aligned}
& u, x_{0} \in C, \\
& z_{n} = P_{C}^{f} \nabla f^{*} (\nabla f(x_{n}) - \lambda_{n} A_{n} x_{n}), \\
& d_{n} = P_{C}^{f} \nabla f^{*} (\nabla f(x_{n} - \lambda_{n} A_{n} x_{n}), \\
& u_{n} = T_{H_{M}}^{f,r_{n}} \circ T_{H_{N-1}}^{f,r_{n}} \circ \cdots \circ T_{H_{2}}^{f,r_{n}} \circ T_{H_{1}}^{f,r_{n}} x_{n}, \\
& v_{n} = K_{T_{N}}^{f,r_{n}} \circ K_{T_{N-1}}^{f,r_{n}} \circ \cdots \circ K_{T_{2}}^{f,r_{n}} \circ K_{T_{1}}^{f,r_{n}} u_{n}, \\
& \chi_{n+1} = \nabla f^{*} (\alpha_{n} \nabla f(u) + \theta_{n} \nabla f(x_{n}) + \beta_{n} \nabla f(d_{n}) + \gamma_{n} \nabla f(v_{n})),
\end{aligned}$$
(3.1)

where $A_n = A_n \mod (K+1)$ and ∇f is the gradient of f on E; $\{r_n\} \subset [c_1, \infty)$ for some $c_1 > 0$, $\alpha_n, \theta_n, \beta_n, \gamma_n \in (0, 1)$, $\forall n \ge 0$ such that $\alpha_n + \theta_n + \beta_n + \gamma_n = 1$, $\lim_{n \to \infty} \alpha_n = 0$ with $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\beta_n, \gamma_n \in [c, 1)$ for some c > 0, and $d_n = P_C^f \nabla f^* (\nabla f(x_n - \lambda_n A_n z_n), 0 < a \le \lambda_n \le b < \frac{\mu}{L}$, for $L = \max_{0 \le i \le K} L_i$.

Lemma 3.1. Assume that Conditions (B1) - (B7), and (C1) hold. Then, the sequence $\{x_n\}$ generated by (3.1) is bounded.

Proof. Let $a_0 = b_0 = I$, where I is the identity mapping on E, $a_i = K_{T_i}^{f,r_n} \circ K_{T_{i-1}}^{f,r_n} \circ \cdots \circ K_{T_2}^{f,r_n} \circ K_{T_1}^{f,r_n}$ for i = 1, 2, ..., N, and , $b_t = T_{H_t}^{f,r_n} \circ T_{H_{t-1}}^{f,r_n} \circ \cdots \circ T_{H_2}^{f,r_n} \circ T_{H_1}^{f,r_n}$ for t = 1, 2, ..., M. Let $p \in \mathcal{F}$. Then, by Lemma 2.7 and 2.8, we get

$$D_f(p, u_n) \leq D_f(p, b_{M-1}(x_n)) - D_f(u_n, b_{M-1}(x_n))$$

$$\leq D_f(p, b_{M-2}(x_n)) - D_f(b_{M-1}(x_n), b_{M-2}(x_n)) - D_f(u_n, b_{M-1}(x_n))$$

and, by induction we obtain

$$D_f(p, u_n) \le D_f(p, x_n) - \sum_{t=0}^{M-1} D_f(b_{t+1}(x_n), b_t(x_n)).$$
(3.2)

Similarly,

$$D_f(p, v_n) \le D_f(p, u_n) - \sum_{t=0}^{N-1} D_f(a_{t+1}(u_n), a_t(u_n)).$$
(3.3)

Thus, from (3.2), (3.3) and Lemma 2.6, we obtain

$$D_{f}(p, v_{n}) \leq D_{f}(p, x_{n}) - \sum_{t=0}^{M-1} D_{f}(b_{t+1}(x_{n}), b_{t}(x_{n})) - \sum_{i=0}^{N-1} D_{f}(a_{i+1}(u_{n}), a_{i}(u_{n}))$$

$$\leq D_{f}(p, x_{n}) - \frac{\mu}{2} \left(\sum_{t=0}^{M-1} \|b_{t+1}(x_{n}) - b_{t}(x_{n})\|^{2} + \sum_{i=0}^{N-1} \|a_{i+1}(u_{n}) - a_{i}(u_{n})\|^{2} \right)$$

$$\leq D_{f}(p, x_{n}).$$

$$(3.4)$$

Let $w_n = \nabla f^*(\nabla f(x_n) - \lambda_n A_n z_n)$. By Lemma 2.3 and the fact that $\lambda_n \leq \frac{\mu}{L}$, we get

$$D_{f}(p, d_{n}) = D_{f}(p, P_{C}^{f}w_{n}) \leq D_{f}(p, w_{n}) - D_{f}(d_{n}, w_{n})$$

$$= f(p) - f(w_{n}) - \langle p - w_{n}, \nabla f(w_{n}) \rangle - [f(d_{n}) - f(w_{n}) - \langle d_{n} - w_{n}, \nabla f(w_{n}) \rangle]$$

$$= f(p) - \langle p - d_{n}, \nabla f(w_{n}) \rangle - f(d_{n})$$

$$= f(p) - \langle p - d_{n}, \nabla f(x_{n}) - \lambda_{n}A_{n}z_{n} \rangle - f(d_{n})$$

$$= f(p) - \langle p - d_{n}, \nabla f(x_{n}) \rangle + \langle p - d_{n}, \lambda_{n}A_{n}z_{n} \rangle - f(d_{n})$$

$$= f(p) - \langle p - x_{n}, \nabla f(x_{n}) \rangle - f(x_{n}) - [f(d_{n}) - \langle d_{n} - x_{n}, \nabla f(x_{n}) \rangle - f(x_{n})]$$

$$+ \langle p - d_{n}, \lambda_{n}A_{n}z_{n} \rangle$$

$$= D_{f}(p, x_{n}) - D_{f}(d_{n}, x_{n}) + \langle p - d_{n}, \lambda_{n}A_{n}z_{n} \rangle$$

$$= D_{f}(p, x_{n}) - D_{f}(d_{n}, x_{n}) + \langle p - z_{n}, \lambda_{n}A_{n}z_{n} \rangle + \langle z_{n} - d_{n}, \lambda_{n}A_{n}z_{n} \rangle$$

$$= D_{f}(p, x_{n}) - D_{f}(d_{n}, x_{n}) + \langle z_{n} - d_{n}, \lambda_{n}A_{n}z_{n} \rangle$$

$$\leq D_{f}(p, x_{n}) - D_{f}(d_{n}, x_{n}) + \langle z_{n} - d_{n}, \lambda_{n}A_{n}z_{n} \rangle .$$
(3.6)

Now, from (2.2), we obtain

$$D_f(d_n, x_n) = D_f(d_n, z_n) + D_f(z_n, x_n) + \langle d_n - z_n, \nabla f(z_n) - \nabla f(x_n) \rangle.$$
(3.7)

Thus, from (3.6), (3.7) and Lemma 2.6, we get

$$D_{f}(p,d_{n}) \leq D_{f}(p,x_{n}) - D_{f}(d_{n},z_{n}) - D_{f}(z_{n},x_{n}) + \langle z_{n} - d_{n},\lambda_{n}A_{n}z_{n} + \nabla f(z_{n}) - \nabla f(x_{n}) \rangle$$

$$\leq D_{f}(p,x_{n}) - \frac{\mu}{2} \left[\|d_{n} - z_{n}\|^{2} + \|x_{n} - z_{n}\|^{2} \right]$$

$$+ \langle z_{n} - d_{n},\lambda_{n}A_{n}z_{n} + \nabla f(z_{n}) - \nabla f(x_{n}) \rangle.$$
(3.8)

Using the fact that A_i is Lipschitz monotone for i = 0, 1, 2, ..., K and Lemma 2.3, we have that

$$\begin{aligned} \langle z_n - d_n, \lambda_n A_n z_n + \nabla f(z_n) - \nabla f(x_n) \rangle &= \langle d_n - z_n, \lambda_n A_n x_n - \lambda_n A_n z_n \rangle \\ &+ \langle d_n - z_n, \nabla f(x_n) - \lambda_n A_n x_n - \nabla f(z_n) \rangle \\ &\leq \lambda_n \langle d_n - z_n, A_n x_n - A_n z_n \rangle \\ &\leq \lambda_n \| d_n - z_n \| \| A_n x_n - A_n z_n \| \\ &\leq L \lambda_n \| d_n - z_n \| \| x_n - z_n \| \\ &\leq \frac{1}{2} L \lambda_n \left[\| d_n - z_n \|^2 + \| x_n - z_n \|^2 \right]. \end{aligned}$$

$$(3.9)$$

Thus, from (3.8), (3.9) and the fact that $\lambda_n \leq \frac{\mu}{L}$, we get

$$D_{f}(p, d_{n}) \leq D_{f}(p, x_{n}) - \frac{1}{2}(\mu - L\lambda_{n}) \left[\|d_{n} - z_{n}\|^{2} + \|x_{n} - z_{n}\|^{2} \right]$$

$$\leq D_{f}(p, x_{n}).$$
(3.10)
(3.11)

By (3.4), (3.10), $\lambda_n \leq \frac{\mu}{L}$ and Lemma 2.1, we obtain

$$D_{f}(p, x_{n+1}) = D_{f}(p, \nabla f^{*}(\alpha_{n} \nabla f(u) + \theta_{n} \nabla f(x_{n}) + \beta_{n} \nabla f(d_{n}) + \gamma_{n} \nabla f(v_{n})))$$

$$\leq \alpha_{n} D_{f}(p, u) + \theta_{n} D_{f}(p, x_{n}) + \beta_{n} D_{f}(p, d_{n}) + \gamma_{n} D_{f}(p, v_{n})$$

$$\leq \alpha_{n} D_{f}(p, u) + (1 - \alpha_{n}) D_{f}(p, x_{n})$$

$$- \frac{1}{2} \beta_{n}(\mu - L\lambda_{n}) \left[\|d_{n} - z_{n}\|^{2} + \|x_{n} - z_{n}\|^{2} \right]$$

$$- \gamma_{n} \frac{\mu}{2} \left[\sum_{t=0}^{M-1} \|b_{t+1}(x_{n}) - b_{t}(x_{n})\|^{2} + \sum_{i=0}^{N-1} \|a_{i+1}(u_{n}) - a_{i}(u_{n})\|^{2} \right]$$

$$\leq \alpha_{n} D_{f}(p, u) + (1 - \alpha_{n}) D_{f}(p, x_{n})$$

$$\leq \max\{D_{f}(p, u), D_{f}(p, x_{n})\}.$$
(3.13)

Therefore, by induction, we get

$$D_f(p, x_n) \le \max\{D_f(p, u), D_f(p, x_0)\}, \text{ for all } n \ge 0.$$
 (3.14)

This implies that $\{D_f(p, x_n)\}$ is bounded. Therefore, by Lemma 2.4 we have, $\{x_n\}$ is bounded and also the sequences $\{z_n\}, \{d_n\}, \{u_n\}$ and $\{v_n\}$ are bounded.

Theorem 3.2. Assume that Conditions (B1) - (B7) and (C1) hold. Then, the sequence $\{x_n\}$ generated by (3.1) converges strongly to p in \mathcal{F} which is nearest to u with respect to the Bregman distance.

Proof. Let $p = P_{\mathcal{F}}^{f}u$. From (2.5), (2.6), (3.4), (3.10) and Lemma 2.1, we obtain

$$\begin{split} D_{f}(p, x_{n+1}) &= D_{f}(p, \nabla f^{*}(\alpha_{n} \nabla f(u) + \theta_{n} \nabla f(x_{n}) + \beta_{n} \nabla f(d_{n}) + \gamma_{n} \nabla f(v_{n}))) \\ &= V_{f}(p, \alpha_{n} \nabla f(u) + \theta_{n} \nabla f(x_{n}) + \beta_{n} \nabla f(d_{n}) + \gamma_{n} \nabla f(v_{n})) \\ &\leq V_{f}(p, \alpha_{n} \nabla f(p) + \theta_{n} \nabla f(x_{n}) + \beta_{n} \nabla f(d_{n}) + \gamma_{n} \nabla f(v_{n})) \\ &- \alpha_{n} \langle x_{n+1} - p, \nabla f(p) \rangle - \nabla f(u) \rangle \\ &= D_{f}(p, \nabla f^{*} (\alpha_{n} \nabla f(p) + \theta_{n} \nabla f(x_{n}) + \beta_{n} \nabla f(d_{n}) + \gamma_{n} \nabla f(v_{n}))) \\ &- \alpha_{n} \langle x_{n+1} - p, \nabla f(p) - \nabla f(u) \rangle \\ &\leq \alpha_{n} D_{f}(p, p) + \theta_{n} D_{f}(p, x_{n}) + \beta_{n} D_{f}(p, d_{n}) + \gamma_{n} D_{f}(p, v_{n}) \\ &- \alpha_{n} \langle x_{n+1} - p, \nabla f(p) - \nabla f(u) \rangle \\ &= (1 - \alpha_{n}) D_{f}(p, x_{n}) - \frac{1}{2} \beta_{n}(\mu - L\lambda_{n}) \left[\|d_{n} - z_{n}\|^{2} + \|x_{n} - z_{n}\|^{2} \right] \\ &- \gamma_{n} \frac{\mu}{2} \left[\sum_{t=0}^{M-1} \|b_{t+1}(x_{n}) - b_{t}(x_{n})\|^{2} + \sum_{i=0}^{N-1} \|a_{i+1}(u_{n}) - a_{i}(u_{n})\|^{2} \right] \\ &+ \alpha_{n} \langle x_{n+1} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ &\leq (1 - \alpha_{n}) D_{f}(p, x_{n}) + \alpha_{n} \langle x_{n} - p, \nabla f(u) - \nabla f(p) \rangle \\ \\ &\leq$$

Now, we divide the rest of the proof into two parts as follows.

Case 1. Assume that there exists $n_0 \in \mathbb{N}$ such that $\{D_f(p, x_n)\}$ is decreasing for all $n \geq n_0$. It then follows that $\{D_f(p, x_n)\}$ is convergent and hence $D_f(p, x_n) - D_f(p, x_{n+1}) \to 0$ as $n \to \infty$. Thus, from (3.15) and the conditions on α_n , β_n , γ_n , and λ_n , we get

$$\lim_{n \to \infty} \|d_n - z_n\|^2 + \|x_n - z_n\|^2 = 0,$$
(3.17)

and

$$\lim_{n \to \infty} \left[\sum_{t=0}^{M-1} \|b_{t+1}(x_n) - b_t(x_n)\|^2 + \sum_{i=0}^{N-1} \|a_{i+1}(u_n) - a_i(u_n)\|^2 \right] = 0,$$
(3.18)

which imply

$$\lim_{n \to \infty} \|d_n - z_n\| = \lim_{n \to \infty} \|x_n - z_n\| = 0, \text{ and hence, } \lim_{n \to \infty} \|x_n - d_n\| = 0,$$
(3.19)

$$\lim_{n \to \infty} \|b_{t+1}(x_n) - b_t(x_n)\| = 0, \qquad 0 \le t \le M - 1, \text{ and hence, } \lim_{n \to \infty} \|u_n - x_n\| = 0, \tag{3.20}$$

and

$$\lim_{n \to \infty} \|a_{i+1}(u_n) - a_i(u_n)\| = 0, \qquad 0 \le i \le N - 1, \text{ and hence, } \lim_{n \to \infty} \|v_n - u_n\| = 0.$$
(3.21)

Now,

$$\begin{aligned} \|\nabla f(x_{n+1}) - \nabla f(x_n)\| &= \| \left(\alpha_n \nabla f(u) + \theta_n \nabla f(x_n) + \beta_n \nabla f(d_n) + \gamma_n \nabla f(v_n) \right) - \nabla f(x_n) \| \\ &\leq \alpha_n \|\nabla f(u) - \nabla f(x_n)\| + \beta_n \|\nabla f(d_n) - \nabla f(x_n)\| \\ &+ \gamma_n \|\nabla f(v_n) - \nabla f(x_n)\|, \end{aligned}$$
(3.22)

and from (3.19), (3.20), (3.21), the fact that $\alpha_n \to 0$ as $n \to \infty$ and uniform continuity of ∇f , we get $\|\nabla f(x_{n+1}) - \nabla f(x_n)\| \to 0$ as $n \to \infty$. Moreover, the uniform continuity of ∇f^* implies that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.23)

Now, for $j = 0, 1, \ldots, K$, we have

$$\|d_{n+j} - x_n\| \le \|d_{n+j} - x_{n+j}\| + \sum_{l=n}^{n+j-1} \|x_{l+1} - x_l\|.$$
(3.24)

Then, from (3.19), (3.23) and (3.24), we obtain that

$$\lim_{n \to \infty} \|d_{n+j} - x_n\| = 0, \text{ for } j = 0, 1, \dots, K.$$
(3.25)

Since $\{x_n\}$ is bounded in E, there exists $q \in E$ and a subsequence $\{x_{n_s}\}$ of $\{x_n\}$ such that $x_{n_s} \rightharpoonup q$ and

$$\limsup_{n \to \infty} \langle x_n - p, \nabla f(u) - \nabla f(p) \rangle = \lim_{s \to \infty} \langle x_{n_s} - p, \nabla f(u) - \nabla f(p) \rangle.$$
(3.26)

Then, from (3.20), (3.21) and (3.25), we have that $b_t(x_{n_s}) \rightharpoonup q$, $a_i(u_{n_s}) \rightharpoonup q$, $d_{n_s+j} \rightharpoonup q$ for $t \in \{1, 2, \dots, M\}$, $i \in \{1, 2, \dots, N\}$ and $j \in \{1, 2, \dots, K\}$. Now, we show that $q \in \mathcal{F}$.

Step 1. First we show that $q \in \bigcap_{j=0} VI(C, A_j)$.

Let

$$B_j v = \begin{cases} A_j v + N_C v, & \text{if } v \in C, \\ \emptyset & \text{if } v \notin C, \end{cases}$$

where N_C is the normal cone to C at $v \in C$ given by $N_C = \{w \in E^* : \langle v - x, w \rangle \ge 0, \forall x \in C\}$. Then, by Lemma 2.11, B_j is maximal monotone and $B_j^{-1}(0) = VI(C, A_j)$. Let $w \in B_j v$. Then, we have $w \in A_j v + N_C v$ and hence $w - A_j v \in N_C v$. Thus, we obtain that

$$\langle v - x, w - A_j v \rangle \ge 0, \forall x \in C.$$
 (3.27)

Let $\{n_s + j\}, s \ge 1$ be such that $A_{n_s+j} = A_j$ for all $s \in \mathbb{N}$ where $j = 0, 1, 2, \ldots, K$. Then, since $d_{n_s+j} = P_C^f \nabla f^* (\nabla f(x_{n_s+j}) - \lambda_{n_s+j} A_j z_{n_s+j})$, and $v \in C$, we have

$$\langle v - d_{n_s+j}, \nabla f(d_{n_s+j}) - (\nabla f(x_{n_s+j}) - \lambda_{n_s+j}A_j z_{n_s+j}) \rangle \ge 0,$$

and so

$$\left\langle v - d_{n_s+j}, \frac{\nabla f(d_{n_s+j}) - \nabla f(x_{n_s+j})}{\lambda_{n_s+j}} + A_j z_{n_s+j} \right\rangle \ge 0.$$
(3.28)

From (3.27), (3.28) and A_j is monotone mapping, we get that

$$\langle v - d_{n_s+j}, w \rangle \geq \langle v - d_{n_s+j}, A_j v \rangle$$

$$\geq \langle v - d_{n_s+j}, A_j v \rangle - \left\langle v - d_{n_s+j}, \frac{\nabla f(d_{n_s+j}) - \nabla f(x_{n_s+j})}{\lambda_{n_s+j}} + A_j z_{n_s+j} \right\rangle$$

$$= \langle v - d_{n_s+j}, A_j v - A_j d_{n_s+j} \rangle + \langle v - d_{n_s+j}, A_j d_{n_s+j} - A_j z_{n_s+j} \rangle$$

$$- \left\langle v - d_{n_s+j}, \frac{\nabla f(d_{n_s+j}) - \nabla f(x_{n_s+j})}{\lambda_{n_s+j}} \right\rangle$$

$$\geq \langle v - d_{n_s+j}, A_j d_{n_s+j} - A_j z_{n_s+j} \rangle - \left\langle v - d_{n_s+j}, \frac{\nabla f(d_{n_s+j}) - \nabla f(x_{n_s+j})}{\lambda_{n_s+j}} \right\rangle$$

$$\geq \langle v - d_{n_s+j}, A_j d_{n_s+j} - A_j z_{n_s+j} \rangle - \|v - d_{n_s+j}\| \frac{\|\nabla f(d_{n_s+j}) - \nabla f(x_{n_s+j})\|}{\lambda_{n_s+j}}$$

$$\geq \langle v - d_{n_s+j}, A_j d_{n_s+j} - A_j z_{n_s+j} \rangle - R \frac{\|\nabla f(d_{n_s+j}) - \nabla f(x_{n_s+j})\|}{\lambda_{n_s+j}},$$

$$(3.29)$$

where $R = \max_{0 \le j \le K} \sup_{s \ge 0} ||v - d_{n_s+j}||$. Taking limits on both sides of the inequality (3.29) as $s \to \infty$ and using the fact that $\lambda_n \ge a > 0$, for all $n \ge 0$, ∇f is uniformly continuous, and (3.19), we get that $\langle v - q, w \rangle \ge 0$ as $s \to \infty$ for each j. Therefore, the maximality of B_j gives that $q \in B_j^{-1}(0) = VI(C, A_j)$ for each j. Therefore, $q \in \bigcap_{j=0}^{K} VI(C, A_j)$.

$$Step \ 2. We show that \ q \in \bigcap_{j=1}^{N} F_{f}(T_{j}). \text{ Let } a_{i}(u_{n_{s}}) = K_{T_{i}}^{f,r_{n_{s}}} a_{i-1}(u_{n_{s}}). \text{ By Lemma 2.8 (2), we get that} \\ \langle y - a_{i}(u_{n_{s}}), T_{i}a_{i}(u_{n_{s}}) \rangle - \frac{1}{r_{n_{s}}} \langle y - a_{i}(u_{n_{s}}), (1 + r_{n_{s}}) \nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}})) \rangle \leq 0, \forall y \in C.$$

Since C is convex, $y_{\lambda} = \lambda y + (1 - \lambda)q \in C$, where $\lambda \in [0, 1]$ and $y \in C$. Thus,

$$\langle a_{i}(u_{n_{s}}) - y_{\lambda}, T_{i}y_{\lambda} \rangle \geq \langle a_{i}(u_{n_{s}}) - y_{\lambda}, T_{i}y_{\lambda} \rangle + \langle y_{\lambda} - a_{i}(u_{n_{s}}), T_{i}a_{i}(u_{n_{s}}) \rangle - \frac{1}{r_{n_{s}}} \langle y_{\lambda} - a_{i}(u_{n_{s}}), (1 + r_{n_{s}})\nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}})) \rangle = \langle a_{i}(u_{n_{s}}) - y_{\lambda}, T_{i}y_{\lambda} - T_{i}a_{i}(u_{n_{s}}) \rangle - \frac{1}{r_{n_{s}}} \langle y_{\lambda} - a_{i}(u_{n_{s}}), (1 + r_{n_{s}})\nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}})) \rangle \geq \langle a_{i}(u_{n_{s}}) - y_{\lambda}, \nabla f(y_{\lambda}) - \nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}})) \rangle - \frac{1}{r_{n_{s}}} \langle y_{\lambda} - a_{i}(u_{n_{s}}), (1 + r_{n_{s}})\nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}})) \rangle = \langle a_{i}(u_{n_{s}}) - y_{\lambda}, \nabla f(y_{\lambda}) \rangle - \frac{1}{r_{n_{s}}} \langle y_{\lambda} - a_{i}(u_{n_{s}}), \nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}})) \rangle \geq \langle a_{i}(u_{n_{s}}) - y_{\lambda}, \nabla f(y_{\lambda}) \rangle - \|y_{\lambda} - a_{i}(u_{n_{s}})\| \frac{\|\nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}}))\|}{r_{n_{s}}} \geq \langle a_{i}(u_{n_{s}}) - y_{\lambda}, \nabla f(y_{\lambda}) \rangle$$

$$(3.30) - W \frac{\|\nabla f(a_{i}(u_{n_{s}})) - \nabla f(a_{i-1}(u_{n_{s}}))\|}{r_{n_{s}}},$$

where $W = \max_{1 \le i \le N} \sup_{s \ge 0} \|y_{\lambda} - a_i(u_{n_s})\|$. From the facts that $a_i(u_{n_s}) \rightharpoonup q$, ∇f is uniformly continuous, (3.21), $r_n \ge c_1$, for all $n \ge 0$ and taking the limits on both sides of the inequality (3.30) as $s \to \infty$, we obtain that

$$\langle q - y_{\lambda}, T_i y_{\lambda} \rangle \ge \langle q - y_{\lambda}, \nabla f(y_{\lambda}) \rangle.$$
 (3.31)

Thus, from inequality (3.31), we obtain

$$\langle q-y, T_i(q+\lambda(y-q))\rangle \ge \langle q-y, \nabla f(q+\lambda(y-q))\rangle, \forall y \in E.$$

$$(3.32)$$

Using the fact that T_i is continuous and ∇f is uniformly continuous on bounded subset of E and letting $\lambda \downarrow 0$, we have from inequality (3.32) that

$$\langle q - y, T_i q \rangle \ge \langle q - y, \nabla f(q) \rangle, \forall y \in C \Leftrightarrow 0 \ge \langle q - y, \nabla f(q) - T_i q \rangle, \forall y \in E.$$
 (3.33)

Now, set $y = \nabla f^*(T_i q)$. Since E is reflexive and ∇f^* is monotone, we get that

$$\langle q - \nabla f^*(T_i q), \nabla f(q) - T_i q \rangle = 0, \qquad (3.34)$$

which implies that $T_i q = \nabla f(q)$. Hence $q \in F_f(T_i)$, for each i = 1, 2, ..., N and $q \in \bigcap_{i=1}^N F_f(T_i)$.

Step 3. We show that $q \in \bigcap_{t=1}^{M} GMEP(F_t, \varphi_t, B_t)$. Set $b_t(x_{n_s}) = T_{H_t}^{f, r_{n_s}} b_{t-1}(x_{n_s})$. Then,

$$H_t(b_t(x_{n_s}), y) + \frac{1}{r_{n_s}} \langle y - b_t(x_{n_s}), \nabla f(b_t(x_{n_s})) - \nabla f(b_{t-1}(x_{n_s})) \rangle \ge 0, \forall y \in C$$

Thus, by Condition (A2), we have

$$H_{t}(y, b_{t}(u_{n_{s}})) \leq -H_{t}(b_{t}(x_{n_{s}}), y) \leq \frac{1}{r_{n_{s}}} \langle y - b_{t}(x_{n_{s}}), \nabla f(b_{t}(x_{n_{s}})) - \nabla f(b_{t-1}(x_{n_{s}})) \rangle$$

$$\leq \|y - b_{t}(x_{n_{s}})\| \frac{\|\nabla f(b_{t}(x_{n_{s}})) - \nabla f(b_{t-1}(x_{n_{s}}))\|}{r_{n_{s}}}$$

$$\leq P \frac{\|\nabla f(b_{t}(x_{n_{s}})) - \nabla f(b_{t-1}(x_{n_{s}}))\|}{r_{n_{s}}}, \qquad (3.35)$$

where $P = \max_{1 \le t \le M} \sup_{s \ge 0} ||y - b_t(x_{n_s})||$. From the facts that $b_t(x_{n_s}) \rightharpoonup q$, Condition A (A4), $r_n \ge c_1$, for all $n \ge 0$ and taking limits on both sides of the inequality (3.35) as $s \rightarrow \infty$, we obtain that

$$H_t(y,q) \le 0, \forall y \in C. \tag{3.36}$$

Set $y_{\lambda} = \lambda y + (1 - \lambda)q$, $\lambda \in (0, 1]$ and $y \in C$. Consequently, we get $y_{\lambda} \in C$. From (3.36) and Condition A (A1), we obtain

$$0 = H_t(y_{\lambda}, y_{\lambda}) \le \lambda H_t(y_{\lambda}, y) + (1 - \lambda) H_t(y_{\lambda}, q)$$

$$\le H_t(q + \lambda(q - y), y).$$
(3.37)

If $\lambda \downarrow 0$, using **Condition A** (A3), we have

$$H_t(q, y) \ge 0, \forall y \in C.$$

Hence, $q \in GMEP(F_t, \varphi_t, B_t)$, for each $t = 1, 2, \ldots, M$. Therefore, $q \in \bigcap_{t=1}^M GMEP(F_t, \varphi_t, B_t)$.

Finally, we show that $\{x_n\}$ converge strongly to the point p.

From (3.26) and Lemma 2.3, we obtain that

$$\lim_{n \to \infty} \sup_{n \to \infty} \langle x_n - p, \nabla f(u) - \nabla f(p) \rangle = \lim_{s \to \infty} \langle x_{n_s} - p, \nabla f(u) - \nabla f(p) \rangle$$

$$= \langle q - p, \nabla f(u) - \nabla f(p) \rangle \le 0.$$
(3.38)

Thus, using (3.16), (3.23), (3.38) and Lemma 2.9, we conclude that

$$\lim_{n \to \infty} D_f(p, x_n) = 0.$$

Hence, Lemma 2.5 implies that $x_n \to p$ as $n \to \infty$.

Case 2. Suppose that there exists $\{n_s\}$ of $\{n\}$ such that $D_f(p, x_{n_s}) < D_f(p, x_{n_s+1})$, for all $s \ge 0$. It follows from Lemma 2.10 that there exists a nondecreasing sequence $\{k_s\} \subset \mathbb{N}$ such that $k_s \to \infty$ as $s \to \infty$ and

$$\max\{D_f(p, x_{k_s}), D_f(p, x_s)\} < D_f(p, x_{k_s+1}),$$
(3.39)

for all $s \ge 0$. Thus, from (3.15) and the conditions on α_n , β_n , γ_n , and λ_n , we get

$$\lim_{n \to \infty} \|d_{k_s} - z_{k_s}\|^2 + \|x_{k_s} - z_{k_s}\|^2 = 0,$$
(3.40)

and

$$\lim_{s \to \infty} \left[\sum_{t=0}^{M-1} \|b_{t+1}(x_{k_s}) - b_t(x_{k_s})\|^2 + \sum_{i=0}^{N-1} \|a_{i+1}(u_{k_s}) - a_{i-1}(u_{k_s})\|^2 \right] = 0.$$
(3.41)

Then

$$\lim_{s \to \infty} \|d_{k_s} - z_{k_s}\| = \lim_{s \to \infty} \|x_{k_s} - z_{k_s}\| = 0 \text{ and hence } \lim_{s \to \infty} \|x_{k_s} - d_{k_s}\| = 0,$$
(3.42)

$$\lim_{s \to \infty} \|b_{t+1}(x_{k_s}) - b_t(x_{k_s})\| = 0, \qquad 0 \le t \le M - 1, \lim_{s \to \infty} \|u_{k_s} - x_{k_s}\| = 0, \tag{3.43}$$

and

$$\lim_{s \to \infty} \|a_i(u_{k_s}) - a_{i-1}(u_{k_s})\| = 0, \qquad 0 \le i \le N - 1, \lim_{s \to \infty} \|v_{k_s} - u_{k_s}\| = 0.$$
(3.44)

Moreover, following the methods used in Case 1, we get

$$\limsup_{s \to \infty} \langle x_{k_s} - p, \nabla f(u) - \nabla f(p) \rangle \le 0.$$
(3.45)

Therefore, from (3.16), (3.23), (3.45) and Lemma 2.9, we obtain that

$$\lim_{s \to \infty} D_f(p, x_{k_s}) = 0. \tag{3.46}$$

This together with (3.16) imply that

$$\lim_{s \to \infty} D_f(p, x_{k_s+1}) = 0.$$
(3.47)

Thus, from (3.39), and (3.47) we have that

 $\lim_{s \to \infty} D_f(p, x_s) = 0.$

This together with Lemma 2.5 imply that $x_s \to p$ as $s \to \infty$. Therefore, from **Case 1** and **Case 2**, we can conclude that $\{x_n\}$ converges strongly to the point p in \mathcal{F} . The proof is complete.

We note that the method of proof of Theorem 3.2 provides the following theorem for approximating a common solution of f-fixed point, variational inequality and generalized mixed equilibrium problems in real Banach spaces.

Theorem 3.3. Assume that Conditions (B1) - (B7) and (C1) are satisfied with N = K = M = 1. Then, the sequence $\{x_n\}$ generated by (3.1) with N = K = M = 1 converges strongly to p in \mathcal{F} which is nearest to u with respect to the Bregman distance.

If, in Theorem 3.2, we assume that $A_j \equiv 0$, for j = 0, 1, 2, ..., K, then Theorem 3.2 provides the following corollary.

Corollary 3.4. Assume that Conditions (B1) - (B5), and (C1) hold. Let $\mathcal{F} := \left[\bigcap_{i=1}^{N} F_f(T_i)\right] \cap \left[\bigcap_{t=1}^{M} GMEP(F_t, \varphi_t, B_t)\right] \neq \emptyset$. Let $\{x_n\}$ be a sequence generated from arbitrary $u_0, x_0 \in C$ by

$$\begin{cases} u_n = T_{H_M}^{f,r_n} \circ T_{H_{M-1}}^{f,r_n} \circ \cdots \circ T_{H_2}^{f,r_n} \circ T_{H_1}^{f,r_n} x_n, \\ v_n = K_{T_N}^{f,r_n} \circ K_{T_{N-1}}^{f,r_n} \circ \cdots \circ K_{T_2}^{f,r_n} \circ K_{T_1}^{f,r_n} u_n, \\ x_{n+1} = \nabla f^*(\alpha_n \nabla f(u) + \theta_n \nabla f(x_n) + \gamma_n \nabla f(v_n)), \end{cases}$$
(3.48)

where ∇f is the gradient of f on E; $\{r_n\} \subset [c_1, \infty)$ for some $c_1 > 0$, $\alpha_n, \theta_n, \gamma_n \in (0, 1)$, $\forall n \ge 0$ such that $\alpha_n + \theta_n + \gamma_n = 1$, $\lim_{n \to \infty} \alpha_n = 0$ with $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\gamma_n \in [c, 1)$ for some c > 0. Then, the sequence $\{x_n\}$ converges strongly to p in \mathcal{F} which is nearest to u with respect to the Bregman distance.

If, in Corollary 3.4, we assume that $F_i \equiv 0$, for i = 1, 2, ..., K, then Corollary 3.2 provides the following corollary for approximating the common solution of a finite family of mixed variational inequality of Browder type problems for continuous monotone mappings and f-fixed point problems for continuous f-pseudocontractive mapping in a reflexive real Banach space.

Corollary 3.5. Let $\{x_n\}$ be a sequence generated from arbitrary $u_0, x_0 \in C$ by

$$\begin{cases} u_n = T_{H_M}^{f,r_n} \circ T_{H_{M-1}}^{f,r_n} \circ \cdots \circ T_{H_2}^{f,r_n} \circ T_{H_1}^{f,r_n} x_n, \\ v_n = K_{T_N}^{f,r_n} \circ K_{T_{N-1}}^{f,r_n} \circ \cdots \circ K_{T_2}^{f,r_n} \circ K_{T_1}^{f,r_n} u_n, \\ x_{n+1} = \nabla f^*(\alpha_n \nabla f(u) + \theta_n \nabla f(x_n) + \gamma_n \nabla f(v_n)), \end{cases}$$
(3.49)

where ∇f is the gradient of f on E; $\{r_n\} \subset [c_1, \infty)$ for some $c_1 > 0$, $\alpha_n, \theta_n, \gamma_n \in (0, 1), \forall n \ge 0$ such that $\alpha_n + \theta_n + \gamma_n = 1$, $\lim_{n \to \infty} \alpha_n = 0$ with $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\gamma_n \in [c, 1)$ for some c > 0. If the Conditions (B1) - (B3), (B5) and (C1) are satisfied and $\mathcal{F} := \left[\bigcap_{i=1}^N F_f(T_i)\right] \cap \left[\bigcap_{t=1}^M VI(B_t, \varphi_t, C)\right] \neq \emptyset$, then the sequence $\{x_n\}$ converges strongly to p in \mathcal{F} which is nearest to u with respect to the Bregman distance.

If we assume that E is smooth and strictly convex, then $f(x) = \frac{1}{2} ||x||^2$ is strongly coercive, bounded and uniformly Fréchet differentiable Legendre function which is strongly convex with constant $\mu = 1$ and conjugate $f^*(x^*) = \frac{1}{2} ||x^*||^2$. In this case, we have $\nabla f = J$, $\nabla f^* = J^{-1}$ and for r > 0 and $x \in E$, we have

$$T_{H}^{r}x = \{ z \in C : H(z, y) + \frac{1}{r} \langle y - z, J(z) - J(x) \rangle \ge 0, \forall y \in C \},$$
(3.50)

where $H(z,y) := F(z,y) + \varphi(y) - \varphi(z) + \langle y - z, Bz \rangle$, and

$$K_T^r x = \{ z \in C : \langle y - z, T(z) \rangle - \frac{1}{r} \langle y - z, (1+r)J(z) - J(x) \rangle \le 0, \forall y \in C \}.$$
(3.51)

In this case, Theorem 3.2 reduces to the following corollary:

Corollary 3.6. Let C be nonempty, closed and convex subset of a smooth and strictly convex reflexive real Banach space E with its dual E^* . Assume that Conditions (B1) - (B7) hold. Let $\{x_n\}$ be a sequence generated from arbitrary $u_0, x_0 \in C$ by

$$\begin{cases} z_n = \Pi_C J^{-1}(J(x_n) - \lambda_n A_n x_n) \\ d_n = \Pi_C J^{-1}(J(x_n - \lambda_n A_n z_n)), \\ u_n = T_{HM}^{r_n} \circ T_{HN-1}^{r_n} \circ \cdots \circ T_{H_2}^{r_n} \circ T_{H_1}^{r_n} x_n, \\ v_n = K_{TN}^{r_n} \circ K_{TN-1}^{r_n} \circ \cdots \circ K_{T_2}^{r_n} \circ K_{T_1}^{r_n} u_n, \\ x_{n+1} = J^{-1}(\alpha_n J(u) + \theta_n J(x_n) + \beta_n J(d_n) + \gamma_n J(v_n)), \end{cases}$$
(3.52)

where $A_n = A_n \mod (K+1)$, and Π_C is the generalized metric projection from E onto C; $\{r_n\} \subset [c_1, \infty)$ for some $c_1 > 0$, $\alpha_n, \theta_n, \beta_n, \gamma_n \in (0, 1)$, $\forall n \ge 0$ such that $\alpha_n + \theta_n + \beta_n + \gamma_n = 1$, $\lim_{n \to \infty} \alpha_n = 0$ with $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\beta_n, \gamma_n \in [c, 1)$ for some c > 0, and $0 < a \le \lambda_n \le b < \frac{1}{L}$, for $L = \max_{0 \le i \le K} L_i$. Then, the sequence $\{x_n\}$ converges strongly to p in \mathcal{F} which is nearest to u with respect to the generalized metric projection.

If, in Corollary 3.6, we assume that E = H, a real Hilbert space, and $f(x) = \frac{1}{2} ||x||^2$, then we have $\nabla f = J = I$ and $\nabla f^* = J^{-1} = I$, were I is identity mapping on H. Moreover, f-pseudocontractive mapping reduces to pseudocontractive mapping. In this case, for r > 0 and $x \in E$, we have

$$T_{H}^{r}x = \{ z \in C : H(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \forall y \in C \},$$
(3.53)

where $H(z, y) := F(z, y) + \varphi(y) - \varphi(z) + \langle y - z, Bz \rangle$, and

$$K_T^r x = \{ z \in C : \langle y - z, T(z) \rangle - \frac{1}{r} \langle y - z, (1+r)z - x \rangle \le 0, \forall y \in C \}.$$
(3.54)

Thus, we have the following corollary.

Corollary 3.7. Let C be a nonempty, closed and convex subset of a real Hilbert space H and let $T_i : H \to H$, $i = 1, 2, \dots, N$ be continuous pseudocontractive mappings. Let $\{x_n\}$ be a sequence generated from an arbitrary $u, x_0 \in C$ by

$$\begin{aligned}
z_n &= P_C(x_n - \lambda_n A_n x_n) \\
d_n &= P_C(x_n - \lambda_n A_n z_n), \\
u_n &= T_{H_M}^{r_n} \circ T_{H_{M-1}}^{r_n} \circ \cdots \circ T_{H_2}^{r_n} \circ T_{H_1}^{r_n} x_n, \\
v_n &= K_{T_N}^{r_n} \circ K_{T_{N-1}}^{r_n} \circ \cdots \circ K_{T_2}^{r_n} \circ K_{T_1}^{r_n} u_n, \\
x_{n+1} &= \alpha_n u + \theta_n x_n + \beta_n d_n + \gamma_n v_n,
\end{aligned}$$
(3.55)

where $A_n = A_n \mod (K+1)$, and P_C is metric projection of H onto C; $\{r_n\} \subset [c_1, \infty)$ for some $c_1 > 0$, $\alpha_n, \theta_n, \beta_n, \gamma_n \in (0, 1)$, $\forall n \ge 0$ such that $\alpha_n + \theta_n + \beta_n + \gamma_n = 1$, $\lim_{n \to \infty} \alpha_n = 0$ with $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\beta_n, \gamma_n \in [c, 1)$ for some c > 0, and $0 < a \le \lambda_n \le b < \frac{1}{L}$, for $L = \max_{0 \le i \le K} L_i$. If Conditions (B3) - (B7) are satisfied, then the sequence $\{x_n\}$ converges strongly to p in \mathcal{F} which is nearest to u with respect to the metric projection.

4 Numerical Example

In this section, we present an example to illustrate the main result of our paper.

Example 4.1. Let $E = L_2^{\mathbb{R}}([0,1])$ with norm $||x||_{L_2^{\mathbb{R}}} = (\int_0^1 |x(s)|^2 ds)^{\frac{1}{2}}$, for $x \in E$ and $C = \{x \in E : ||x||_{L_2^{\mathbb{R}}} \leq 1\}$. Define $f : E \to \mathbb{R}$ by $f(x) = \frac{1}{2} ||x||_{L_2^{\mathbb{R}}}^2$, then $\nabla f = J = I$ and $\nabla f^* = J = I$, where I is identity mapping on E. Let $A_j, T_i, B_t : C \to E$ be defined by $A_j(x)(s) = (1+j)\nabla f(x)(s), j = 0, 1, \ldots, K; T_i(x)(s) = -s^i \nabla f(x)(s), i = 1, \ldots, N$ and $B_t(x)(s) = \frac{t+1}{2t+1} \nabla f(x)(s), t = 1, \ldots, M$, for all $x(s) \in C, s \in [0, 1]$, respectively. Let $F_t : C \times C \to \mathbb{R}$ be defined by $F_t(x, y) = \frac{t}{2t+1} \langle y - x, \nabla f(x) \rangle, \forall x, y \in C$. Then A_j , for $j = 0, 1, \ldots, K$ are Lipschitz monotone mappings with $\bigcap_{j=0}^K VI(C, A_j) = \{0\}$; T_i , for $i = 1, \ldots, N$ are continuous f-pseudocontractive with $\bigcap_{i=1}^N F_f(T_i) = \{0\}$; B_t , for $t = 1, \ldots, M$ are continuous monotone mappings, and F_t , for $t = 1, \ldots, M$ are bi-function satisfying **Condition A**. Thus, a common solution set of the generalized equilibrium problems is $\bigcap_{t=1}^M GMEP(F_t, \varphi_t, B_k) = \{0\}$, where $\varphi_t \equiv \text{constant.}$ Now, for implementation, we choose $K = 0, N = M = 1, r_n = 1, \theta_n = \beta_n = \gamma_n = \frac{1}{3}(1 - \alpha_n), \lambda_n = 0.00001 + \frac{1}{100n}$, for $n \ge 0$ and we compute the $(n + 1)^{th}$ iteration as follows:

$$\begin{cases} z_n(s) = \min\{1, \frac{1}{\|w_n\|_{L_2^{\mathbb{R}}}}\}w_n(s), \\ d_n(s) = \min\{1, \frac{1}{\|h_n\|_{L_2^{\mathbb{R}}}}\}h_n(s), \\ u_n(s) = \frac{1}{r_n+1}x_n(s), \\ v_n(s) = \frac{1}{1+r_n(1+s)}u_n, \\ x_{n+1}(s) = \alpha_n u(s) + \theta_n x_n(s) + \beta_n d_n(s) + \gamma_n v_n(s), \end{cases}$$

$$(4.1)$$

where $w_n(s) = x_n(s) - \lambda_n(1+s)x_n(s)$ and $h_n(s) = x_n(s) - \lambda_n(1+s)z_n(s)$.

Now, taking different initial points, $x_0(s) = 2s$, $x_0(s) = 2s^5$, $x_0(s) = 2s^{10}$ and fixed $u_0(s) = 2s^2$ in C and $\alpha_n = \frac{1}{10000n+10}$, the numerical experiment result provides that the sequence $\{\|x_n - p\|\}$ approaches zero as $n \to \infty$ (see, Figure 1 below), where p = 0. In this case, we observe that the sequence $\{x_n\}$ converges faster when the power of s gets large.

Next, we obtain the same numerical tests of algorithm 4.1 by taking initial points $u_0(s) = 2s^2$, $x_0(s) = 2s^{10}$ and different control parameters, $\alpha_n = \frac{1}{100n+10}$, $\alpha_n = \frac{1}{(100)^2n+10}$, $\alpha_n = \frac{1}{(100)^3n+10}$. In this case, we observe that the rate of convergence looks the same through out (see, Figure 2).

5 Conclusion

In this paper, we constructed a new algorithm to approximate a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the set of f-fixed points of a finite family of f-pseudocontractive mappings and the set of solutions of a finite family of variational inequality problems for a finite family of Lipschitz monotone mappings in reflexive real Banach spaces. We proved a strong convergence theorem for the developed algorithm in reflexive real Banach spaces. In addition, a numerical example is given to illustrate the implementability

Figure 1: Figure 1: Convergence of the sequence $\{||x_n - p||\}$ as n gets large.

Figure 2: Figure 2: Convergence of the sequence $\{||x_n - p||\}$ as n gets large.

of our algorithm. Specifically, the result of our method improve the result obtained by Shahzad and Zegeye [21] from a Hilbert spaces to a reflexive Banach spaces, from continuous pseudocontractive to continuous f-pseudocontractive and from equilibrium problem to generalized mixed equilibrium problem. In addition, Theorem 3.2 extends Theorem 3.1 of Bello and Nnakwe [2] from 2-uniformly convex and uniformly smooth spaces to reflexive Banach spaces, from continuous semi-pseudocontractive to continuous f-pseudocontractive and from equilibrium problem to generalized mixed equilibrium problem.

Acknowledgement

This work was supported by Simons Foundation funded project based at Botswana International University of Science and Technology. The first author was also supported by the International Science Program(ISP)- Sweden, based in the Department of Mathematics, Addis Ababa University, Ethiopia.

References

 H.H. Bauschke, J.M. Borwein and P.L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), 615–647.

- [2] A.U. Bello and M.O. Nnakwe, An algorithm for approximating a common solution of some nonlinear problems in Banach spaces with an application, Adv. Differ. Eq. 2021 (2021), no. 1, 1–17.
- [3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123–145.
- [4] F.J. Bonnans and A. Shapiro, Perturbation analysis of optimization problem, Springer, New York, 2000.
- [5] L.M. Bregman, The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys. 7 (1967), 200–217.
- [6] D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. **2006** (2006), 139.
- [7] F.E. Browder, Existence and approximation of solutions of nonlinear variational inequalities, Proc. Natl. Acad. Sci. USA 56 (1966), no. 4, 1080–1086.
- [8] L.C. Ceng and J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008), 186–201.
- [9] V. Darvish, Strong convergence theorem for generalized mixed equilibrium problems and Bregman nonexpansive mapping in Banach spaces, Mathematica Moravica **20** (2016), no. 1, 69–87.
- [10] M. Khonchaliew, A. Farajzadeh and N. Petrot, Shrinking extragradient method for pseudomonotone equilibrium problems and quasi-nonexpansive mappings, Symmetry 11 (2019), no. 4, 480.
- [11] P. Lohawech, A. Kaewcharoen and A. Farajzadeh, Algorithms for the common solution of the split variational inequality problems and fixed point problems with applications, J. Inequal. Appl. 2018 (2018), 358.
- [12] P.E. Maingé, Strong convergence of projected subgradiant method for nonsmooth and nonstrictily convex minimization, Set-Valued Anal. 16 (2008), 899–912.
- [13] A. Mouda and M. Thera, Proximal and dynamical approaches to equilibrium problems, Lecture notes in Economics and Mathematical Systems, 477, Spinger, 1999, 187–201.
- [14] M.O. Nnakwe and C.C. Okeke, A common solution of generalized equilibrium problems and fixed points of pseudocontractive-type maps, J. Appl. Math. Comput. 66 (2021), no. 1, 701–716.
- [15] R.P. Phelps, Convex functions, monotone operators, and differentiability, Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, Berlin 1993.
- [16] S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal. 36 (1980), 147–168.
- [17] S. Reich and S. Sabach, Strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 471–485.
- [18] S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010), 22–44.
- [19] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877–898.
- [20] P. Senakka and P. Cholamjiak, Approximation method for solving fixed point problem of Bregman strongly nonexpansive mappings in reflexive Banach spaces, Ric. Mat. 65 (2016), 209–220.
- [21] N. Shahzad and H. Zegeye, Convergence theorems of common solutions for fixed point, variational inequality and equilibrium problems, J. Nonlinear Var. Anal. 3 (2019), no. 2, 189–203.
- [22] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279–291.
- [23] G.B. Wega and H. Zegeye, Convergence results of Forward-Backward method for a zero of the sum of maximally monotone mappings in Banach spaces, Comput. Appl. Math. 39 (2020), 223.
- [24] H. Zegeye, An iterative approximation for a common fixed point of two pseudo-contractive mappings, Int. Scholar. Res. Notices 2011 (2011).

[25] H. Zegeye and G.B. Wega, Approximation of a common f-fixed point of f-pseudocontractive mappings in Banach spaces, Rend. Circ. Mat. Palermo (2) 70 (2021), no. 3, 1139–1162